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Homework #2 2008

TA: Chien-Tien Wu

1. (a) If x ≤ y, we have µ((−∞, x]) ≤ µ((−∞, y]). Hence F (x) ≤ F (y) for x ≤ y

(b) We only need to prove that if xn ↓ y, then

lim
x→∞

F (xn) = F (y).

Since (−∞, xn] ↓ (−∞, y], by monotone property of probability measure

lim
n→∞

F (xn) = lim
n→∞

µ((−∞, xn]) = µ((−∞, y]) = F (y).

(c) (−∞,−n] ↓ φ and (∞, n] ↑ Ω, by monotone property of probability measure

lim
x→−∞

F (x) = lim
n→∞

µ((−∞,−n]) = µ(φ) = 0,

lim
x→∞

F (x) = lim
n→∞

µ((−∞, n]) = µ(Ω) = 1.

2. i. Let

F (x) =


0, x ≤ 0,

x, 0 < x ≤ 1,

1, 1 < x.

The corresponding probability measure µ is defined as µ(I) =
∫
I∩[0.1]

1dx for I
∈ B.

ii. Let F(x) =
∫ x

−∞
1√
2π
e
−x2

2 dx, then µ(I) =
∫
I

1√
2π
e
−x2

2 dx is the corresponding prob-

ability measure on (R,B).

3. (⇒)
Suppose A ∈ F ,

{ω : 1A(ω) ≤ x } =


Ω, x ≥ 1,

Ac, 0 ≤ x < 1,

φ, x < 0,

which means {ω : 1A(ω) ≤ x } ∈ F , ∀x ∈ R. By theorem 1.3.4, 1A is an r.v. on (Ω,F).
(⇐)
If 1A is an random variable, 1−1

A ({ 1 }) = A ∈ F .

4. (a) f−1(1, 5, 25) = [1, 2) ∪ [5, 6) ∪ [25, 26).

(b) ∀B ∈ B

f−1(B) =f−1((B ∩ Zc) ∪ (B ∩ Z))

=f−1(B ∩ Zc) ∪ f−1(B ∩ Z)

=
⋃

n∈Z0⊂Z

[n, n+ 1) ∈ B

⇒ f(x) is a Borel measurable function from (R,B) into (R,B).



5. Since Λ ∈ F(X), there exists B ∈ B such that Λ = X−1(B).Since B is an event in
(R,B), by problem 3, the indicator function 1B of B is a Borel measurable function
from (R,B) to (R,B). We let f(x) = 1B(x). Then 1Λ(ω) = 1B(X(ω)) = f(X(ω)),i.e.
1Λ = f(X).

6. (i) ∀B ∈ B, µX(B) ≡ P(X−1(B)) ≥ 0.

(ii) If Aj, j = 1, 2, . . .are mutually disjoint Borel set in B, then X−1(Aj) are also
disjoint events in F , and

µX(∪∞j=1Aj) =P(X−1(∪∞j=1Aj))

=P(∪∞j=0X
−1(Aj))

=
∞∑
j=1

P(X−1(Aj))

=
∞∑
j=1

µx(Aj).

(iii)

µX(R) =P(X−1(R))

=P(Ω)

=1.

By (i), (ii), (iii) in above, µX is a probability measure on (R,B).

7. Let Y = f(X1, X2). ∀A ∈ B, Y −1(A) = (X1, X2)−1 ◦ f−1(A). Since f is a Borel
measurable function, f−1(A) ∈ B2. By problem 8(a) which will be proved later, we
know that Y −1(A) = (X1, X2)−1 ◦ f−1(A) is an event, i.e Y −1(A) ∈ F . Thus Y =
f(X1, X2) is an r.v. on (Ω,F).

8. (a) (i.) Let W = I1 × I2 ∈ R2.

(X, Y )−1(W ) = {ω ∈ Ω | (X(ω), Y (ω)) ∈ W }
= {ω ∈ Ω | X(ω) ∈ I1, Y (ω) ∈ I2 }
= {ω ∈ Ω | X(ω) ∈ I1 } ∩ {ω ∈ Ω | Y (ω) ∈ I2 }
=X−1(I1) ∩ Y −1(I2).

Since X−1(I1) ∈ F and Y −1(I2) ∈ F , (X, Y )−1(W ) ∈ F for W ∈ R2.

(ii.) Let (X, Y )−1(B) ∈ F for a subset B of R2.

ω ∈ (X, Y )−1(Bc)

⇔ (X(ω), Y (ω)) ∈ Bc

⇔ ω /∈ (X, Y )−1(B)

⇔ ω((X, Y )−1(B))c,

which implies
(X, Y )−1(B) = ((X, Y )−1(B))c ∈ F .
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(iii.) If (X, Y )−1(Bn) is an event for each of a countable number of subsets Bn of
R2, n = 1, 2, . . ., then

(X, Y )−1(∪nBn) = {ω ∈ Ω | (X(ω), Y (ω)) ∈ ∪nBn }
= ∪n {ω ∈ Ω | (X(ω), Y (ω)) ∈ Bn }
= ∪n (X, Y )−1(Bn) ∈ F .

(iv.) Let G be the collection of all subsets A of R2 s.t. (X, Y )−1(A) ∈ F . By
(ii) and (iii) (similar to the proof of theorem (1.3.4)), G is a σ-algebra of
subsets of R2. By (i), G contains all 2-cells of R2. Since B2 is generated by
all 2-cells, we have B2 ⊆ G. Thus for any two-dimensional Borel set B in B2,
(X, Y )−1(B) ∈ F .

(b) The collection C of all events (X, Y )−1(B) for all B ∈ B2 is a σ-algebra by similar
proof in (ii) and (iii) in part(a).
Since B2 is generated by 2-cells { I1 × I2 }, C is generated by (X, Y )−1(I1 × I2).
Then

(X, Y )−1(I1 × I2) = {ω ∈ Ω | (X(ω), Y (ω)) ∈ I1 × I2 }
= { {ω ∈ Ω | X(ω) ∈ I1 } ∩ {ω ∈ Ω | Y (ω) ∈ I2 } } .

⇒ C ⊆ F(X, Y ).

On the other hand, since F(X) is generated by X−1(I1) and F(Y ) is generated
by Y −1(I2), F(X, Y ) is generated by X−1(I1) and Y −1(I2) for all intervals I1 and
I2. Then

X−1(I1) =X−1(I1) ∩ Y −1(R)

=(X, Y )−1(I1 × R)

∈ C.

Similarly,

Y −1(I2) =Y −1(I2) ∩X−1(R)

=(X, Y )−1(R× I2)

∈ C.

⇒ F(X, Y ) ⊆ C.

Thus the collection C of all events (X, Y )−1(B) is the smallest σ-algebra F(X, Y )
generated by the union of F(X) and F(Y ).

9. (a) Since an = (1 + 1
n
) sinnπ = 0, supn an = infn an = 0.

(b) supn an = 1 and infn an = −1.
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