EE565000 Stochastic Process Homework #2 2008 TA: Chien-Tien Wu

(a) If x ≤ y, we have μ((-∞, x]) ≤ μ((-∞, y]). Hence F(x) ≤ F(y) for x ≤ y
 (b) We only need to prove that if x_n ↓ y, then

$$\lim_{x \to \infty} F(x_n) = F(y).$$

Since $(-\infty, x_n] \downarrow (-\infty, y]$, by monotone property of probability measure

$$\lim_{n \to \infty} F(x_n) = \lim_{n \to \infty} \mu((-\infty, x_n]) = \mu((-\infty, y]) = F(y).$$

(c) $(-\infty, -n] \downarrow \phi$ and $(\infty, n] \uparrow \Omega$, by monotone property of probability measure

$$\lim_{x \to -\infty} F(x) = \lim_{n \to \infty} \mu((-\infty, -n]) = \mu(\phi) = 0$$
$$\lim_{x \to \infty} F(x) = \lim_{n \to \infty} \mu((-\infty, n]) = \mu(\Omega) = 1.$$

2. i. Let

$$F(x) = \begin{cases} 0, & x \le 0, \\ x, & 0 < x \le 1, \\ 1, & 1 < x. \end{cases}$$

The corresponding probability measure μ is defined as $\mu(I) = \int_{I \cap [0,1]} 1 dx$ for I $\in \mathcal{B}$.

- ii. Let $\mathcal{F}(x) = \int_{-\infty}^{x} \frac{1}{\sqrt{2\pi}} e^{\frac{-x^2}{2}} dx$, then $\mu(I) = \int_{I} \frac{1}{\sqrt{2\pi}} e^{\frac{-x^2}{2}} dx$ is the corresponding probability measure on (R, \mathcal{B}) .
- 3. (\Rightarrow)

Suppose $A \in \mathcal{F}$,

$$\{ \, \omega : 1_A(\omega) \le x \, \} = \begin{cases} \Omega, & x \ge 1, \\ A^c, & 0 \le x < 1, \\ \phi, & x < 0, \end{cases}$$

which means $\{\omega : 1_A(\omega) \le x\} \in \mathcal{F}, \forall x \in R$. By theorem 1.3.4, 1_A is an r.v. on (Ω, \mathcal{F}) . (\Leftarrow)

If 1_A is an random variable, $1_A^{-1}(\{1\}) = A \in \mathcal{F}$.

4. (a) $f^{-1}(1, 5, 25) = [1, 2) \cup [5, 6) \cup [25, 26)$. (b) $\forall B \in \mathcal{B}$

$$f^{-1}(B) = f^{-1}((B \cap \mathbb{Z}^c) \cup (B \cap \mathbb{Z}))$$
$$= f^{-1}(B \cap \mathbb{Z}^c) \cup f^{-1}(B \cap \mathbb{Z})$$
$$= \bigcup_{n \in Z_0 \subset \mathbb{Z}} [n, n+1) \in \mathcal{B}$$

 $\Rightarrow f(x)$ is a Borel measurable function from (R, \mathcal{B}) into (R, \mathcal{B}) .

- 5. Since $\Lambda \in \mathcal{F}(X)$, there exists $B \in \mathcal{B}$ such that $\Lambda = X^{-1}(B)$. Since B is an event in $(\mathbb{R}, \mathcal{B})$, by problem 3, the indicator function 1_B of B is a Borel measurable function from $(\mathbb{R}, \mathcal{B})$ to $(\mathbb{R}, \mathcal{B})$. We let $f(x) = 1_B(x)$. Then $1_{\Lambda}(\omega) = 1_B(X(\omega)) = f(X(\omega))$, i.e. $1_{\Lambda} = f(X)$.
- 6. (i) $\forall B \in \mathcal{B}, \ \mu_X(B) \equiv \mathcal{P}(X^{-1}(B)) \ge 0.$
 - (ii) If $A_j, j = 1, 2, ...$ are mutually disjoint Borel set in \mathcal{B} , then $X^{-1}(A_j)$ are also disjoint events in \mathcal{F} , and

$$\mu_X(\cup_{j=1}^{\infty} A_j) = \mathcal{P}(X^{-1}(\cup_{j=1}^{\infty} A_j))$$
$$= \mathcal{P}(\cup_{j=0}^{\infty} X^{-1}(A_j))$$
$$= \sum_{j=1}^{\infty} \mathcal{P}(X^{-1}(A_j))$$
$$= \sum_{j=1}^{\infty} \mu_x(A_j).$$

(iii)

$$\mu_X(R) = \mathcal{P}(X^{-1}(R))$$
$$= \mathcal{P}(\Omega)$$
$$= 1.$$

By (i), (ii), (iii) in above, μ_X is a probability measure on (R, \mathcal{B}) .

7. Let $Y = f(X_1, X_2)$. $\forall A \in \mathcal{B}, Y^{-1}(A) = (X_1, X_2)^{-1} \circ f^{-1}(A)$. Since f is a Borel measurable function, $f^{-1}(A) \in \mathcal{B}^2$. By problem 8(a) which will be proved later, we know that $Y^{-1}(A) = (X_1, X_2)^{-1} \circ f^{-1}(A)$ is an event, i.e $Y^{-1}(A) \in \mathcal{F}$. Thus $Y = f(X_1, X_2)$ is an r.v. on (Ω, \mathcal{F}) .

8. (a) (i.) Let $W = I_1 \times I_2 \in \mathbb{R}^2$.

$$(X,Y)^{-1}(W) = \{ \omega \in \Omega \mid (X(\omega),Y(\omega)) \in W \}$$

= $\{ \omega \in \Omega \mid X(\omega) \in I_1, Y(\omega) \in I_2 \}$
= $\{ \omega \in \Omega \mid X(\omega) \in I_1 \} \cap \{ \omega \in \Omega \mid Y(\omega) \in I_2 \}$
= $X^{-1}(I_1) \cap Y^{-1}(I_2).$

Since $X^{-1}(I_1) \in \mathcal{F}$ and $Y^{-1}(I_2) \in \mathcal{F}$, $(X, Y)^{-1}(W) \in \mathcal{F}$ for $W \in \mathbb{R}^2$. (ii.) Let $(X, Y)^{-1}(B) \in \mathcal{F}$ for a subset B of \mathbb{R}^2 .

$$\omega \in (X, Y)^{-1}(B^c)$$

$$\Leftrightarrow (X(\omega), Y(\omega)) \in B^c$$

$$\Leftrightarrow \omega \notin (X, Y)^{-1}(B)$$

$$\Leftrightarrow \omega((X, Y)^{-1}(B))^c,$$

which implies

$$(X,Y)^{-1}(B) = ((X,Y)^{-1}(B))^c \in \mathcal{F}.$$

(iii.) If $(X, Y)^{-1}(B_n)$ is an event for each of a countable number of subsets B_n of R^2 , n = 1, 2, ..., then

$$(X,Y)^{-1}(\cup_n B_n) = \{ \omega \in \Omega \mid (X(\omega), Y(\omega)) \in \cup_n B_n \}$$
$$= \cup_n \{ \omega \in \Omega \mid (X(\omega), Y(\omega)) \in B_n \}$$
$$= \cup_n (X,Y)^{-1}(B_n) \in \mathcal{F}.$$

- (iv.) Let \mathcal{G} be the collection of all subsets A of \mathbb{R}^2 s.t. $(X,Y)^{-1}(A) \in \mathcal{F}$. By (ii) and (iii) (similar to the proof of theorem (1.3.4)), \mathcal{G} is a σ -algebra of subsets of \mathbb{R}^2 . By (i), \mathcal{G} contains all 2-cells of \mathbb{R}^2 . Since \mathcal{B}^2 is generated by all 2-cells, we have $\mathcal{B}^2 \subseteq \mathcal{G}$. Thus for any two-dimensional Borel set B in \mathcal{B}^2 , $(X,Y)^{-1}(B) \in \mathcal{F}$.
- (b) The collection \mathcal{C} of all events $(X, Y)^{-1}(B)$ for all $B \in \mathcal{B}^2$ is a σ -algebra by similar proof in (ii) and (iii) in part(a). Since \mathcal{B}^2 is generated by 2-cells $\{I_1 \times I_2\}, \mathcal{C}$ is generated by $(X, Y)^{-1}(I_1 \times I_2)$. Then

$$(X,Y)^{-1}(I_1 \times I_2) = \{ \omega \in \Omega \mid (X(\omega), Y(\omega)) \in I_1 \times I_2 \}$$
$$= \{ \{ \omega \in \Omega \mid X(\omega) \in I_1 \} \cap \{ \omega \in \Omega \mid Y(\omega) \in I_2 \} \}.$$
$$\Rightarrow \mathcal{C} \subseteq \mathcal{F}(X,Y).$$

On the other hand, since $\mathcal{F}(X)$ is generated by $X^{-1}(I_1)$ and $\mathcal{F}(Y)$ is generated by $Y^{-1}(I_2)$, $\mathcal{F}(X, Y)$ is generated by $X^{-1}(I_1)$ and $Y^{-1}(I_2)$ for all intervals I_1 and I_2 . Then

$$X^{-1}(I_1) = X^{-1}(I_1) \cap Y^{-1}(\mathbb{R})$$
$$= (X, Y)^{-1}(I_1 \times \mathbb{R})$$
$$\in \mathcal{C}.$$

Similarly,

$$Y^{-1}(I_2) = Y^{-1}(I_2) \cap X^{-1}(\mathbb{R})$$
$$= (X, Y)^{-1}(\mathbb{R} \times I_2)$$
$$\in \mathcal{C}.$$
$$\Rightarrow \mathcal{F}(X, Y) \subseteq \mathcal{C}.$$

Thus the collection \mathcal{C} of all events $(X, Y)^{-1}(B)$ is the smallest σ -algebra $\mathcal{F}(X, Y)$ generated by the union of $\mathcal{F}(X)$ and $\mathcal{F}(Y)$.

9. (a) Since $a_n = (1 + \frac{1}{n}) \sin n\pi = 0$, $\sup_n a_n = \inf_n a_n = 0$. (b) $\sup_n a_n = 1$ and $\inf_n a_n = -1$.