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Chapter 1

A Review of Probability Theory

1.1 Measurable Spaces

Let Ω be a set. In a stochastic context, Ω is commonly used to denote the set of all
possible outcomes in a random experiment. And Ω is usually called the sample space of that
experiment.

A description of the outcome of doing the experiment, i.e. an event, can usually be
represented by a subset of the sample space Ω. For example, the description that the outcome
of throwing a dice is red-colored can be represented as the subset {1, 4} of the sample space
Ω = {1, 2, 3, 4, 5, 6}. An event, represented by a subset A, is said to occur if and only if the
observed outcome ω of the experiment is indeed an element of A. An interesting question is
that is any subset of the sample space Ω meaningful to represent an event of the experiment?
The answer is quite general that it is up to your interests to select a collection F of subsets
of Ω such that each member of F is meaningful (to you) to represent an event, in case that
the logical consistency is maintained in F as discussed in below.

If a subset A of the sample space Ω represents an event as you select to be in F , then the
subset Ac = Ω−A represents the description that event A does not occur, which is logically
an event too. Thus it is logical to require that Ac is a member of F . Furthermore, if two
subsets A and B represents events as you wish, then the union A∪B of A and B represents
the description that either event occurs, which is again logically an event. And it is again
logical to require that A ∪ B is a member of F .

Definition 1.1.1 A non-empty collection F of subsets of Ω is a (Boolean) algebra if

1. A ∈ F ⇒ Ac ∈ F .

2. A1, A2 ∈ F ⇒ A1 ∪ A2 ∈ F . 2

In fact, an algebra is closed under finite number of logical operations as stated in the following
theorem, which can be proved by induction.

1



2 CHAPTER 1. A REVIEW OF PROBABILITY THEORY

Theorem 1.1.2 Let A1, A2, . . . , An be in an algebra F . Then, ∪n
j=1Aj and ∩n

j=1Aj are also
in F . 2

For convenience, we shall identify a member of an algebra F as the event it represents. An
algebra may not be closed under countably infinite number of logical operations as illustrated
in the following example.

Example 1.1.3 Let Ω be the set Z of all integers. Let F be the collection of all finite subsets
of Z and their complements. It can be shown that F is an algebra. And we can perform
a finite number of logical operations on events in F and obtain an event in F consistently.
Now, let Ai = {2i}, i = 1, 2, . . ., in F . Then ∪∞

i=1Ai is the set of all positive even integers
and is clearly not in F . Thus the subset ∪∞

i=1Ai is not meaningful to us in this setting. 2

As we shall see, it is required to perform countably infinite number of logical operations on
events in dealing with various problems.

Definition 1.1.4 A non-empty collection F of subsets of Ω is a (Boolean) σ-algebra if

1. A ∈ F ⇒ Ac ∈ F .

2. Aj ∈ F , j = 1, 2, . . . ⇒ ∪∞
j=1Aj ∈ F . 2

The next theorem states some properties of a σ-algebra.

Theorem 1.1.5 Let F be a σ-algebra. Then

1. Ω and ∅ are in F ,

2. For Aj ∈ F , j = 1, 2, . . ., ∩∞
j=1Aj is in F . 2

By taking An+1 = An+2 = · · · = ∅ in Definition 1.1.4, it can be seen that a σ-algebra is an
algebra. Thus we can perform countable, finite or infinite, number of logical operations on
events in a σ-algebra.

Example 1.1.6 The power set 2Ω (i.e. the collection of all subsets of Ω) is a σ-algebra. 2

Theorem 1.1.7 Let Fα be a σ-algebra on Ω for each α in an index set I. Then the
intersection ∩α∈IFα of all σ-algebra Fα is also a σ-algebra on Ω. 2

For any collection G of subsets of Ω, there exists a smallest σ-algebra F containing G.
This smallest σ-algebra F is just the intersection of all σ-algebra containing G. F is called
the σ-algebra generated by G.

Example 1.1.8 The σ-algebra generated by the algebra in Example 1.1.3 is just the power
set of Ω. 2



1.2. PROBABILITY SPACES 3

Example 1.1.9 Let Ω be the set R of all real numbers. Let G be the set of all open intervals
in R. And let B be the σ-algebra generated by G. A member in B is called a Borel set.
Since, for −∞ ≤ a < b ≤ +∞,

[a, b] = ∩∞
n=1(a − 1

n
, b +

1

n
), (a, b] = ∩∞

n=1(a, b +
1

n
), [a, b) = ∩∞

n=1(a − 1

n
, b),

any interval is a Borel set in R. 2

Definition 1.1.10 A measurable space (Ω,F) is a sample space Ω together with a σ-algebra
F on Ω. 2

The measurable space (R,B) in the above example is usually called the Borel measurable
space. Now consider a countable 1 sample space Ω. It is usually desirable to have every
singleton 2 as an event in each interesting σ-algebra F . It is clear that any such an F is just
the power set 2Ω of Ω. (Ω, 2Ω) is called a discrete measurable space.

1.2 Probability Spaces

It is now ready to assign a probability to each event in a measurable space (Ω,F).

Definition 1.2.1 A probability measure P on a measurable space (Ω,F) is a set function
from F to R which satisfies:

1. ∀A ∈ F , P(A) ≥ 0.

2. (Countable additivity) If Aj, j = 1, 2, . . . are mutually disjoint events in F , then

P(∪∞
j=1Aj) =

∞
∑

j=1

P(Aj).

3. P(Ω) = 1. 2

A probability space (Ω,F ,P) is a measurable space (Ω,F) together with a probability
measure P. We next list some useful properties of a probability measure P in the following,
where all sets are events:

1. P(A) ≤ 1.

1A set A is countable if there exists a one-to-one mapping from A into the set N of positive integers.
Otherwise, A is uncountable. For example, N , Z and Q are countable sets but R and C are uncountable. A
countable set may be finite or infinite. For example, N , Z and Q are countable infinite sets but {a, b, c, d}
is countably finite.

2A singleton is a set containing exactly one element.
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2. P(∅) = 0.

3. P(Ac) = 1 − P(A).

4. P(A ∪ B) + P(A ∩ B) = P(A) + P(B).

5. A ⊆ B ⇒ P(A) = P(B) − P(B − A) ≤ P(B).

6. (Monotone property) Aj ↑ A or Aj ↓ A ⇒ P(Aj) → P(A) as j → ∞.

7. (Boole’s inequality) P(∪∞
j=1Aj) ≤

∑∞
j=1 P(Aj).

Remark 1.2.2 Aj ↑ A means that {Aj, j = 1, 2, . . .} is a monotone increasing sequence of
subsets, i.e. A1 ⊆ A2 ⊆ . . ., and A = ∪∞

j=1Aj. Also Aj ↓ A means that {Aj, j = 1, 2, . . .} is
a monotone decreasing sequence of subsets, i.e. A1 ⊇ A2 ⊇ . . ., and A = ∩∞

j=1Aj.

Proof. Properties 1–5 are trivial. Firstly, we consider Aj ↓ A. It is obvious that

Aj = ∪∞
k=j (Ak − Ak+1) ∪ A,

a countable union of mutually disjoint events. From the countable additivity axiom of
probability measure,

P(Aj) =

∞
∑

k=j

P (Ak − Ak+1) + P(A).

Especially, the series
∑∞

k=1 P (Ak − Ak+1) converges and the tail sum
∑∞

k=j P (Ak − Ak+1)
converges to 0 as j goes to infinity. This proves that limj→∞P(Aj) = P(A). Since Aj ↑ A is
equivalent to Ac

j ↓ Ac, we have limj→∞P(Ac
j) = P(Ac). By Property 3, we then have

limj→∞P(Aj) = P(A). This proves the monotone property. Now, by repeatedly applying
Property 4, we have P(∪n

j=1Aj) ≤
∑n

j=1 P(Aj) ≤
∑∞

j=1 P(Aj). Since (∪n
j=1Aj) ↑ (∪∞

j=1Aj),
we have

P
(

∪∞
j=1Aj

)

= lim
n→∞

P
(

∪n
j=1Aj

)

≤
∞
∑

j=1

P(Aj)

by the monotone property. This proves the Boole’s inequality. 2

A discrete measurable space (Ω, 2Ω), where Ω is countable, together with a probability
measure P on it is called a discrete probability space. Since the collection of all singletons
(elementary events) of Ω generates 2Ω, the probability measure P can be completely specified
by its assignment on all singletons, i.e. P({ω}), ∀ω ∈ Ω. If Ω is countably infinite and
samples are indexed by the positive integers, then {P({ωi}), i = 1, 2, . . .} is a sequence
of non-negative numbers and the series

∑∞
i=1 P({ωi}) converges to 1. Conversely, given a

sequence {ai, i = 1, 2, . . .} of non-negative number such that the series
∑∞

i=1 ai converges
to 1. Then the assignment P({ωi}) = ai, i = 1, 2, . . ., completely specifies a probability
measure on the discrete measurable space (Ω, 2Ω).
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There are many experiments in each of which the sample space is uncountable such as the
lifetime of a bulb, the length of a telephone call, the end-to-end voltage of a resistor, where
the sample space is an interval of the real line R. It is often that the probability P({ω}) of
an elementary event is zero.

Consider the Borel measurable space (R,B). A probability measure on (R,B) is directly
related to a distribution function F (x) on R. Let µ be a probability measure on (R,B).
Define a function F (x) of x in R as

F (x) ≡ µ((−∞, x]), ∀x ∈ R. (1.1)

It is easy to check that F (x) is a monotone increasing right-continuous function over R and
limx→−∞ F (x) = 0, limx→∞ F (x) = 1. Such a function is called a distribution function on R.
Conversely, given a distribution function F (x) on R, we can define a set function µ on any
interval of R as 3

µ((a, b]) = F (b) − F (a), (1.2a)

µ((a, b)) = F (b−) − F (a), (1.2b)

µ([a, b)) = F (b−) − F (a−), (1.2c)

µ([a, b]) = F (b) − F (a−) (1.2d)

for −∞ ≤ a < b ≤ +∞. Such an assignment can be extended to any Borel set in R and µ
becomes a probability measure on the Borel measurable space (R,B) uniquely as stated in
the following theorem 4:

Theorem 1.2.3 Given a probability measure on (R,B). There is a unique distribution
function F (x) on R satisfying (1.1). Conversely, given a distribution function F (x). there is
a unique probability measure µ satisfying (1.1). 2

We shall call F (x) the distribution function of µ and µ the probability measure of F (x).
Note that µ is a set function, while F (x) is a point function.

There is a convenience way to construct a distribution function on R.

Definition 1.2.4 A probability density function f(x) on R is a non-negative integrable
function on R such that

∫ ∞

−∞
f(x)dx = 1.

2

Given a probability density function f(x), the function F defined by

F (x) =

∫ x

−∞
f(t)dt

3Since F (x) is monotone increasing, the left limit limx→b− F (x) at every point x = b exists.
4See K. L. Chung, A Course in Probability Theory, 2nd edn. New York: Academic Press, 1974, pp.

24–28.
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is easily seen to be a distribution function. Such a distribution function and its corresponding
probability measure are called absolutely continuous (in R and with respect to the Lebesque
measure 5).

1.3 Random Variables

Definition 1.3.1 Let (Ω,F) and (Λ,G) be two measurable spaces. A mapping X from Ω
into Λ is measurable if ∀A ∈ G, X−1(A) ∈ F . 2

Note that the inverse mapping X−1 is regarded as a set function 6.

Definition 1.3.2 A (real-valued) random variable on a measurable space (Ω,F) is a mea-
surable function from (Ω,F) into (R,B). 2

Example 1.3.3 Any mapping from a discrete measurable space (Ω, 2Ω) into a measurable
space is measurable. In particular, any real-valued function on (Ω, 2Ω) is a random variable.

2

Theorem 1.3.4 X is an r.v. X on a measurable space (Ω,F) if and only if

{ω : X(ω) ≤ x} ∈ F , ∀x ∈ R.

Proof. The “only if” part of the theorem follows from the definition of a random variable.
We now consider the “if” part. Let G be the collection of all subsets A of R such that
X−1(A) is in F . By properties of the inverse mapping X−1 listed in Footnote 6, we have

1. if A in G, then X−1(Ac) = (X−1(A))c in F and Ac in G;

2. if Aj in G for all j, then X−1(∪jAj) = ∪jX
−1(Aj) in F and ∪jAj in G.

5The Lebesque measure m on R is the set function from B to R which assigns to each Borel set its length.
In particular, we have m([a, b]) = b − a. The Lebesque measure m satisfies axioms 1 and 2 in the definition
of a probability measure. Also note that m(R) = ∞.

6 Let X be a mapping from a set Ω into another set Λ. The inverse mapping X−1 is a set function from
the power set 2Λ of Λ to the power set 2Ω of Ω defined as

X−1(A) = {ω ∈ Ω|X(ω) ∈ A}

for any subset A of Λ. Let Aα, α in an index set I , be subsets of Λ. Then

X−1(Ac) = (X−1(A))c,

X−1 (∩αAα) = ∩αX−1(Aα),

X−1(∪αAα) = ∪αX−1(Aα).
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Ω

F

-

�

X

X−1

R

B

-

�

f

f−1

R

B

Figure 1.1: Composition of measurable functions.

Thus G is a σ-algebra. By hypothesis, G contains all intervals of the form (−∞, x], ∀x ∈ R,
which generate the Borel σ-algebra B. Thus B ⊆ G and X is an r.v. by definition. 2

In particular, a random variable on the measurable space (R,B) (i.e. a measurable
function from (R,B) into (R,B)) is called a Borel measurable function. Borel measurable
functions are plentiful as stated in the next theorem.

Theorem 1.3.5 Any real-valued function on R with countably many discontinuities is Borel
measurable. 2

Given a random variable X, the event

(X ∈ B) ≡ X−1(B) = {ω ∈ Ω|X(ω) ∈ B}

for a Borel set B is called an event induced by the r.v. X. By properties of the inverse
mapping X−1, the collection of all events (X ∈ B) induced by X, ∀ B ∈ B, is a σ-algebra on
Ω and is denoted as F(X). F(X) contains all information about the r.v. X in the measurable
space (Ω,F). It is clear that F(X) ⊆ F .

Theorem 1.3.6 Let X be a random variable on a measurable space (Ω,F) and f(x) be a
Borel measurable function. Then Y = f(X) is a random variable on (Ω,F).

Proof. Let B be a Borel set in B. Then

Y −1(B) = (f ◦ X)−1(B) = X−1(f−1(B))

is in F since f−1(B) is in B. The behavior of inverse mappings X−1 and f−1 as set
functions can be seen in Figure 1.1. 2

It can be seen that the σ-algebra F(Y ) generated by the r.v. Y = f(X) is contained in the
σ-algebra F(X) generated by the r.v. X. This reflects the fact that data processing usually
loses information about the raw data.

An operation on a finite number of random variables usually results in a random variable.
To discuss such operations, we first generalize the concepts of intervals and Borel sets in n-
dimensional Euclidean space Rn. An n-cell W in Rn is a subset of Rn of the form

W = I1 × I2 × · · · × In
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where Ii’s are intervals in R. W is called an open n-cell if all Ii’s are open intervals. Let Bn

be the σ-algebra generated by all open n-cells in Rn. Any member in Bn is called a Borel set
in Rn. A function f(x1, x2, . . . , xn) from Rn into R is called Borel measurable if f−1(B) is in
Bn for all B ∈ B. In particular, any continuous function from Rn into R is Borel measurable.
The following is an extension of Theorem 1.3.6.

Theorem 1.3.7 . Let X1, X2, . . . , Xn be r.v.’s on a measurable space (Ω,F) and f(x1, x2, . . . , xn)
be a Borel measurable function. Then Y = f(X1, X2, . . . , Xn) is an r.v. on (Ω,F).

Proof. As an exercise. 2

Define
X ∨ Y = max(X, Y ) and X ∧ Y = min(X, Y ).

Theorem 1.3.8 Let X and Y be random variables. Then

X ∨ Y, X ∧ Y, X + Y, X − Y, X · Y, X/Y

are r.v.’s, provided Y does not vanish in the last one,

Proof. This follows from Theorem 1.3.7 and the continuity of the functions
f(x, y) = max(x, y), min(x, y), x + y, x − y, xy and x/y. 2

To discuss operations on a countably infinite number of r.v.’s, we need the following
concepts from analysis.

Definition 1.3.9 Given a sequence {aj, j ≥ 1} of real numbers, the supremum supj aj of
aj’s is the least upper bound of aj’s and the infimum infj aj of aj’s is the greatest lower
bound of aj’s. 2

Both supremum supj aj and infimum infj aj of an arbitrary sequence {aj, j ≥ 1} always exist
and may take values at −∞ or +∞.

Definition 1.3.10 Given a sequence {aj, j ≥ 1} of real numbers, the limit superior (upper
limit) lim supj aj and the limit inferior (lower limit) lim infj aj of aj’s are defined as

lim sup
j

aj = lim
n→∞

(

sup
j≥n

aj

)

, lim inf
j

aj = lim
n→∞

(

inf
j≥n

aj

)

.

2

Since {supj≥n aj, n ≥ 1} is a monotone decreasing sequence and {inf j≥n aj, n ≥ 1} is a
monotone increasing sequence, both limit superior lim supj aj and limit inferior lim infj aj

exist and may take values at −∞ or +∞. We list main properties of limit superior and limit
inferior as follows 7:

7For detailed discussion and proofs, please see
1. T. M. Apostol, Mathematical Analysis, 2nd edn. Reading, Mass.: Addison-Wesley, 1974, pp. 184–185.
2. W. Rudin, Principles of Mathematical Analysis, 3rd edn. New York: McGraw-Hill, 1976, pp. 55–57.
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1. lim supj aj = infn

(

supj≥n aj

)

and lim infj aj = supn (infj≥n aj).

2. lim supj aj = − lim infj(−aj) and lim infj aj = − lim supj(−aj).

3. lim infj aj ≤ lim supj aj.

4. Let E be the set of all subsequential limits 8 on the extended real line R∗ 9. Then both
lim supj aj and lim infj aj are in E and

lim sup
j

aj = sup E and lim inf
j

aj = inf E.

5. lim supj aj is a finite number u if and only if

(a) for every ε > 0, there exists an integer J = J(ε) such that aj < u + ε ∀ j ≥ J ;

(b) given ε > 0 and given an integer n, there exists an integer j > n such that
aj > u − ε.

6. Both limit superior and limit inferior are independent of the ordering of aj’s.

7. The sequence {aj, j ≥ 1} converges on the extended real line R∗ if and only if lim supj aj

= lim infj aj, in which case limj→∞ aj = lim supj aj = lim infj aj.

8. If aj ≤ bj, ∀ j ≥ 1, then

lim inf
j

aj ≤ lim inf
j

bj and lim sup
j

aj ≤ lim sup
j

bj.

It is now clear that it is needed to consider the extended real line R∗ = [−∞, +∞] and
the extended Borel σ-algebra B∗, where an extended Borel set is a Borel set possibly enlarged
by one or both infinite points ±∞. An extended-valued r.v. is a measurable function from
(Ω,F) into (R∗,B∗).

Theorem 1.3.11 If {Xj, j ≥ 1} is a sequence of extended-valued r.v.’s, then

sup
j

Xj, inf
j

Xj, lim sup
j

Xj, lim inf
j

Xj

are also real extended-valued r.v.’s

Proof. Let Y (ω) = supj Xj(ω), ∀ ω ∈ Ω. Since

{sup
j

Xj ≤ x} = ∩j{Xj ≤ x}, ∀ x ∈ R,

Y −1((−∞, x]) is in F . By Theorem 1.3.4, Y is an extended-valued random variable. Since
infj Xj = − supj(−Xj) and −Xj’s are extended-valued random variables, it is cleat that

8A subsequential limit is the limit of a convergent subsequence of {aj , j ≥ 1}.
9A sequence {bj , j ≥ 1} is said to converges to +∞ (or −∞) if for every real M , there is an integer J

such that for all j ≥ J , we have bj ≥ M (or bj ≤ M).
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infj Xj is an extended-valued random variable. Since lim supj Xj and lim infj Xj can be
obtained by combinations of sup and inf operations on Xj’s as

lim sup
j

Xj = inf
n

(

sup
j≥n

Xj

)

and lim inf
j

Xj = sup
n

(

inf
j≥n

Xj

)

,

they are extended-valued random variables. 2

Since lim supj Xj and lim infj Xj are extended-valued random variables, the set

Λ =

(

lim sup
j

Xj = lim inf
j

Xj

)

=

(

lim sup
j

Xj = lim inf
j

Xj = ∞
)

∪
(

lim sup
j

Xj = lim inf
j

Xj = −∞
)

∪
(

lim sup
j

Xj ∈ R, lim inf
j

Xj ∈ R, (lim sup
j

Xj − lim inf
j

Xj) = 0

)

is an event. It is clear that for ω ∈ Λ, the limit limj→∞ Xj(ω) exists and equals to
lim supj Xj(ω). If P(Λ) = 1, we say that the sequence {Xj, j ≥ 1} converges w.p.1 to
an extended-valued r.v. X defined by

X(ω) =

{

lim supj Xj(ω), if ω ∈ Λ,
0, otherwise.

This limiting r.v. X will be denoted as limj→∞ Xj.

Definition 1.3.12 An r.v. X is called discrete if there is a countable set B in R such that
X−1(B) = Ω. If B is finite, then X is also called simple. 2

We next discuss a more direct way to look at a discrete random variable. Let Λ be an event
in F . The indicator function 1Λ of Λ is the random variable defined by

1Λ(ω) =

{

1, if ω ∈ Λ,
0, otherwise.

Let X be a discrete r.v. with values xj’s. Let Λj be the event (X = xj) for all j. Λj’s form
a countable measurable partition 10 of Ω by definition. Thus X can be represented as

X(ω) =
∑

j

xj1Λj
(ω).

We shall say that X belongs to the weighted partition {Λj, xj}. It can be seen that the
σ-algebra F(X) generated by X is just the collection of all unions of Λj’s. Thus, any event
induced by X can be specified by elementary events Λj in the partition.

10A partition of Ω is a collection {Aj , j ∈ I} of subsets of Ω indexed by a set I such that

1. Aj ’s are mutually disjoint,

2. ∪j∈IAj = Ω.

A partition {Aj , j ∈ I} is countable if the index set I is a countable set. A partition {Aj , j ∈ I} is measurable
if each Aj is an event.
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1.4 Expectation

It is much easier to deal with simple r.v.’s at first.

Definition 1.4.1 For a simple r.v. Y belonging to a weighted finite partition {Λj; yj}n
j=1,

the expectation E(Y ) of Y is defined by

E(Y ) =
n
∑

j=1

yjP(Λj). (1.3)

2

Since
P(A) = E(1A)

where 1A is the indicator function of event A, probabilities can be treated as expectations.
It is usually convenient to denote E(Y ) as an abstract integral 11

E(Y ) =

∫

Ω

Y (ω)P(dω).

Lemma 1.4.2 Let X and Y be two simple r.v.’s belonging to {Ai; xi}n
i=1 and {Bj; yj}m

j=1

respectively. Let a, b be two real numbers. Then

E(aX + bY ) = aE(X) + bE(Y )

or in abstract integral form
∫

Ω

(aX + bY )(ω)P(dω) = a

∫

Ω

X(ω)P(dω) + b

∫

Ω

Y (ω)P(dω).

Proof. Let Eij = Ai ∩ Bj, ∀ i, j. Then aX + bY is a simple r.v. belonging to the weighted
finite partition {Eij; axi + byj}. Thus

∫

Ω

(aX + bY )(ω)P(dω) =
∑

i,j

(axi + byj)P(Eij)

= a
∑

i

xi

∑

j

P(Eij) + b
∑

j

yj

∑

i

P(Eij)

= a
∑

i

xiP(Ai) + b
∑

j

yjP(Bj)

= a

∫

Ω

X(ω)P(dω) + b

∫

Ω

Y (ω)P(dω),

where the third equality follows from the countable additivity of P. This completes the
proof. 2

11
∫

Ω

Y (ω)P(dω)

is called the Lebesgue integral of Y over Ω with respect to the p.m. P .
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We next consider non-negative extended-valued random variables.

Definition 1.4.3 Let Y be a non-negative extended-valued random variable and S(Y ) be
the set of all non-negative simple r.v.’s Z such that 0 ≤ Z ≤ Y . The expectation E(Y ) of Y
is defines as

E(Y ) = sup
Z∈S(Y )

E(Z). (1.4)

2

It can be seen that E(Y ) exists and may be finite or infinite for any Y ≥ 0. The following
properties of expectation can be deduced directly from Definition 1.4.3.

Lemma 1.4.4 Let X, Y be extended-valued non-negative r.v.’s and c a non-negative num-
ber. Then

1. if X ≤ Y , then E(X) ≤ E(Y );

2. E(cX) = cE(X).

Proof. For the first property, we have

E(X) = sup
Z∈S(X)

E(Z) ≤ sup
Z∈S(Y )

E(Z) = E(Y )

since S(X) ⊆ S(Y ). From Lemma 1.4.2, the second property holds for a simple
non-negative r.v. Z. Then for a general non-negative r.v. X, we have

E(cX) = sup
Z′∈S(cX)

E(Z ′) = sup
Z∈S(X)

E(cZ) = c sup
Z∈S(X)

E(Z) = cE(X)

since S(cX) = cS(X). 2

In general, the definition in (1.4) is conceptually simple but technically hard. To develop a
workable way to compute E(Y ), we first prove an important theorem.

Theorem 1.4.5 [Lebesgue’s monotone convergence theorem] Let {Yn} be an increasing se-
quence of non-negative extended-valued r.v.’s

0 ≤ Y1(ω) ≤ Y2(ω) ≤ . . . ≤ ∞, ∀ ω ∈ Ω.

Let
Y (ω) = lim

n→∞
Yn(ω).

Then Y is an extended-valued r.v. and

E(Y ) = lim
n→∞

E(Yn).

or in abstract integral form
∫

Ω

Y (ω)P(dω) = lim
n→∞

∫

Ω

Yn(ω)P(dω).
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Proof. The measurability of Y follows from Theorem 1.3.11 and the discussion followed.
We assume that P(Λ) > 0. By Property 1 of Lemma 1.4.4, {E(Yn)} is an increasing
sequence of non-negative numbers and then converges to a number α ∈ [0,∞]. Also since
Yn ≤ Y and then E(Yn) ≤ E(Y ) for all n, we have

α = lim
n→∞

E(Yn) ≤ E(Y ). (1.5)

Now let Z be any non-negative simple r.v. in S(Y ). Given a constant c, 0 < c < 1, define

An = {ω ∈ Ω|Yn(ω) ≥ cZ(ω)}.

It is clear that {An} is a monotone increasing sequence of events. Also if Y (ω) = 0 then
ω ∈ A1 and if Y (ω) > 0 then cZ(ω) < Y (ω) since 0 < c < 1, hence ω ∈ An for some n.
Thus we have An ↑ Ω. Since Yn ≥ 1An

Yn ≥ 1An
cZ, we have

E(Yn) ≥ E(1An
Yn) ≥ E(1An

cZ) (1.6)

by Property 1 of Lemma 1.4.4. But,

E(1An
cZ) = E(cZ) − E(1Ac

n
cZ) (1.7)

by 1 = 1Λ + 1Λc and Lemma 1.4.2, and

E(1Ac
n
cZ) ≤ d · E(1Ac

n
) = d · P(Ac

n), (1.8)

where d = c · maxj zj with zj’s being possible values of Z. By (1.6)–(1.8), we have

E(Yn) ≥ E(cZ) − d · P(Ac
n).

By the monotone property of P, we have

α = lim
n→∞

E(Yn) ≥ cE(Z) − d lim
n→∞

P(Ac
n) = cE(Z).

Since the above inequality holds for any c < 1, we have

α ≥ E(Z)

and then

α ≥ sup
Z∈S(Y )

E(Z) = E(Y ). (1.9)

By (1.5) and (1.9), the proof is now completed. 2

Here is a workable way to compute expectation as an application of the monotone con-
vergence theorem.
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Lemma 1.4.6 A non-negative extended-valued random variable Y can be approximated by
an increasing sequence of non-negative simple r.v.’s Yn defined as

Yn(ω) =

{

i
2n , if i

2n ≤ Y (ω) < i+1
2n and 0 ≤ i < n2n,

n, otherwise,
(1.10)

and
E(Y ) = lim

n→∞
E(Yn).

2

Theorem 1.4.7 [Linearity] Let X and Y be two non-negative r.v.’s and a, b be two non-
negative numbers. Then

E(aX + bY ) = aE(X) + bE(Y )

or in abstract integral form
∫

Ω

(aX + bY )(ω)P(dω) = a

∫

Ω

X(ω)P(dω) + b

∫

Ω

Y (ω)P(dω).

Proof. The case that both X and Y are non-negative simple r.v.’s has been proved in
Lemma 1.4.2. Now for general non-negative r.v.’s X and Y , let {Xi} and {Yi} be two
approximation sequences of non-negative simple r.v.’s as in Lemma 1.4.6 for X and Y
respectively. Let Zi = aXi + bYi. Then {Zi} is an approximation sequence of aX + bY and

∫

Ω

(Zi)(ω)P(dω) = a

∫

Ω

Xi(ω)P(dω) + b

∫

Ω

Yi(ω)P(dω)

by Lemma 1.4.2. Finally by monotone convergence theorem, we have
∫

Ω

(cX + dY )(ω)P(dω) = a

∫

Ω

X(ω)P(dω) + b

∫

Ω

Y (ω)P(dω).

2

The following theorem is an extension.

Theorem 1.4.8 If Xn’s be a sequence of non-negative r.v.’s and

X(ω) =

∞
∑

n=1

Xn(ω),

then

E(X) =
∞
∑

n=1

E(Xn)

or in abstract integral form

∫

Ω

X(ω)P(dω) =
∞
∑

n=1

∫

Ω

Xn(ω)P(dω).
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Proof. Let

Ym(ω) =

m
∑

n=1

Xn(ω).

By Theorem 1.4.7, we have

∫

Ω

Ym(ω)P(dω) =
m
∑

n=1

∫

Ω

Xn(ω)P(dω).

The proof is now completed by the monotone convergence theorem. 2

Theorem 1.4.9 [Countable additivity of abstract integral] Let X be a non-negative r.v. and
Λ be the union of countably many disjoint events Λi in Ω. Then

E(1ΛX) =
∑

i

E(1Λi
X)

or in abstract integral form

∫

Λ

X(ω)P(dω) =
∑

i

∫

Λi

X(ω)P(dω).

Proof. We first note that

(1ΛX)(ω) =
∞
∑

i=1

(1Λi
X)(ω).

By Theorem 1.4.8, we have

E(1ΛX) =

∞
∑

i=1

E(1Λi
X).

This completes the proof. 2

Corollary 1.4.10 For a non-negative r.v. X, E(X) < +∞ if and only if E(1ΛX) < +∞ for
any event Λ in F .

Proof. Since Ω is a disjoint union of Λ and Λc, we have 1 = 1Λ + 1Λc and

E(X) = E(1ΛX) + E(1ΛcX)

by Theorem 1.4.9. Thus E(X) < +∞ if and only if E(1ΛX) < +∞ and E(1ΛcX) < +∞ for
any Λ in F . This completes the proof. 2

We now consider the expectation of a general r.v. Y . By letting

Y + = Y ∨ 0 and Y − = (−Y ) ∨ 0,
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we have

Y = Y + − Y −.

The expectation E(Y ) of Y is said to be well-defined if either E(Y +) or E(Y −) is finite and
is defined as

E(Y ) = E(Y +) − E(Y −). (1.11)

Since |Y | = Y + + Y −, we have E(Y ) < +∞ if and only if E(|Y |) < +∞.

Theorem 1.4.11 [Linearity] Let X and Y be two r.v.’s with finite E(X) and E(Y ) and a, b
be two real numbers. Then aX + bY has finite E(aX + bY ) and

E(aX + bY ) = aE(X) + bE(Y ) (1.12)

or in abstract integral form

∫

Ω

(aX + bY )(ω)P(dω) = a

∫

Ω

X(ω)P(dω) + b

∫

Ω

Y (ω)P(dω).

Proof. Without loss of generality, we may assume that a, b are non-negative. Let
Z = aX + bY . Then |Z| ≤ a|X| + b|Y | and by Lemma 1.4.4, we have

E(|Z|) ≤ aE(|X|) + bE(|Y |) < +∞

which implies that Z has finite expectation. Since

Z+ − Z− = aX+ − aX− + bY + − bY −

or

Z+ + aX− + bY − = aX+ + bY + + Z−,

we have

E(Z+) + aE(X−) + bE(Y −) = aE(X+) + bE(Y +) + E(Z−)

by Theorem 1.4.7 and the second property of Lemma 1.4.4. By re-arranging the equality,
we obtain (1.12). 2

1.5 Conditional Expectation

In a random experiment, observations (i.e. r.v.’s) commonly relate to each other. An
useful way to characterize such dependence is conditional expectation. We shall introduce
the concept of conditional expectation in two stages, from local to global.

As a passage, we firstly introduce conditional probability measure. Let (Ω,F ,P) be a
probability space and Λ an event with P(Λ) 6= 0.
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Definition 1.5.1 For any event A ∈ F , the conditional probability P(A | Λ) of A on
(assuming) Λ is the ratio

P(A | Λ) =
P(A ∩ Λ)

P(Λ)
.

2

This conditional probability assignment P(A | Λ) for every event A ∈ F turns out to
be a probability measure on the measurable space (Ω,F) as can be seen from the following
three fundamental properties:

1. P(A | Λ) ≥ 0, ∀A ∈ F .

2. P(Ω | Λ) = 1.

3. For mutually disjoint events Aj, j = 1, 2, · · · ∈ F ,

P(A1 ∪ A2 ∪ · · · | Λ) = P(A1 | Λ) + P(A2 | Λ) + · · · .

This probability measure will be called the conditional p.m. relative to the event Λ and
denoted as PΛ. PΛ is a p.m. concentrated on Λ in the measurable space (Ω.F).

Conditional expectation of an r.v. Y relative to an event Λ will be treated as the ex-
pectation of Y relative to the conditional p.m. PΛ. Thus for a simple r.v. Y belonging to a
weighted finite partition {Λj; yj}n

j=1, the conditional expectation EΛ(Y ) of Y relative to an
event Λ is defined, as in Definition 1.4.1,

EΛ(Y ) ≡
n
∑

j=1

yjPΛ(Λj) =
1

P(Λ)

n
∑

j=1

yjP(Λ ∩ Λj). (1.13)

For convenience, we shall define EΛ(Y ) = 0 when P(Λ) = 0. In this case, PΛ ≡ 0 is clearly
not a probability measure. Since

PΛ(A) = EΛ(1A)

where 1A is the indicator function of event A, conditional probabilities can be treated as
conditional expectations. Next for a non-negative extended-valued random variable Y , the
conditional expectation EΛ(Y ) of Y relative to Λ is

EΛ(Y ) = sup
Z∈S(Y )

EΛ(Z) (1.14)

by (1.4).

Theorem 1.5.2 For a non-negative extended-valued r.v. Y , we have

P(Λ)EΛ(Y ) = E(1ΛY ),

which, in abstract integral form, is

EΛ(Y ) =
1

P(Λ)

∫

Λ

Y (ω)P(dω).

if P(Λ) > 0.
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Proof. We first consider a simple non-negative r.v. Z belonging to a weighted finite
partition {Λi; zi}n

i=1. Then 1ΛZ is a simple r.v. belonging to weighted finite partition
{Λ1 ∩ Λ, . . . , Λn ∩ Λ, Λc; z1, . . . , zn, 0}. Thus we have

E(1ΛZ) =

n
∑

i=1

ziP(Λi ∩ Λ) = P(Λ)EΛ(Z),

where the second equality is from (1.13). Then for a general non-negative r.v. Y , we have

E(1ΛY ) = sup
Z′∈S(1ΛY )

E(Z ′) = sup
Z∈S(Y )

E(1ΛZ) = P(Λ) sup
Z∈S(Y )

EΛ(Z) = P(Λ)EΛ(Y ).

since S(1ΛY ) = 1ΛS(Y ). 2

Finally for a general random variable Y , the conditional expectation EΛ(Y ) of Y relative
to Λ is

EΛ(Y ) = EΛ(Y +) − EΛ(Y −) (1.15)

by (1.11) if either EΛ(Y +) or EΛ(Y −) is finite. It is easy to see that Theorem 1.5.2 is valid for
a general random variable Y with well-defined conditional expectation EΛ(Y ) of Y relative
to Λ. This theorem says that conditional expectation of an r.v. relative to an event can be
treated as the expectation of a related random variable.

The usefulness of conditional expectations can be easily seen from the notion of partition.
Let {Λi}∞i=1 be a countable measurable partition of the sample space Ω. In many cases, the
a priori probabilities P(Λi) about the partition {Λi}∞i=1 is known. Furthermore, it may be
easy to obtain the conditional expectations EΛi

(Y ) of an r.v. Y relative to each event Λi,
instead of the expectation E(Y ) of the r.v. Y itself. An application of Theorem 1.4.9 to this
partition gives

P(A) = E(1A) =
∑

i

P(Λi)EΛi
(1A) =

∑

i

P(Λi)PΛi
(A) (1.16)

which is usually called the total probability theorem for an event A. In fact, there is much
more information which can be deduced from EΛi

(Y )’s.

Let G be the σ-algebra generated by the partition {Λi, i ≥ 1}, i.e. the collection of
all unions of Λi’s. G is a σ-subalgebra of F and contains all events related to members
(sometimes called atoms) of the partition. The conditional expectation EΛi

(Y ) of an r.v. Y
relative to Λi can be thought as a smoothed (averaged) version of Y observed by all samples
ω in Λ. To describe the totality of these smoothed versions (i.e. conditional expectations)
of Y over various parts Λi of the sample space Ω, we shall introduce a new r.v. as follows.

Definition 1.5.3 Let Y be a non-negative r.v. or an r.v. with finite expectation. The
conditional expectation E(Y |G) of Y relative to the σ-algebra G, which is generated by a
countable measurable partition {Λi} of Ω, is defined as the following r.v.

E(Y |G)(ω) =
∑

i

EΛi
(Y )1Λi

(ω).

2
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If Y is non-negative, then E(Y |G) is non-negative and may be extended-valued. If Y has
finite expectation, then EΛi

(Y ) is finite for each Λi by Corollary 1.4.10 and then E(Y |G) is a
finite-valued random variable. Thus, we have

E(Y |G)(ω) = E(Y +|G)(ω) − E(Y −|G)(ω) (1.17)

where both E(Y +|G) and E(Y −|G) are finite-valued. Furthermore, E(Y |G) has finite expec-
tation, equal to E(Y ) as will be shown in Theorem 1.5.8.

Definition 1.5.4 Let G be a σ-subalgebra of F . An (extended-valued) r.v. Y is said to be
G-measurable, denoted as Y ∈ G (reads as Y belongs to G), if F(Y ) ⊆ G. 2

Theorem 1.5.5 Let Y be a non-negative r.v. or an r.v. with finite expectation and G be
the σ-algebra generated by a countable measurable partition {Λi} of Ω. If Y belongs to G,
then Y is a discrete r.v. belonging to a weighted partition {Λi; yi} and Y = E(Y |G) w.p.1,
in particular, yi = EΛi

(Y ) if P(Λi) > 0.

Proof. Since Y belongs to G, each event (Y = y), y ∈ [−∞, +∞], is a member of G and is
the union of a (possibly empty) subcollection of Λi’s. This implies that Y is constant over
each Λi. Thus, we have

Y =
∑

i

yi1Λi

belonging to a weighted partition {Λi; yi}. Since for P(Λi) > 0, EΛj
(Y ) = E(1Λj

Y )/P(Λj)
= E(yj1Λj

)/P(Λj) = yj, we have Y = E(Y |G) w.p.1. This completes the proof. 2

We now prove the fundamental properties of conditional expectation E(Y |G).

Theorem 1.5.6 Let Y be a non-negative r.v. or an r.v. with finite expectation and G be
the σ-algebra generated by a countable measurable partition {Λi} of Ω. Then

1. E(Y |G) belongs to G.

2. EΛ(Y ) = EΛ(E(Y |G)) for any Λ ∈ G.

Furthermore, any non-negative r.v. or r.v. with finite expectation, which satisfies the above
two properties, must be equal to E(Y |G) w.p.1.

Proof. Since E(Y |G) is a discrete r.v. belonging to the weighted partition {Λi; EΛi
(Y )} by

definition, it belongs to G. Let Λ = ∪jΛij be in G and P(Λ) > 0. Then

EΛ(1Λi
) = PΛ(Λi) =

P(Λ ∩ Λi)

P(Λ)
=

{

P(Λi)
P(Λ)

, if Λi ⊆ Λ,

0, otherwise.
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and for non-negative r.v. Y ,

EΛ(E(Y |G)) =
∑

i

EΛi
(Y )EΛ(1Λi

) =
1

P(Λ)

∑

j

P(Λij)EΛij
(Y ) = EΛ(Y )

where the first equality follows from Theorem 1.4.8 and the last equality from Theorem
1.4.9. Next for an r.v. Y with finite expectation, we have

EΛ(Y ) = EΛ(Y +) − EΛ(Y −) by Corollary 1.4.10 and (1.15)

= EΛ(E(Y +|G)) − EΛ(E(Y −|G)) as just proved

= EΛ(E(Y +|G) − E(Y −|G)) by Theorem 1.4.11

= EΛ(E(Y |G)) by (1.17).

Suppose that Z is a non-negative r.v. or an r.v. with finite expectation which belongs to G
and

EΛ(Y ) = EΛ(Z) (1.18)

for any Λ ∈ G. By Theorem 1.5.5, we have Z =
∑

i zi1Λi
and then for P(Λi) > 0,

zi = EΛi
(Z) = EΛi

(Y )

by (1.18) with Λ = Λi. Thus Z = E(Y |G) w.p.1, which completes the proof. 2

The following theorem is a further characterization of conditional expectation.

Theorem 1.5.7 Let Y be a non-negative r.v. or an r.v. with finite expectation and F(X) be
the σ-algebra generated by a discrete r.v. X. Then the conditional expectation E(Y |F(X))
is a function of X

E(Y |F(X)) = f(X)

for some Borel measurable function f .

Proof. Let {xi} be the set of all possible values taken by X. Thus F(X) is generated by
the countable measurable partition {(X = xi)} of Ω. By definition, the conditional
expectation E(Y |G) is a function f(X) of X where

f(x) =

{

E(X=xi)(Y ), if x = xi,
0, otherwise,

is Borel measurable by Theorem 1.3.5. 2

The conditional expectation E(Y |F(X)) is also denoted as E(Y |X) and called the conditional
expectation of Y relative to X.

We now list some basic properties of conditional expectation in the following theorem.
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Theorem 1.5.8 Let Y , Yi’s be non-negative r.v.’s or r.v.’s with finite expectations, a, b be
non-negative or arbitrary real numbers and G be the σ-algebra generated by a countable
measurable partition {Λi} of Ω. Then

1. (Linearity) E(aY1 + bY2|G) = aE(Y1|G) + bE(Y2|G).

2. (Comparability) If Y1 ≤ Y2, then E(Y1|G) ≤ E(Y2|G).

3. (Absolute-valued dominancy) |E(Y |G)| ≤ E(|Y | | G).

4. (Generalized total probability theorem) E(Y ) = E (E(Y |G)).

5. (Monotone convergence property) If Yn ≥ Z where E(Z) > −∞ and Yn ↑ Y , then
E(Yn|G) ≥ E(Z|G) and E(Yn|G) ↑ E(Y |G).

6. (Series convergence property) If Yn ≥ 0 and Y =
∑

n Yn, then E(Y |G) =
∑

n E(Yn|G).

Proof.

1. The linearity property is a direct extension of Theorems 1.4.7 and 1.4.11.

2. The comparability property is a direct extension of the first property of Lemma 1.4.4
for non-negative Yi’s. For Yi’s with finite expectations, 0 ≤ (Y2 − Y1) implies
0 ≤ E(Y2 − Y1|G). By linearity property, we have E(Y1|G) ≤ E(Y2|G).

3. The absolute-valued dominancy property is trivial for non-negative Y . For Y with
finite expectation, we have from (1.17)

|E(Y |G)| = |E(Y +|G) − E(Y −|G)|
≤ max(E(Y +|G), E(Y −|G))

≤ E(|Y | | G), since |Y | ≥ max(Y +, Y −) and by the comparability property.

4. The generalized total probability theorem is a direct application of Theorem 1.4.9
with Λ = Ω for non-negative Y . For Y with finite expectation,

E(Y ) = E(Y +)−E(Y −) = E(E(Y +|G))−E(E(Y −|G)) = E(E(Y +|G)−E(Y −|G)) = E(E(Y |G)).

5. The monotone convergence property is a direct extension of Theorem 1.4.5.

6. The series convergence property is a direct extension of Theorem 1.4.8. 2

The following definition generalizes the concept of statistical independence among events.

Definition 1.5.9 A collection {Gi, i ∈ I} of σ-subalgebras of F is called statistically inde-
pendent if for any Aj ∈ Gj, j in a finite subset J of I, we have

P(∩j∈JAj) =
∏

j∈J

P(Aj).

In particular, a collection of r.v.’s Xi , i ∈ I, is statistically independent if {F(Xi), i ∈ I} is
statistically independent. 2
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Theorem 1.5.10 (Independence property) Let Y be a non-negative r.v. or an r.v. with
finite expectation and G be the σ-algebra generated by a countable measurable partition
{Λi} of Ω. If F(Y ) is statistically independent of G, then E(Y |G) = E(Y ) w.p.1.

Proof. We first consider an indicator function 1A with A ∈ F(Y ). For P(Λi) > 0, we have

EΛi
(1A) = PΛi

(A) =
P(Λi ∩ A)

P(Λi)
=

P(Λi)P(A)

P(Λi)
= P(A) = E(1A).

Now for any non-negative simple r.v. Z =
∑n

j=1 zj1Aj
with Aj ∈ F(Y ), we have

EΛi
(Z) =

n
∑

j=1

zjEΛi
(1Aj

) =

n
∑

j=1

zjP(Aj) = E(Z)

for P(Λi) > 0. Suppose that Y ≥ 0 and Yn ↑ Y , where Yn’s are non-negative simple r.v.’s
as in Lemma 1.4.6. By monotone convergence theorem, we have

EΛi
(Y ) = lim

n→∞
EΛi

(Yn) = lim
n→∞

E(Yn) = E(Y )

for P(Λi) > 0. By definition, we have

E(Y |G) = E(Y ) w.p.1.

For a general Y with finite expectation, we have

E(Y |G) = E(Y +|G) − E(Y −|G)

= E(Y +) − E(Y −) w.p.1

= E(Y ),

where the second equality follows from the fact that F(Y +), F(Y −) ⊆ F(Y ). This
completes the proof. 2

Theorem 1.5.11 Let Y be a non-negative r.v. or an r.v. with finite expectation and G
be the σ-algebra generated by a countable measurable partition {Λi} of Ω. If Z is G-
measurable, non-negative (if Y non-negative) or with E(|Y Z|) < ∞ (if E(|Y |) < ∞), then
E(Y Z|G) = ZE(Y |G).

Proof. We first suppose Y ≥ 0 and Z ≥ 0 and then E(Y |G) ≥ 0. Since Z belongs to G, we
have

Z =
∑

j

zj1Λj

by Theorem 1.5.5, where zj ≥ 0. Observe that for P(Λi) > 0,

EΛi
(Y 1Λj

) =
E(Y 1Λi

1Λj
)

P(Λi)
=

E(Y 1Λi∩Λj
)

P(Λi)
=

{

EΛi
(Y ), if j = i,

0, otherwise.
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By Theorem 1.4.8 and Lemma 1.4.4, we have

EΛi
(Y Z) =

∑

j

zjEΛi
(Y 1Λj

) = ziEΛi
(Y )

and then

E(Y Z|G) =
∑

i

(ziEΛi
(Y )) 1Λi

=

(

∑

i

zi1Λi

)

·
(

∑

i

EΛi
(Y )1Λi

)

= ZE(Y |G).

Now suppose that Y , Y Z have finite expectations. Since Y +Z+, Y −Z+, Y +Z− and Y −Z−

are all less than or equal to |Y Z|, they have finite expectations. Then

E(Y Z|G) = E(Y +Z+ − Y −Z+ − Y +Z− + Y −Z−|G)

= Z+E(Y +|G) − Z+E(Y −|G) − Z−E(Y +|G) + Z−E(Y −|G)

= (Z+ − Z−) · (E(Y + − Y −|G))

= ZE(Y |G),

which completes the proof. 2

Definition 1.5.12 A σ-algebra H is called finer than another σ-algebra G if H ⊇ G.

A countable measurable partition {Ai, i ∈ I} of Ω is called finer than another countable
measurable partition {Bj, j ∈ J} of Ω if each Bj is a union of Ai’s. Thus, the σ-algebra
generated by Ai’s is finer than the σ-algebra generated by Bj’s.

Theorem 1.5.13 Let Y be a non-negative r.v. or an r.v. with finite expectation and G, H
be σ-algebras generated by countable measurable partitions {Λi}, {Aj} of Ω respectively. If
H is finer than G, then

E(Y |G) = E(E(Y |H)|G) w.p.1 = E(E(Y |G)|H) w.p.1.

Proof. Since E(Y |G) is G-measurable, it is also H-measurable and then by Theorem 1.5.5,

E(Y |G) = E(E(Y |G)|H) w.p.1.

To show the first equality, we let Λ ∈ G, then Λ ∈ H. And by applying Theorem 1.5.6
twice, we have

EΛ(E(E(Y |H)|G)) = EΛ(E(Y |H)) = EΛ(Y ).

Thus

E(Y |G) = E(E(Y |H)|G) w.p.1.

This completes the proof. 2
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Up to now, we have considered conditional expectations of r.v.’s relative only to σ-
subalgebras of F generated by countable measurable partitions of Ω. The following theorem
12 establishs the foundation to consider conditional expectations of r.v.’s relative to general
σ-subalgebras of F .

Theorem 1.5.14 If Y is a non-negative r.v. or an r.v. with finite expectation and G is a
σ-subalgebra of F , then there exists a non-negative r.v. or an r.v. with finite expectation,
unique w.p.1 and denoted as E(Y |G), such that

1. E(Y |G) belongs to G;

2. EΛ(Y ) = EΛ(E(Y |G)), for any Λ ∈ G. 2

In fact, E(Y |G) represents any member in an equivalent class of r.v.’s which satisfy the two
properties in the above theorem and is also called the conditional expectation of Y relative
to σ-algebra G. We may regard E(Y |G) as a smoothed version of Y on events in G.

Compared with the above theorem, the r.v. given in Definition 1.5.3 is just an explicit ver-
sion of the conditional expectation of an r.v. relative to a σ-algebra generated by a countable
measurable partition of Ω, as proved by Theorem 1.5.6.

We have seen that if Y = f(X), then Y belongs to F(X) since F(Y ) ⊆ F(X). The
following theorem 13 gives the converse.

Theorem 1.5.15 Let X, Y be two random variables. If Y belongs to F(X), then Y = f(X)
for some (possibly extended-valued) Borel measurable function f . 2

Thus the conditional expectation E(Y |F(X)) is a function of X and will also be denoted as
E(Y |X).

Theorems 1.5.8, 1.5.10, 1.5.11 and 1.5.13 still hold for the general case 14. Finally we note
that all of the statements in these theorems hold w.p.1 since the conditional expectation can
only be uniquely specified w.p.1 as stated in Theorem 1.5.14.

12This theorem follows from the Radon-Nikodym theorem, See W. Rudin, Real and Complex Analysis,

2nd edn. New York: McGraw-Hill, 1974, pp. 129–132.
13See K. L. Chung, A Course in Probability Theory, 2nd edn. New York: Academic Press, 1974, page 299.
14Detailed proofs can be found in:

1. K. L. Chung, A Course in Probability Theory, 2nd edn. New York: Academic Press, 1974, pp.
300–304.

2. A. N. Shiryayev, Probability. New York: Springer-Verlag, 1984, pp. 213–217.



Chapter 2

Discrete-Time Markov Chains

2.1 Introduction

Let (Ω,F ,P) be a given probability space. And let (S, 2S) be a discrete measurable
space. A measurable function from (Ω,F) into (S, 2S) will be called an S-valued random
variable.

Definition 2.1.1 A discrete-time Markov chain is a sequence {Xn, n = 0, 1, 2, . . .} of S-
valued random variables such that

P{Xn+1 = sn+1|X0 = s0, X1 = s1, . . . , Xn = sn} = P{Xn+1 = sn+1|Xn = sn}

for all time index n ≥ 0 and all s0, . . . , sn, sn+1 in S, whenever P{X0 = s0, X1 = s1, . . . , Xn =
sn} > 0. 2

Remark 2.1.2

1. The discrete measurable space (S, 2S) is called the state space of the Markov chain.

2. The conditional probabilities P{Xn+1 = sn+1|Xn = sn} are called one-step transition
probabilities and usually denoted as Pn(sn, sn+1).

3. If the conditional probabilities Pn(s, s
′) are independent of the time index n, then the

Markov chain is called homogeneous and Pn(s, s′) will be rewritten as P (s, s′). 2

Example 2.1.3 [Weather forcasting] We use Xn to denote the weather of the nth day, which
is rainy or fair. For simplicity, we use ”1” to denote that the weather is fair and ”0” that
the weather is rainy. We then model Xn’s as a homogeneous Markov chain with state space
S being the set {0, 1}. It is usually useful to specify one-step transition probabilities by a

25
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State transition diagram

Rain
0

Fair
1

αP =00

βP =11

1−αP =

10P =

01

1−β

Figure 2.1: The state-transition diagram of weather forcasting.

state-transition diagram as shown in Figure 2.1. In addition, a matrix can be formed by
arranging the one-step transition probabilities as follows:

P =

[

P (0, 0) P (0, 1)
P (1, 0) P (1, 1)

]

=

[

α 1 − α
1 − β β

]

which is called the one-step transition probablity matrix of the Markov chain. Note that in
the second equality, we have used the fact that P (0, 0)+P (0, 1) = 1 and P (1, 0)+P (1, 1) = 1,
which will be shown in the following lemma. 2

Lemma 2.1.4 For any s ∈ S with P(Xn = s) > 0, we have
∑

s′∈S

Pn(s, s
′) = 1.

proof. Since {(Xn+1 = s′), s′ ∈ S} is a countable partition of the sample space Ω, we have

P(Xn=s)(Ω) =
∑

s′∈S

P(Xn=s)(Xn+1 = s′)

by the countable additivity of the conditional p.m. P(Xn=s) relative to the event Xn = s.
Since P(Xn=s)(Ω) = 1 and P(Xn=s)(Xn+1 = s′) = Pn(s, s′), the proof is completed. 2

The above lemma implies that each row sum of a one-step transition probability matrix is
equal to one.

Example 2.1.5 [An error model of a communication channel] Let Xn denote the error
status of the nth transmission in a digital communication system. Xn = 0 means that the
nth transmission has been received error-freely and Xn = 1 erroneously. The state space
S is {0, 1}. An error model, called Gilbert model, specifies Xn’s as a Markov chain with
state-transition diagram similar to that in Figure 2.1. 2
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[196z

α α α α α α α

1−α1−α

−3 −2 −1 0 1 2 3

αP =01

1−α1−α0 -1P =

Figure 2.2: The state-transition diagram of a random walk.

Example 2.1.6 [Random walk] Let {Vi, i = 1, 2, . . .} be a sequence of independent iden-
tically distributed (i.i.d.) r.v.’s with P(Vi = +1) = α and P(Vi = −1) = 1 − α for all i.
Let X0 be an arbitrary integer-valued random variable, independent of the random sequence
{Vi, i = 1, 2, . . .}, and

Xn =
n
∑

i=1

Vi, ∀ n ≥ 1.

The sequence {Xn, n = 0, 1, . . .} of r.v.‘s is called a random walk with increment ±1 and
initial position X0. Note that the state space S is the set of all integers. We now show that
a random walk is a Markov chain. Consider s0, s1, . . . , sn+1 in S such that P{X0 = s0, X1 =
s1, · · · , Xn = sn} > 0. Let vi = si − si−1 for all 1 ≤ i ≤ n + 1. Then we have

P{Xn+1 = sn+1|X0 = s0, X1 = s1, . . . , Xn = sn}

=
P{X0 = s0, X1 = s1, . . . , Xn = sn, Xn+1 = sn+1}

P{X0 = s0, X1 = s1, . . . , Xn = sn}

=
P{X0 = s0, V1 = v1, . . . , Vn = vn, Vn+1 = vn+1}
P{X0 = s0, V1 = v1, . . . , Vn−1 = vn−1, Vn = vn}

=
P(X0 = s0)P(V1 = v1) . . .P(Vn = vn)P(Vn+1 = vn+1)

P(X0 = s0)P(V1 = v1) . . .P(Vn−1 = vn−1)P(Vn = vn)

= P(Vn+1 = vn+1).

Also, we have

P{Xn+1 = sn+1|Xn = sn} =
P{Xn+1 = sn+1, Xn = sn}

P{Xn = sn}

=
P(Vn+1 = vn+1)P(Xn = sn)

P(Xn = sn)
= P(Vn+1 = vn+1)

where the second equality follows from the independence of Vn+1 and Xn. Thus

P{Xn+1 = sn+1|X0 = s0, . . . , Xn−1 = sn−1, Xn = sn} = P{Xn+1 = sn+1|Xn = sn}.

and then a random walk is a homogeneous Markov chain with one-step transition probability
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10 2 n N

1- α 1- α 1- α1- α1- α

α α α α α

P =100 NN1=P

absorbing states P =1nn

Figure 2.3: The state-transition diagram of the gambler’s model.

matrix

P =



















· · · ...
...

...
... · · ·

· · · 0 α 0 0 · · ·
· · · 1 − α 0 α 0 · · ·
· · · 0 1 − α 0 α · · ·
· · · 0 0 1 − α 0 · · ·
· · · ...

...
...

... · · ·



















which is a doubly infinite matrix. 2

Example 2.1.7 [A gambler’s model] Let Vn be the gain of a gambler at the nth paly, n ≥ 1.
He wins one unit, i.e. Vn = 1, with probability p and loses one unit, i.e. Vn = −1, with
probability 1− p. Assuming that successive plays of the game are statistically independent.
The gambler will stop playing the game if either his fortune reaches a preset number N or he
has no money left. To model his game, we let Xn be the fortune of the gambler after the nth
paly. We also assume that the initial fortune X0 of the gambler is a fixed number between 0
and N . It can be shown that Xn’s form a Markov chain with state space S = {0, 1, . . . , N}
and state-transition diagram as shown in Figure 2.3. 2

2.2 Fundamental Properties

The aim of this seciton is to develop more delicate properties of a discrete-time Markov
chain {Xn, n = 0, 1, . . .} with state space S. The following theorem is a stronger version of
Definition 2.1.1.

Theorem 2.2.1 For any non-negative r.v. Y ∈ F(Xn+1) or any real-valued r.v. Y ∈
F(Xn+1) with finite expectation, we have

E(Y |X0 = s0, X1 = s1, . . . , Xn = sn) = E(Y |Xn = sn),

for all n ≥ 0 and all s0, s1, . . . , sn in S, whenever P{X0 = s0, X1 = s1, . . . , Xn = sn} > 0.
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Proof. We first consider Y = 1(Xn+1=sn+1), the indicator function of the event
(Xn+1 = sn+1). Since P(X0 = s0, . . . , Xn = sn) > 0, we have

E(1(Xn+1=sn+1)|X0 = s0, X1 = s1, . . . , Xn = sn) = E(X0=s0,X1=s1,...,Xn=sn)(1(Xn+1=sn+1))

= P(X0=s0,X1=s1,...,Xn=sn)(Xn+1 = sn+1)

= P(Xn=sn)(Xn+1 = sn+1) by Definition 2.1.1

= E(Xn=sn)(1(Xn+1=sn+1))

= E(1(Xn+1=sn+1)|Xn = sn).

This concludes that the theorem is true for indicator functions Y = 1(Xn+1=sn+1). We next
consider a non-negative Y ∈ F(Xn+1). By Theorem 1.5.5, we have

Y =
∑

sn+1

ysn+1
1(Xn+1=sn+1), (2.1)

where ysn+1
≥ 0 for all sn+1. By the series convergence property of expectation in Theorem

1.4.8 and (2.1), we have

E(Y |X0 = s0, X1 = s1, . . . , Xn = sn) =
∑

sn+1

ysn+1
E(1(Xn+1=sn+1)|X0 = s0, X1 = s1, . . . , Xn = sn)

=
∑

sn+1

ysn+1
E(1(Xn+1=sn+1)|Xn = sn)

= E(Y |Xn = sn).

Finally, we consider Y ∈ F(Xn+1) with finite expectation. Then, Y +, Y − ∈ F(Xn+1) (as an
exercise) with finite expectation and by the linearity of expectation in Theorem 1.4.11,

E(Y |X0 = s0, X1 = s1, . . . , Xn = sn)

= E(Y +|X0 = s0, X1 = s1, . . . , Xn = sn) − E(Y −|X0 = s0, X1 = s1, . . . , Xn = sn)

= E(Y +|Xn = sn) − E(Y −|Xn = sn)

= E(Y |Xn = sn).

This completes the proof. 2

The above theorem can be described in a compact form. At first, we need some definitions
of σ-algebras. The σ-algebra generated by the union ∪n

i=mF(Xi) of F(Xi)’s is called the
σ-algebra generated by r.v.’s Xm, Xm+1, . . . , Xn, denoted as F(Xm, Xm+1, . . . , Xn) or F[m,n]

for brevity. It can be seen that F[m,n] is the σ-algebra generated by the countable measur-
able partition {(Xm = sm, . . . , Xn = sn)}sm,...,sn∈S of Ω. Now the conditional expectation
E(Y |F[0,n]) of Y relative to the σ-algebra F[0,n] is, as defined in 1.5.3,

E(Y |F[0,n]) =
∑

s0,s1,...,sn∈S

E(Y |X0 = s0, X1 = s1, . . . , Xn = sn)1(X0=s0,X1=s1,...,Xn=sn)
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and the conditional expectation E(Y |F{n}) of Y relative to the σ-algebra F{n} is

E(Y |F{n}) =
∑

sn∈S

E(Y |Xn = sn)1(Xn=sn).

By Theorem 2.2.1, we have

Corollary 2.2.2 If {Xn, n = 0, 1, . . .} is a Markov chain with state space S, then

E(Y |F[0,n]) = E(Y |F{n}) w.p.1, i.e.,

E(Y |X0, X1, . . . , Xn) = E(Y |Xn) w.p.1,

for any non-negative r.v. Y ∈ F(Xn+1) or any real-valued r.v. Y ∈ F(Xn+1) with finite
expectation.

We now need the concept of a monotone class.

Definition 2.2.3 A collection C of subsets of Ω is called a monotone class in Ω if

1. An ∈ C and An ⊆ An+1, n = 1, 2, . . . ⇒ ∪∞
n=1An ∈ C;

2. An ∈ C and An ⊇ An+1, n = 1, 2, . . . ⇒ ∩∞
n=1An ∈ C. 2

It is clear that any one of the above two properties, together with the complement property:
A ∈ C ⇒ Ac ∈ C, implies the other property. The following theorem is useful 1.

Theorem 2.2.4 [Monotone class theorem] If a monotone class C in Ω contains an algebra
F0 in Ω, then C contains the σ-algebra F generated by the algebra F0.

Let F[n,∞) be the σ-algebra generated by r.v.’s Xi, i = n, n+1, . . .. The following theorem
is an extension of Corollary 2.2.2.

Theorem 2.2.5 If {Xn, n = 0, 1, . . .} is a Markov chain with state space S, then

E(Y |X0, . . . , Xn−1, Xn) = E(Y |Xn) w.p.1 (2.2)

for any non-negative r.v. Y ∈ F[n,∞) or any real-valued r.v. Y ∈ F[n,∞) with finite expectation.

Proof. We shall use induction to show that (2.2) is true for any non-negative Y ∈ F[n,n+k]

or any Y ∈ F[n,n+k] with finite expectation for all k = 0, 1, . . .. For k = 0, we have Y
belongs to F(Xn) and then to F(X0, X1, . . . , Xn). By Theorem 1.5.5, we have

1For a proof, please see K. L. Chung, A Course in Probability Theory, 2nd edn. New York: Academic
Press, 1974, pp. 16–18.
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E(Y |X0, . . . , Xn−1, Xn) = Y = E(Y |Xn) w.p.1. Now suppose that it is true up to some k.
We first consider an r.v. Y = Y1 · Y2 with Y1, Y2 ≥ 0 and Y1 ∈ F[n,n+k], Y2 ∈ F{n+k+1}. Then

E(Y |F[0,n]) = E{E(Y |F[0,n+k])|F[0,n]} by Theorem 1.5.13

= E{Y1E(Y2|F[0,n+k])|F[0,n]} since Y1 ∈ F[0,n+k] and by Theorem 1.5.11

= E{Y1E(Y2|F{n+k})|F[0,n]} by Corollary 2.2.2

= E{Y1E(Y2|F{n+k})|F{n}} since Y1 · E(Y2|F{n+k}) ∈ F[n,n+k] and by the induction step

= E{Y1E(Y2|F[0,n+k])|F{n}} by Corollary 2.2.2

= E{E(Y1Y2|F[0,n+k])|F{n}} since Y1 ∈ F[0,n+k] and by Theorem 1.5.11

= E(Y1Y2|F{n}) by Theorem 1.5.13

= E(Y |F{n}).

We next consider a general non-negative Y ∈ F[n,n+k+1]. By Theorem 1.5.5, we have

Y =
∑

sn,...,sn+k,sn+k+1

ysn,...,sn+k,sn+k+1
1(Xn=sn,...,Xn+k=sn+k,Xn+k+1=sn+k+1)

=
∑

sn,...,sn+k,sn+k+1

ysn,...,sn+k,sn+k+1
1(Xn=sn,...,Xn+k=sn+k) · 1(Xn+k+1=sn+k+1)

with ysn,...,sn+k,sn+k+1
≥ 0. Thus

E(Y |F[0,n])

=
∑

sn,...,sn+k,sn+k+1

ysn,...,sn+k,sn+k+1
E(1(Xn=sn,...,Xn+k=sn+k) · 1(Xn+k+1=sn+k+1)|F[0,n])

by the series convergence property of conditional expectation in Theorem 1.5.8

=
∑

sn,...,sn+k,sn+k+1

ysn,...,sn+k,sn+k+1
E(1(Xn=sn,...,Xn+k=sn+k) · 1(Xn+k+1=sn+k+1)|F{n}) as proved in above

= E(Y |F{n}) w.p.1.

Finally, the proof for a r.v. Y ∈ F[n,n+k+1] with finite expectation can be done as that in
Theorem 2.2.1. This completes the induction process. Now, let C be the collection of all
events Λ in F such that

E(1Λ|F[0,n]) = E(1Λ|F{n}) w.p.1.

Since 1Λ belongs to F[n,n+k] for any Λ in F[n,n+k], we have ∪∞
k=0F[n,n+k] ⊆ C. Furthermore,

we have

1. Λ ∈ C ⇒ Λc ∈ C, since

E(1Λc|F[0,n]) = E(1Ω|F[0,n])−E(1Λ|F[0,n]) = E(1Ω|F{n})−E(1Λ|F{n}) = E(1Λc|F{n}) w.p.1;

2. Λn ∈ C and Λn ⊆ Λn+1, n = 1, 2, . . . ⇒ ∪∞
n=1Λn ∈ C, since 1Λn

↑ 1∪∞

n=1Λn
and

E(1∪∞

i=1
Λi
|F[0,n]) = lim

n→∞
E(1Λn

|F[0,n]) = lim
n→∞

E(1Λn
|F{n}) = E(1∪∞

i=1
Λi
|F{n}) w.p.1

by the monotone convergence property of conditional expectation in Theorem 1.5.8.
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Thus C is a monotone class containing ∪∞
k=0F[n,n+k] which is an algebra and by the

monotone class theorem, C contains the σ-algebra F[n,∞) generated by the algebra
∪∞

k=0F[n,n+k], i.e.,
E(1Λ|F[0,n]) = E(1Λ|F{n}) w.p.1, ∀ Λ ∈ F[n,∞).

By linearity, (2.2) holds for any non-negative simple r.v. Y belonging to F[n,∞). Since any
non-negative r.v. Y ∈ F[n,∞) is the limit of a monotonely increasing sequence of
non-negative simple r.v.’s belonging to F[n,∞), (2.2) holds for any non-negative Y ∈ F[n,∞),
by the monotone convergence property of conditional expectation. The proof for an r.v. Y
∈ F[n,∞) with finite expectation is similar to that in Theorem 2.2.1. This completes the
proof. 2

Theorem 2.2.6 If {Xn, n = 0, 1, . . .} is a Markov chain with state space S, then

E(Y1Y2|Xn) = E(Y1|Xn) · E(Y2|Xn) w.p.1 (2.3)

for any non-negative r.v.’s Y1 ∈ F[0,n], Y2 ∈ F[n,∞) or any real-valued r.v.’s Y1 ∈ F[0,n],
Y2 ∈ F[n,∞) such that Y1, Y2 and Y1Y2 all have finite expectations.

Remark. If Y1Y2 has finite expectation, then we have

E(|Y1E(Y2|Xn)|) ≤ E(|Y1|E(|Y2||Xn)) since |E(Y2|Xn)| ≤ E(|Y2||Xn)

= E(|Y1|E(|Y2||Fn)) by Theorem 2.2.5

= E(E(|Y1Y2||Fn)) = E(|Y1Y2|) < ∞.

Proof. Since

E(Y1|Xn) · E(Y2|Xn)

= E {Y1 · E(Y2|Xn)|Xn} since E(Y2|Xn) ∈ F{n} and by Theorem 1.5.11

= E
{

Y1 · E(Y2|F[0,n])|Xn

}

by Theorem 2.2.5

= E
{

E(Y1Y2|F[0,n])|Xn

}

since Y1 ∈ F[0,n] and by Theorem 1.5.11

= E(Y1Y2|Xn) w.p.1 by Theorem 1.5.13,

the proof is completed. 2

A particular application of the above theorem is that for any event Λ1 ∈ F[0,n] and any event
Λ2 ∈ F[n,∞), we have

P(Λ1 ∩ Λ2|Xn) = E(1Λ1
· 1Λ2

|Xn) = E(1Λ1
|Xn) · E(1Λ2

|Xn) = P(Λ1|Xn) · P(Λ2|Xn) w.p.1.
(2.4)

The above equation can be informally interpreted as follows: “The past and the future of
the Markov chain are conditionally independent given the present”. From (2.4), we have

P(Λ1 ∩ Λ2|Xn = s) = P(Λ1|Xn = s) · P(Λ2|Xn = s), (2.5)
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for all s ∈ S whenever P(Xn = s) > 0. Since

P(Λ1 ∩Λ2|Xn = s) = P(Λ1|Xn = s) · P(Λ2|Λ1, Xn = s) = P(Λ2|Xn = s) · P(Λ1|Λ2, Xn = s),

we have

P(Λ2|Λ1, Xn = s) = P(Λ2|Xn = s) and P(Λ1|Λ2, Xn = s) = P(Λ1|Xn = s) (2.6)

for any Λ1 ∈ F[0,n], Λ2 ∈ F[n,∞) and s ∈ S whenever P(Λ1, Xn = s) > 0 and P(Λ2, Xn = s)
respectively.

2.3 Chapman-Kolmogorov Equations

Consider a discrete-time Markov chain {Xn, n = 0, 1, . . .} with state space S. The joint
distribution P(X0 = s0, X1 = s1, . . . , Xn = sn) of r.v.’s X0, X1, . . . , Xn on the state space
S can be calculated as

P(X0 = s0, X1 = s1, . . . , Xn = sn)

= P(X0 = s0)P(X1 = s1|X0 = s0)P(X2 = s2|X0 = s0, X1 = s1) · · ·
P(Xn = sn|X0 = s0, X1 = s1, . . . , Xn−1 = sn−1)

= P(X0 = s0)P(X1 = s1|X0 = s0)P(X2 = s2|X1 = s1) · · ·P(Xn = sn|Xn−1 = sn−1)

= π0(s0)P0(s0, s1)P1(s1, s2) · · ·Pn−1(sn−1, sn), (2.7)

where π0(s0) ≡ P(X0 = s0). Thus the finite-dimensional joint distributions of the Markov
chain {Xn, n = 0, 1, . . .} is completely specified by the initial distribution π0 = (π0(s)), s ∈ S,
(as a row vector) and the one-step transition probability matrices Pm = [Pm(s, s′)], s, s′ ∈ S,
at time m, m = 0, 1, . . .. In particular, a homogeneous Markov chain is completely specified
by the initial distribution π0 and the one-step transition probability matrix P .

We next investigate the n-step transition probability from state s at time m to state s′

at time m + n, defined as

P (n)
m (s, s′) ≡ P{Xm+n = s′ | Xm = s}.

Note that P
(1)
m (s, s′) = Pm(s, s′). Then for any l, 1 ≤ l ≤ n − 1, we have

P (n)
m (s, s′)

=
∑

s̃∈S

P{Xm+l = s̃, Xm+n = s′ | Xm = s} by the countable additivity of conditional p.m.

=
∑

s̃∈S

P{Xm+l = s̃ | Xm = s}P{Xm+n = s′ | Xm = s, Xm+l = s̃}

=
∑

s̃∈S

P{Xm+l = s̃ | Xm = s}P{Xm+n = s′ | Xm+l = s̃} by (2.6)

=
∑

s̃∈S

P (l)
m (s, s̃)P

(n−l)
m+l (s̃, s′) (2.8)
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m m+l m+n

S S S

s s’

Figure 2.4: The Chapman-Kolmogorov equation.

The above equation is called the Chapman-Kolmogorov equation and illustrated in Figure
2.4. In particular, there are two important cases:

1. The backward equation P
(n+1)
m (s, s′) =

∑

s̃∈S Pm(s, s̃)P
(n)
m+1(s̃, s

′);

2. The forward equation P
(n+1)
m (s, s′) =

∑

s̃∈S P
(n)
m (s, s̃)Pm+n(s̃, s′).

To rewrite the Chapman-Kolmogorov equations in a compact form, we define the n-step
transition probability matrix at time m as

P (n)
m = [P (n)

m (s, s′)], s, s′ ∈ S.

Note that P
(1)
m = Pm. Then we have

P (n)
m = P (l)

m P
(n−l)
m+l , ∀ 0 ≤ l ≤ n, (2.9)

where P
(0)
m is defined to be the identity matrix I for any m. And the backward and forward

equations can be rewritten in the following matrix forms

P (n+1)
m = PmP

(n)
m+1 and P (n+1)

m = P (n)
m Pm+n.

By iteratively using either the backward equation or the forward equation, we have the
following theorem.

Theorem 2.3.1 The n-step transition probability matrix P
(n)
m at time m can be calculated

as
P (n)

m = PmPm+1 . . . Pm+n−1.

2
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In particular, for a homogeneous Markov chain with P = Pm for all m, we have

P (n)
m = P n

and the n-step transition probabilities are independent of the initial time m. Finally, let
πm = (πm(s)), s ∈ S be the distribution of the Markov chain at time m where πm(s) =
P(Xm = s), we have

Corollary 2.3.2

πm+n = πmP (n)
m

for all m, n ≥ 0. 2

Example 2.3.3 Consider a homogeneous Markov chain with state space S = {1, 2, 3} and
one-step transition probability matrix

P =





1
2

1
2

0
0 1

2
1
2

1
2

0 1
2



 .

Since P has eigenvectors

[1/3, 1/3, 1/3], [−1/2, (1 + i
√

3)/4, (1 − i
√

3)/4], [−1/2, (1 − i
√

3)/4, (1 + i
√

3)/4]

corresponding to eigenvalues 1, (1 + i
√

3)/4, (1 − i
√

3)/4, it can be diagonalized as

P = M−1ΛM

where

Λ =





1 0 0

0 1+i
√

3
4

0

0 0 1−i
√

3
4



 , M =





1
3

1
3

1
3

−1
2

1+i
√

3
4

1−i
√

3
4

−1
2

1−i
√

3
4

1+i
√

3
4



 and M−1 =





1 −2
3

−2
3

1 1−i
√

3
3

1+i
√

3
3

1 1+i
√

3
3

1−i
√

3
3



 .

Thus, we have the n-step transition probability matrix P (n) as

P (n) = P n = M−1ΛnM = M−1









1 0 0

0
(

1+i
√

3
4

)n

0

0 0
(

1−i
√

3
4

)n









M.

Suppose that the initial distribution is

π0 = [p1 p2 p3].
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Then the distribution πn of the Markov chain at time n is

πn = π0P
(n) = [p1 p2 p3]M

−1









1 0 0

0
(

1+i
√

3
4

)n

0

0 0
(

1−i
√

3
4

)n









M

= [p1 p2 p3]







1
3

+ cos nθ
3·2n−1

1
3
− cos(n+1)θ

3·2n−1

1
3
− cos(n−1)θ

3·2n−1

1
3
− cos(n−1)θ

3·2n−1

1
3

+ cos nθ
3·2n−1

1
3
− cos(n−2)θ

3·2n−1

1
3
− cos(n+1)θ

3·2n−1

1
3
− cos(n+2)θ

3·2n−1

1
3

+ cos nθ
3·2n−1







=

[

1

3
+

p1 cos nθ − p2 cos(n − 1)θ − p3 cos(n + 1)θ

3 · 2n−1
,
1

3
+

p1 cos(n + 1)θ − p2 cos nθ − p3 cos(n + 2)θ

3 · 2n−1
,

1

3
+

p1 cos(n − 1)θ − p2 cos(n − 2)θ − p3 cos nθ

3 · 2n−1

]

,

where eiθ = (1 + i
√

3)/2. It can be seen that

lim
n→∞

πn = [1/3 1/3 1/3]

no matter what the initial distribution π0 is. 2

2.4 Classification of States

In this section, we consider a homogeneous Markov chain {Xn, n = 0, 1, . . .} with state
space S and one-step transition probability matrix P .

Definition 2.4.1 A state s′ is called accessible (reachable) from state s, denoted as s → s′,
if P (n)(s, s′) > 0 for some n ≥ 0. 2

Definition 2.4.2 States s and s′ are said to communicate with each other, denoted as
s ↔ s′, if s → s′ and s′ → s. 2

Theorem 2.4.3 Communication is an equivalence relation among states in S.

Proof. We need to show that

1. reflectivity: for any s ∈ S, s ↔ s;

2. symmetry: if s ↔ s′, then s′ ↔ s;

3. transitivity: if s ↔ s′ and s′ ↔ s′′, then s ↔ s′′.
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0 1 2 3

1/2 1/2

1/2 1/2

11

>
0 3

1,2

Figure 2.5: State-transition diagram of the Markov chain in Example 2.4.4.
.

The reflectivity and symmetry property of the communication relation is obvious. To show
the transitivity property, we note that if s → s′ and s′ → s′′, then there exist m, n ≥ 0 such
that P (m)(s, s′) > 0 and P (n)(s′, s′′) > 0. Thus by Chapman-Kolmogorov equation, we have

P (n+m)(s, s′′) =
∑

t∈S

P (m)(s, t)P (n)(t, s′′) ≥ P (m)(s, s′)P (n)(s′, s′′) > 0

which, by definition, means that s → s′′. Similarly s′′ → s′ and s′ → s imply s′′ → s. This
completes the proof. 2

Now we can partition the state space S into equivalence classes under the communication
relation. Each of such classes is called a communication class.

Example 2.4.4 . Consider a Markov chain with state transition diagram as shown in Figure
2.5. Then the state space S = {0, 1, 2, 3} can be partitioned into three communication
classes {0}, {1, 2} and {3}. Note that the arrows in the class transition diagram is always
one-directional. 2

Definition 2.4.5 A Markov chain is called irreducible if the whole state space is a commu-
nication class. 2

We shall investigate class properties of a Markov chain. A property of states in the state
space S is called a class property if a state s satisfies this property, then any other state in
the same class as s also satisfies this property. Before this, we need to consider the so called
first passage probabilities.
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2.4.1 First passage probabilities

Let s be a given state in the state space S. Let T
(s)
m , m = 1, 2, . . . , be the successive times

at which the Markov chain visits state s after the initial time n = 0. For a sample ω ∈ Ω,
if there do not exist such times after the k-th visit, i.e. only T

(s)
1 (ω), T

(s)
2 (ω), . . . , T

(s)
k (ω) are

finite, we shall let T
(s)
m+1(ω) − T

(s)
m (ω) = ∞ for all m ≥ k. This implies that T

(s)
m (ω) = ∞ for

all m ≥ k + 1.

The conditional probability P
(

T
(s)
1 = k|X0 = s′

)

is the conditional probability that the

Markov chain will visit the state s firstly at the time n = k, k ≥ 1, relative to the event that
the initial state X0 is s′. These first passage probabilities in k steps will be denoted as

fk(s
′, s) ≡ P

(

T
(s)
1 = k|X0 = s′

)

= P (X1 6= s, . . . , Xk−1 6= s, Xk = s|X0 = s′)

for k ≥ 1 and s, s′ ∈ S. To compute fk(s
′, s)’s, we first note that for k = 1,

f1(s
′, s) = P (X1 = s|X0 = s′) = P (s′, s).

And for k ≥ 2, we have

fk(s
′, s) = P (X1 6= s, . . . , Xk−1 6= s, Xk = s|X0 = s′)

=
∑

s′′∈S−{s}
P (X1 = s′′|X0 = s′)P (X2 6= s, . . . , Xk−1 6= s, Xk = s|X1 = s′′)

=
∑

s′′∈S−{s}
P (s′, s′′)P (X1 6= s, . . . , Xk−2 6= s, Xk−1 = s|X0 = s′′)

by the homogeneity of the Markov chain

=
∑

s′′∈S−{s}
P (s′, s′′)fk−1(s

′′, s).

We summarize the above discussions in the following theorem.

Theorem 2.4.6 The first passage probabilities fk(s, s
′) in k steps satisfy the recursive for-

mula
fk(s

′, s) =
∑

s′′∈S−{s}
P (s′, s′′)fk−1(s

′′, s)

for all k ≥ 2 and s, s′ ∈ S with initial conditions

f1(s
′, s) = P (s′, s)

for all s, s′ ∈ S. 2

Example 2.4.7 Consider a Markov chain with state space S = {1, 2, 3} and one-step tran-
sition probability matrix

P =





1/2 1/4 1/4
1/4 1/2 1/4
0 0 1



 .
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Let vk = [fk(1, 1), fk(2, 1), fk(3, 1)]t be a column vector for each k = 1, 2, . . . . By Theorem
2.4.6, v1 is the first column of P , i.e. v1 = [1/2, 1/4, 0]t and

vk = Qvk−1

for all k ≥ 2 with the matrix Q obtained from P by replacing its first column by zeros as
follows:

Q =





0 1/4 1/4
0 1/2 1/4
0 0 1



 .

By diagonalizing Q, we have

Q = M





0 0 0
0 1/2 0
0 0 1



M−1

with

M =





1 1 3
0 2 4
0 0 8



 and M−1 =





1 −1/2 −1/8
0 1/2 −1/4
0 0 1/8





Thus for k ≥ 2,

vk = Qk−1





1/2
1/4
0



 = M





0 0 0
0 (1/2)k−1 0
0 0 1



M−1





1/2
1/4
0



 =





(1/2)k+2

(1/2)k+1

0



 .

Thus if T
(1)
1 is the first time at which the Markov chain visits the state 1 after the initial

time n = 0, then

P(T
(1)
1 = ∞|X0 = 1) = 3/8 ,P(T

(1)
1 = ∞|X0 = 2) = 1/2 and P(T

(1)
1 = ∞|X0 = 3) = 1.

2

Next we define the first passage probability

f(s′, s) ≡ P
(

T
(s)
1 < ∞|X0 = s′

)

to be the conditional probability that the Markov chain ever visits the state s from time
n = 1 relative to the event that the initial state X0 is s′. (It is a probability under the
conditional probability measure P{X0=s′} relative to the event {X0 = s′}.) If s = s′, then
f(s, s) is also called the first return probability of the state s. It is clear that

f(s′, s) =

∞
∑

k=1

fk(s
′, s)

and by Theorem 2.4.6, we have
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Theorem 2.4.8 The first passage probabilities f(s′, s) satisfy

f(s′, s) = P (s′, s) +
∑

s′′∈S−{s}
P (s′, s′′)f(s′′, s)

for all s, s′ ∈ S. 2

The above theorem provides systems of linear equations to solve first passage probabilities
as given in the following example.

Example 2.4.9 Consider the same Markov chain as in Example 2.4.7. Let v be the col-
umn vector [f(1, 1), f(2, 1), f(3, 1)]t and p1 be the first column of the one-step transition
probability matrix P . By Theorem 2.4.8, we have

v = p1 + Qv

which is a system of linear equations, where the matrix Q is as before. By solving the matrix
equation, we have

v =





f(1, 1)
f(2, 1)
f(3, 1)



 =





3α+5
8

α+1
2

α





with α in [0, 1]. Similarly we have




f(1, 2)
f(2, 2)
f(3, 2)



 =





β+1
2

3β+5
8

β



 and





f(1, 3)
f(2, 3)
f(3, 3)



 =





1
1
1



 ,

with β in [0, 1]. The uncertainty of α and β should be resolved by other means. In general, a
thorough investigation of the recurrency of each state in the state space will provide enough
information. In this case, it is easy to see, from the state transition diagram, that state
3 never reach either state 1 or state 2. Thus, α = f(3, 1) = 0 = f(3, 2) = β and then
f(1, 1) = 5/8 = f(2, 2), f(2, 1) = 1/2 = (1, 2). These results will be justified later by other
methods. 2

Definition 2.4.10 A state s in S is called recurrent if its first return probability is one,
i.e f(s, s) = 1. Otherwise, it is called transient. 2

This says that a recurrent state will be visited again for sure if it has been visited before.
In fact, a recurrent state will be visited again and again forever. To give a more precise
meaning, we define r.v. N (s) to be the total number of times at which the Markov chain
visits the state s. Then for each non-negative integer m, we have

{N (s) = m}
= {X0 6= s, T

(s)
1 < ∞, . . . , T (s)

m < ∞, T
(s)
m+1 = ∞}

∪{X0 = s, T
(s)
1 < ∞, . . . , T

(s)
m−1 < ∞, T (s)

m = ∞}
= {X0 6= s, T

(s)
1 < ∞, T

(s)
2 − T

(s)
1 < ∞, . . . , T

(s)
m+1 − T (s)

m = ∞}
∪{X0 = s, T

(s)
1 < ∞, T

(s)
2 − T

(s)
1 < ∞, . . . , T (s)

m − T
(s)
m−1 = ∞} (2.10)
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and
{N (s) = ∞} = ∩∞

m=1{T (s)
m < ∞} = ∩∞

m=1{T (s)
m − T

(s)
m−1 < ∞}

where T
(s)
0 is defined to be 0. Since the first passage probability f(s′, s) is equal to P(T

(s)
1 <

∞|X0 = s′) and the event (T
(s)
1 < ∞) is equivalent to the event that there is a k ≥ 1 such

that Xk = s which in turn is equivalent to the event (N (s) > 0) if s′ 6= s and (N (s) > 1) if
s′ = s, we have

f(s′, s) =

{

P
(

N (s) > 0|X0 = s′
)

, if s′ 6= s,
P
(

N (s) > 1|X0 = s
)

, if s′ = s.
(2.11)

For further investigation, we need the following property about successive visiting times T
(s)
m

to state s.

Lemma 2.4.11 For any s′, s in S, 1 ≤ n1 < n2 < . . . < nm, and k, m ≥ 1,

P
(

T
(s)
m+1 − T (s)

m = k|X0 = s′, T
(s)
1 = n1, T

(s)
2 = n2, . . . , T

(s)
m = nm

)

= fk(s, s). (2.12)

Proof. We fix a state s in S and let Tm = T
(s)
m for simplicity. Note that the event

(X0 = s′, T1 = n1, T2 = n2, . . . , Tm = nm) is the intersection (Xnm
= s) ∩ Λ of the event

(Xnm
= s) and an event Λ in F[0,nm]. Thus for k ≥ 1, we have

P (Tm+1 − Tm = k|X0 = s′, T1 = n1, T2 = n2, . . . , Tm = nm)

= P (Xnm+1 6= s, . . . , Xnm+k−1 6= s, Xnm+k = s|Λ, Xnm
= s)

= P (Xnm+1 6= s, . . . , Xnm+k−1 6= s, Xnm+k = s|Xnm
= s) by (2.6)

= P (X1 6= s, . . . , Xk−1 6= s, Xk = s|X0 = s) by the homogeneity of the Markov chain

= fk(s, s).

This completes the proof. 2

From (2.12), we have

P
(

T
(s)
m+1 − T (s)

m < ∞|X0 = s′, T
(s)
1 = n1, T

(s)
2 = n2, . . . , T

(s)
m = nm

)

= f(s, s) (2.13)

and

P
(

T
(s)
m+1 − T (s)

m = ∞|X0 = s′, T
(s)
1 = n1, T

(s)
2 = n2, . . . , T

(s)
m = nm

)

= (1 − f(s, s)) (2.14)

for all m ≥ 1 and 1 ≤ n1 < n2 < . . . < nm. If Λ is in the σ-algebra F(X0, T
(s)
1 , . . . , T

(s)
m ) and

is contained in the event {T (s)
m < ∞}, (2.13) implies that

P
(

T
(s)
m+1 − T (s)

m < ∞|Λ
)

= f(s, s) (2.15)

and (2.14) implies that

P
(

T
(s)
m+1 − T (s)

m = ∞|Λ
)

= 1 − f(s, s). (2.16)
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for all m ≥ 1. If s′ 6= s, we have

P
(

N (s) = m|X0 = s′
)

= P
(

T
(s)
1 < ∞, T

(s)
2 − T

(s)
1 < ∞, . . . , T (s)

m − T
(s)
m−1 < ∞, T

(s)
m+1 − T (s)

m = ∞|X0 = s′
)

= P
(

T
(s)
1 < ∞|X0 = s′

)

P
(

T
(s)
2 − T

(s)
1 < ∞|X0 = s′, T

(s)
1 < ∞

)

· · ·

P
(

T
(s)
m+1 − T (s)

m = ∞|X0 = s′, T
(s)
1 < ∞, T

(s)
2 − T

(s)
1 < ∞, . . . , T (s)

m − T
(s)
m−1 < ∞

)

= f(s′, s)f(s, s)m−1(1 − f(s, s)) (2.17)

for all m ≥ 1 by (2.15) and (2.16) and

P
(

N (s) = 0|X0 = s′
)

= P
(

T
(s)
1 = ∞|X0 = s′

)

= 1 − f(s′, s). (2.18)

Similarly if s′ = s, we have

P
(

N (s) = m|X0 = s
)

=

{

f(s, s)m−1(1 − f(s, s)), if m ≥ 1,
0, if m = 0.

(2.19)

Finally we have

P
(

N (s) = ∞|X0 = s′
)

=

{

f(s′, s), if f(s, s) = 1,
0, if f(s, s) < 1.

(2.20)

Note that (2.11) can be verified by (2.17) - (2.20). By letting

g(s′, s) ≡ P
(

N (s) = ∞|X0 = s′
)

denote the conditional probability that the Markov chain will visit the state s infinitely many
times relative to the event that the initial state is s′, we have

Theorem 2.4.12 For any s, s′ ∈ S,

1. g(s, s) = 1 if and only if f(s, s) = 1,

2. g(s, s) = 0 if and only if f(s, s) < 0,

3. g(s′, s) = f(s′, s)g(s, s).

Proof. This is a direct consequence of (2.20). 2

Define
R(s′, s) ≡ E{X0=s′}

(

N (s)
)

to be the conditional expectation of the total number N (s) of times at which the Markov
chain will visit the state s relative to the event that the initial state is s′. By (2.17) – (2.20),
we have
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Theorem 2.4.13 For s ∈ S,

R(s, s) = 1/(1 − f(s, s))

and for s′ 6= s,
R(s′, s) = f(s′, s)R(s, s).

2

In the above theorem, we have used the conventions 1/0 = ∞ and 0·∞ = 0. The matrix R =
[R(s′, s)] is called the potential matrix of the Markov chain. If the first passage probabilities
f(s′, s) are known, Theorem 2.4.13 can be used to find the potential matrix. In practice, it
is much easier to find the potential matrix first and to use Theorem 2.4.13 to find the first
passage probabilities. The following theorem is useful.

Theorem 2.4.14 The potential matrix R and the one-step transition probability matrix P
are related as

R =

∞
∑

n=0

P n. (2.21)

Proof. We first note that for each sample ω in Ω,

N (s)(ω) =

∞
∑

n=0

1{Xn=s}(ω).

By the monotone convergence theorem of conditional expectation, we have

R(s′, s) = E{X0=s′}
(

N (s)
)

=

∞
∑

n=0

E{X0=s′}
(

1{Xn=s}
)

=

∞
∑

n=0

P (n)(s′, s).

By Theorem 2.3.1, we have

R = I + P + P 2 + R3 + · · · .

2

Example 2.4.15 Consider the same Markov chain as in Example 2.4.7 with one-step tran-
sition probability matrix

P =





1/2 1/4 1/4
1/4 1/2 1/4
0 0 1



 .

The matrix P can be diagonalized into

P = M−1





1 0 0
0 3/4 0
0 0 1/4



M
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with

M =





0 0 1
1 1 −2
1 −1 0



 and M−1 =





1 1/2 1/2
1 1/2 −1/2
1 0 0



 .

Thus,

R =
∞
∑

n=0

P n

= M−1

( ∞
∑

n=0

Λn

)

M

= M−1





∑∞
n=0 1 0 0
0

∑∞
n=0(3/4)n 0

0 0
∑∞

n=0(1/4)n



M

= M−1





+∞ 0 0
0 4 0
0 0 4/3



M

=





8/3 4/3 +∞
4/3 8/3 +∞
0 0 +∞



 .

From the diagonal entries of R and by Theorem 2.4.13, we have first passage probabilities
as follows:

f(1, 1) = 5/8, f(1, 2) = 1/2, f(1, 3) > 0,
f(2, 1) = 1/2, f(2, 2) = 5/8, f(2, 3) > 0,
f(3, 1) = 0, f(3, 2) = 0, f(3, 3) = 1.

It can be seen that the uncertainty with α = f(3, 1) and β = f(3, 2) from solving the first
passage probabilities by systems of linear equations in Example 2.4.9 can be resolved here.
However, the uncertainty with f(1, 3) and f(2, 3) here in calculating the first passage prob-
abilities from the potential matrix R cab be resolved by solving systems of linear equations
on first passage probabilities as in Example 2.4.9. 2

Corollary 2.4.16 A state s is recurrent if and only if
∑∞

n=0 P (n)(s, s) = ∞.

Proof. This is followed from Theorems 2.4.13 and 2.4.14. 2

Note that although, by (2.21), we have

PR = RP = R − I, (2.22)

we cannot subtract the matrix PR from both sides of (2.22) and then add the identity matrix
I to both sides to form the matrix equation

I = (I − P )R



2.4. CLASSIFICATION OF STATES 45

and to claim that R = (I −P )−1, even the size of the state space is finite. The reason is that
the potential matrix may contain extended value ∞ and we do not know what is ∞ minus
∞.

The first passage probabilities fk(s
′, s) from state s′ to state s in k steps k = 1, 2, . . . , +∞

form a probability distribution. (Indeed, it is a probability distribution under the conditional
probability measure P{X0=s′}.) We define

m(s′, s) ≡
∑

1≤k≤∞
k · fk(s

′, s)

to be the mean first passage time from state s′ to state s. If s′ = s, m(s, s) is also called the
mean return time of the state s. It is clear that if s is a transient state, i.e. f∞(s, s) > 0,
then its mean return time is ∞. If s is a recurrent state, its mean return time m(s, s) is also
called the mean recurrent time.

Definition 2.4.17 A recurrent state is called positive recurrent if its mean recurrent time
is finite. Otherwise, it is called null recurrent. 2

Theorem 2.4.18 For s, s′ ∈ S,

m(s′, s) = 1 +
∑

s′′∈S−{s}
P (s′, s′′)m(s′′, s).

Proof. From Theorem 2.4.6, we have

m(s′, s) = P (s′, s) +
∑

2≤k≤∞
k ·

∑

s′′∈S−{s}
P (s′, s′′)fk−1(s

′′, s)

= P (s′, s) +
∑

s′′∈S−{s}
P (s′, s′′)

∑

1≤k≤∞
(k + 1)fk(s

′′, s)

= P (s′, s) +
∑

s′′∈S−{s}
P (s′, s′′) (m(s′′, s) + 1)

= 1 +
∑

s′′∈S−{s}
P (s′, s′′)m(s′′, s).

This completes the proof. 2

2.4.2 Class properties

Theorem 2.4.19 If a state s communicates with a recurrent state s′, then it is also recur-
rent.

Proof. Since state s′ is recurrent, we have

∞
∑

n=0

P (n)(s′, s′) = +∞
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by Corollary 2.4.16. Since s ↔ s′, there exist n and m such that P (n)(s, s′) > 0 and
P (m)(s′, s) > 0. By Chapman-Kolmogorov equation, we have

P (n+k+m)(s, s) =
∑

s′′∈S

P (n)(s, s′′)P (k+m)(s′′, s)

≥ P (n)(s, s′)P (k+m)(s′, s)

= P (n)(s, s′)
∑

s′′∈S

P (k)(s′, s′′)P (m)(s′′, s)

≥ P (n)(s, s′)P (k)(s′, s′)P (m)(s′, s)

and then

∞
∑

i=0

P (i)(s, s) ≥
∞
∑

k=0

P (n+k+m)(s, s) ≥
∞
∑

k=0

P (n)(s, s′)P (k)(s′, s′)P (m)(s′, s)

= P (n)(s, s′)

( ∞
∑

k=0

P (k)(s′, s′)

)

P (m)(s′, s) = +∞.

The proof is now completed by Theorem 2.4.16. 2

The above theorem says that recurrency is a communication class property. Note that
a state is either recurrent or transient, but not both, If a state in a communication class is
transient, then all other states in the same class must be transient. Otherwise, all states in
the class must be recurrent, a contradiction. Thus, transiency is also a class property. Now
it is proper to say that a communication class is recurrent or transient.

Lemma 2.4.20 If s is reachable from a recurrent state s′ (s′ → s), then s′ is also reachable
from s (s → s′) and f(s, s′) = 1.

Proof. If s = s′, it is trivial. We assume s′ 6= s. Let N be the set of all positive integers n
with P (n)(s′, s) > 0. Since s′ → s, N is a non-empty set. Let n0 be the smallest integer in
N . Then s is reached from s′ in n0 steps without returning to s′, i.e.

P(Xn0
= s, T

(s′)
1 ≤ n0|X0 = s′) = 0.

Otherwise there is an n, 1 ≤ n < n0, such that

0 < P(Xn0
= s, T

(s′)
1 = n|X0 = s′) ≤ P(Xn0

= s, Xn = s′|X0 = s′)

= P(Xn = s′|X0 = s′) · P(Xn0
= s|Xn = s′)

by the Markov property. This implies that

0 < P(Xn0
= s|Xn = s′) = P(Xn0−n = s|X0 = s′) = P (n0−n)(s′, s)
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and then (n0 − n) in N , a contradiction to the minimal property of n0 in N . Thus we have

P(Xn0
= s|X0 = s′) = P(Xn0

= s, T
(s′)
1 ≥ n0 + 1|X0 = s′)

= P(X1 6= s′, . . . , Xn0−1 6= s′, Xn0
= s|X0 = s′) (2.23)

Now, we have

P(T
(s′)
1 = ∞|X0 = s′)

≥ P(T
(s′)
1 = ∞, Xn0

= s|X0 = s′)

= P(X1 6= s′, . . . , Xn0−1 6= s′, Xn0
= s, Xn0+1 6= s′, . . . |X0 = s′)

= P(X1 6= s′, . . . , Xn0−1 6= s′, Xn0
= s|X0 = s′) ·

P(Xn0+1 6= s′, . . . |X0 = s′, X1 6= s′, . . . , Xn0−1 6= s′, Xn0
= s)

= P(Xn0
= s|X0 = s′)P(Xn0+1 6= s′, . . . |Xn0

= s) by (2.23) and the Markov property

= P(Xn0
= s|X0 = s′)P(X1 6= s′, . . . |X0 = s)

= P(Xn0
= s|X0 = s′)P(T

(s′)
1 = ∞|X0 = s)

which says that

1 − f(s′, s′) ≥ P(Xn0
= s|X0 = s′) · (1 − f(s, s′)) ≥ 0.

Since s′ is recurrent, i.e. f(s′, s′) = 1, we have

P(Xn0
= s|X0 = s′) · (1 − f(s, s′)) = 0

and then f(s, s′) = 1 for P(Xn0
= s|X0 = s′) > 0. This implies that there is an n such that

0 < P(T (s′) = n|X0 = s) ≤ P(Xn = s′|X0 = s) = P (n)(s, s′)

which says that s → s′. The proof is now completed. 2

Definition 2.4.21 A squared matrix (finite-dimensional or infinite-dimensional) is called
a stochastic (or Markov) matrix if its entries are all non-negative and its row sums are all
equal to one. 2

The one-step transition probability matrix (at time n) of an (inhomogeneous) Markov
chain is a stochastic matrix. Conversely, for a stochastic matrix, we can always construct a
homogeneous Markov chain with one-step transition probability matrix to be that matrix.

Definition 2.4.22 A set C of states is called closed if any state s in the state space S which
is reachable from a state s′ in C must be in C. Otherwise, it is called open. 2

The state space itself is closed. From Lemma 2.4.20, the set of all recurrent states is
closed. A communication class may be closed or open.
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0 1 2 3

1/2 1/2

1/2 1/2

11

1,2

0 3

closed class closed class
open class

Figure 2.6: Open and closed communication classes in a Markov chain.

0 1 2 3 4

0 1 2

1 1 1 1

No closed communication class

Figure 2.7: A Markov chain without any closed communication class.

Example 2.4.23 The state-transition diagram in Figure 2.6 has shown that there are two
closed and one open communication classes. And in Figure 2.7, a Markov chain without any
closed communication class is demonstrated.

Also by Lemma 2.4.20, every recurrent class is closed. A transient class may be closed
or open. But if a transient class has a finite number of states, it must be open, as implied
by the following theorem.

Theorem 2.4.24 If a closed communication class is transient, then it must have an infinite
number of states.

Proof. Let C be a closed transient communication class. Let s′ be a state in C. Since
P (n)(s′, s) = 0 for any n ≥ 0 and any s 6∈ C, we have

P (∩∞
n=0{Xn ∈ C}|X0 = s′) = 1
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which implies that

P
(

∑

s∈C

N (s) = ∞|X0 = s′

)

= 1. (2.24)

Suppose that C is finite. The event {∑s∈C N (s) = ∞} is equal to the union
∪s∈C{N (s) = ∞} of events {N (s) = ∞}. Thus

P
(

∑

s∈C

N (s) = ∞|X0 = s′

)

= P
(

∪s∈C{N (s) = ∞}|X0 = s′
)

≤
∑

s∈C

P
(

N (s) = ∞|X0 = s′
)

=
∑

s∈C

g(s′, s)

=
∑

s∈C

f(s′, s)g(s, s)

= 0 (2.25)

by Theorem 2.4.12 and the transiency of states in C. It can be seen that (2.25) is a
contradiction to (2.24). Thus C must be infinite. 2

Let P be the one-step transition probability matrix of a Markov chain and C be a closed
subset of the state space S. By rearranging the order of states in S such that states in C
are labeled at first, the one-step transition probability matrix must be of the form

P =

[

PC 0
? ?

]

where the entries of the submatrix PC are those one-step transition probabilities from states
to states in the closed subset C. It can be seen that PC is a stochastic matrix and is the one-
step transition probability matrix of the Markov chain obtained from the original Markov
chain by reducing the state space to C.

Definition 2.4.25 A closed set of states is called irreducible if it has no proper closed
subset. 2

Lemma 2.4.26 A closed communication class is irreducible.

Proof. Let PC be the stochastic matrix associated with the considered closed
communication class C. Suppose that C has a proper closed subset D. By rearranging the
states in C, PC can be of the form

PC =

[

PD 0
? ?

]

.
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Then we have

P n
C =

[

P n
D 0
? ?

]

which implies that P (n)(s, s′) = 0 for all n ≥ 1 and for any s ∈ D and s′ ∈ C − D. This is a
contradiction to s ↔ s′. Thus C has no proper closed subset and is irreducible. 2

Let C1, C2, . . . , be all recurrent communication classes in the state space S and D be
the set of all transient states. Then by rearranging the order of states in S, the one-step
transition probability matrix P can be of the form

P =















PC1
0 0 · · · 0

0 PC2
0 · · · 0

0 0 PC3
· · · 0

...
...

...
. . .

...
L1 L2 L3 · · · Q















.

It is clear that

P n =















P n
C1

0 0 · · · 0
0 P n

C2
0 · · · 0

0 0 P n
C3

· · · 0
...

...
...

. . .
...

L1,n L2,n L3,n · · · Qn















.

By Theorem 2.4.14, the potential matrix R of the Markov chain is

R =















RC1
0 0 · · · 0

0 RC2
0 · · · 0

0 0 RC3
· · · 0

...
...

...
. . .

...
∑∞

n=0 L1,n

∑∞
n=0 L2,n

∑∞
n=0 L3,n · · · ∑∞

n=0 Qn















where RCi
is the potential matrix associated with the recurrent communication class Ci. It

can be seen that
R(s, s′) = 0, ∀ s ∈ Ci and s′ 6∈ Ci

for any recurrent communication class Ci. From Theorem 2.4.13, we have

f(s, s′) = 0, ∀ s ∈ Ci and s′ 6∈ Ci

for any recurrent communication class Ci. Since each class Ci is recurrent, it is clear from
Lemma 2.4.20 and Theorem 2.4.13 that

f(s, s′) = 1 and R(s, s′) = +∞
for all s, s′ ∈ Ci. There are two remaining cases to be investigated. We first consider R(s, s′)
with s, s′ both transient. Let

U =

∞
∑

n=0

Qn.
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Since U(s, s′) = R(s, s′) for all s, s′ ∈ D, each entry in U is finite. Thus we have

(I − Q)U = U(I − Q) = I. (2.26)

Theorem 2.4.27 If there are only finitely many transient states in the state space S, then

U = (I − Q)−1.

2

In general cases where there may exist infinitely many transient states, the following theorem
shows that U has a minimal property.

Theorem 2.4.28 The matrix U is the minimal solution of the matrix equation in (2.26)
among all non-negative solutions Y

(I − Q)Y = I, Y ≥ 0.

Proof. As discussed in above, U is a solution of the matrix equation. Suppose that Y is a
non-negative solution, i.e. Y = I + QY . By iteration, we have

Y = I + QY = I + Q + Q2Y = I + Q + . . . + Qm + Qm+1Y ≥
m
∑

n=0

Qn

for all m ≥ 1. By taking m → ∞, we have Y ≥ U . 2

Suppose that Y is a non-negative solution of the matrix equation in (2.26), then

Y = I + QY and U = I + QU

and then
H = QH

with H = Y − U ≥ 0. Thus every column of H satisfies

h = Qh, h ≥ 0. (2.27)

A matrix (possibly having infinite dimension) is called column-bounded if every column of
this matrix is a bounded vector. Since U(s, s′) = R(s, s′) = f(s, s′)R(s′, s′) = f(s, s′)U(s′, s′) ≤
U(s′, s′), every column of the matrix U is bounded and then U is a column-bounded matrix.

Theorem 2.4.29 The matrix U is the unique column-bounded non-negative solution of the
matrix equation in (2.26) if and only if the only solution of the system of linear equations in
(2.27)

h = Qh, 0 ≤ h ≤ 1

is h = 0, where 1 is the column vector whose components are all 1’s. 2
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We next develop a probabilistic non-negative solution for the system of linear equations
in (2.27) in a more general setting.

Let A be a subset of the state space S. And let Q be the matrix obtained from the
one-step transition probability matrix P by deleting all rows and columns corresponding to
states which are not in A. Then the (s, s′)-entry of the nth power Qn of Q is

Qn(s, s′) =
∑

s1∈A

∑

s2∈A

· · ·
∑

sn−1∈A

Q(s, s1)Q(s1, s2) · · ·Q(sn−1, s
′)

= P (X1 ∈ A, . . . , Xn−1 ∈ A, Xn = s′|X0 = s)

by the Markov property. Thus we have
∑

s′∈A

Qn(s, s′) = P (X1 ∈ A, . . . , Xn−1 ∈ A, Xn ∈ A|X0 = s) .

Since {X1 ∈ A}, {X1 ∈ A, X2 ∈ A}, . . . is a decreasing monotone sequence and converges to
the event ∩∞

n=1{Xn ∈ A}, we have

y(s) ≡ P (∩∞
n=1{Xn ∈ A}|X0 = s) = lim

n→∞

∑

s′∈A

Qn(s, s′)

for all s ∈ A by the monotone property of probability measure, where y(s) is the conditional
probability that the Markov chain stays in the set A forever given the initial state X0 to be
s. The column vector y = (y(s), s ∈ A)t has a maximal property as stated in the following
theorem.

Lemma 2.4.30 Let A be a subset of the state space S. And let Q be the matrix ob-
tained from the one-step transition probability matrix P by deleting all rows and columns
corresponding to states which are not in A. The vector y = (y(s), s ∈ A)t with y(s) =
limn→∞

∑

s′∈A Qn(s, s′) is the maximal solution of the system of linear equations

h = Qh, 0 ≤ h ≤ 1.

And, either y = 0 or sups∈A y(s) = 1.

Proof. Note that

y(s) = P (X1 ∈ A, X2 ∈ A, . . . |X0 = s)

=
∑

s′∈A

P (X1 = s′, X2 ∈ A, . . . |X0 = s)

=
∑

s′∈A

P (X1 = s′|X0 = s)P (X2 ∈ A, X3 ∈ A, . . . |X0 = s, X1 = s′)

=
∑

s′∈A

P (s, s′)P (X2 ∈ A, X3 ∈ A, . . . |X1 = s′) by Markov property

=
∑

s′∈A

P (s, s′)P (X1 ∈ A, X2 ∈ A, . . . |X0 = s′) by the homogeneity

=
∑

s′∈A

P (s, s′)y(s′),
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which says that y = Qy. Since 0 ≤ y ≤ 1, y is a non-negative bounded solution of the
system of linear equations. Suppose that h is also a non-negative bounded solution,
0 ≤ h ≤ 1. Then by iteration, we have

h = Qh = Q2h = . . . = Qnh ≤ Qn1

for all n ≥ 1. Since y = limn→∞ Qn1, we have h ≤ y. Now suppose that y 6= 0. Let
c = sups∈A y(s) > 0. Since y ≤ c1, again by iteration, we have

y = Qy = Q2y = . . . = Qny ≤ cQn1

and by taking n → ∞,
y ≤ cy

which implies that c = 1. This completes the proof. 2

By Theorem 2.4.29 and Lemma 2.4.30, we have

Theorem 2.4.31 The matrix U is the unique column-bounded non-negative solution of the
matrix equation in (2.26) if and only if

sup
s∈D

lim
n→∞

∑

s′∈D

Qn(s, s′) < 1,

where D is the set of all transient states and Q is the matrix obtained from the one-step
transition probability matrix P by deleting all rows and columns corresponding to states
which are not in D. 2

We now return to the previous discussion on potential matrix R and first passage prob-
abilities. With the computed submatrix U of R, we have

f(s, s′) =
R(s, s′)

R(s′, s′)
=

U(s, s′)

U(s′, s′)

for all transient states s, s′. The final case to be discussed is R(s, s′) with s a transient state
and s′ a recurrent state. It is clear that

R(s, s′) =

{

0, if f(s, s′) = 0,
+∞, if f(s, s′) > 0,

which shows that there still exists uncertainty with f(s, s′) for s a transient state and s′ a
recurrent state, even when R(s, s′) is known as in Example 2.4.15. We now need to compute
first passage probabilities f(s, s′) with s a transient state and s′ a recurrent state directly
by linear equations provided in Theorem 2.4.8.

Theorem 2.4.32 Let C be a recurrent communication class and D be the set of all transient
states. For each s′ ∈ C, the set of first passage probabilities {f(s, s′), s ∈ D} satisfies the
system of linear equations

f(s, s′) =
∑

s′′∈D

P (s, s′′)f(s′′, s′) +
∑

s′′∈C

P (s, s′′).
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Proof. By Theorem 2.4.8, we have

f(s, s′) = P (s, s′) +
∑

s′′∈S−{s′}
P (s, s′′)f(s′′, s′).

If s′′ 6∈ C and s′′ 6∈ D, we have f(s′′, s′) = 0. Also, note that f(s′′, s′) = 1 for all s′′ ∈ C.
The system of linear equations is now followed. 2

Let f(D, s′) = (f(s, s′), s ∈ D)t and b(D, C) = (
∑

s′∈C P (s, s′), s ∈ D)t be column vectors.
Then from Theorem 2.4.32, we have

f(D, s′) = Qf(D, s′) + b(D, C). (2.28)

A more informative derivation of (2.28) can be done as follows. For a transient state s in D
and a recurrent state s′ in the recurrent communication class C, the first passage probability

f(s, s′) ≡ P
(

T
(s′)
1 < +∞|X0 = s

)

=
∞
∑

k=1

P (X1 6= s′, . . . , Xk−1 6= s′, Xk = s′|X0 = s)

=

∞
∑

k=1

k−1
∑

n=1

P (X1 ∈ D, . . . , Xn−1 ∈ D, Xn ∈ C\{s′}, . . . , Xk−1 ∈ C\{s′}, Xk = s′|X0 = s)

=

∞
∑

n=1

P (X1 ∈ D, . . . , Xn−1 ∈ D, Xn ∈ C|X0 = s)

is independent of the state s′ in C and will be denoted as f(s, C), which is also called the
absorbing probability to the recurrent class C given an initial transient state X0 = s. The
column vector f(D, s′), s′ ∈ C, will also be denoted as f(D, C). Now

P (X1 ∈ D, . . . , Xn−1 ∈ D, Xn ∈ C|X0 = s)

=
∑

s′′∈D

P (X1 ∈ D, . . . , Xn−2 ∈ D, Xn−1 = s′′, Xn ∈ C|X0 = s)

=
∑

s′′∈D

P (X1 ∈ D, . . . , Xn−2 ∈ D, Xn−1 = s′′|X0 = s)P (Xn ∈ C|Xn−1 = s′′)

=
∑

s′′∈D

Qn−1(s, s′′)P (X1 ∈ C|X0 = s′′) ,

by the Markov property and the homogeneity of the Markov chain, where Q is the matrix
obtained from the one-step transition proabability matrix P by deleting rows and columns
corresponding to states not in D, and then we have

f(D, C) =

∞
∑

n=1

Qn−1b(D, C),
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which implies that the absorbing probability vector f(D, C) satisfies (2.28). If the Markov
chain has only finitely many transient states, i.e., the square matrix Q is finite-dimensional,
then the matrix I − Q has the inverse matrix U by (2.26) and we have

f(D, C) = (I − Q)−1b(D, C) = Ub(D, C).

In general, we will show that the absorbing probability vector f(D, C) is the minimal non-
negative solution of (2.28). Let y be a non-negative solution of the inhomogeneous system
of linear equations in (2.28)

y = Qy + b(D, C).

Then

y = b(D, C) + Qy = b(D, C) + Qb(D, C) + · · ·+ Qn−1b(D, C) + Qny ≥
n−1
∑

k=0

Qkb(D, C)

for all n ≥ 1 and by taking n → ∞, we have

y ≥ f(D, C).

Similar to Theorem 2.4.29, we now have

Theorem 2.4.33 The absorbing probabilities {f(s, C), s ∈ D} from transient states to a
recurrent communication class C is the unique bounded non-negative solution of the inho-
mogeneous system of linear equations in Theorem 2.4.32 if and only if the homogeneous
system of linear equations h = Qh, 0 ≤ h ≤ 1, has only trivial solution h = 0. 2

Combined with Lemma 2.4.30, we have

Theorem 2.4.34 The absorbing probabilities {f(s, C), s ∈ D} from transient states to a
recurrent communication class C is the unique bounded non-negative solution of the inho-
mogeneous system of linear equations in Theorem 2.4.32 if and only if

sup
s∈D

lim
n→∞

∑

s′∈D

Qn(s, s′) < 1,

2

The following theorem is useful to verify a closed communication class to be recurrent.

Theorem 2.4.35 Let C be a closed communication class in S and let s be a fixed state in
C. Then C is recurrent if and only if for every s′ ∈ C and s′ 6= s, we have f(s′, s) = 1.

Proof. Let C ′ = C − {s}. If C is recurrent, then f(s′, s) = 1 for all s′ ∈ C ′ by Lemma
2.4.20. Conversely, from Theorem 2.4.8, we have

f(s, s) = P (s, s) +
∑

s′∈C′

P (s, s′)f(s′, s) =
∑

s′∈C

P (s, s′) = 1

since P (s, s′) = 0 for all s′ 6∈ C. This completes the proof. 2
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The next theorem is an application of Lemma 2.4.30 and can also be used to verify a
closed communication class to be recurrent.

Theorem 2.4.36 Let PC be the one-step transition probability matrix corresponding to a
closed communication class C. Let s be a fixed state in C. And let Q be the matrix obtained
from PC by deleting the row and column corresponding to the state s. Then C is recurrent
if and only if the only solution of the system of linear equations

h = Qh, 0 ≤ h ≤ 1

is h = 0.

Proof. Let C ′ = C − {s} for convenience. If C is recurrent, then f(s′, s) = 1 for all
s′ ∈ C ′. Thus, the conditional probability that the Markov chain will stay in C ′ forever
given initial state X0 = s′ in C ′ is zero. By Lemma 2.4.30, the only non-negative bounded
solution of the system of linear equations is the trivial solution. Conversely, if the only
non-negative bounded solution of the system of linear equations is the trivial solution, then
the conditional probability that the Markov chain will stay in C ′ forever given initial state
X0 = s′ in C ′ is zero by Lemma 2.4.30. Thus f(s′, s) = 1 for all s′ ∈ C ′. Then by Theorem
2.4.35, C is recurrent. 2

Before leaving this section, we shall discuss three more class properties. We first define
the period of a state s.

Definition 2.4.37 The period d(s) of a state s is the greatest common divisor of the set of
positive integers n for which P (n)(s, s) > 0. 2

A state s is called a non-return state if P (n)(s, s) = 0 for all n ≥ 1. For a non-return state
s, we define its period d(s) to be +∞. A return state s is called aperiodic if its period d(s)
is one and periodic if d(s) > 1. We need the following technical lemma.

Lemma 2.4.38 Let M be a non-empty set of positive integers, closed under addition. And
let d be the greatest common divisor of all integers in M . Then there exists a positive integer
k0 such that kd ∈ M for all k ≥ k0.

Proof. Let E be the set of all positive integers which are finite linear combinations

e1n1 + e2n2 + · · ·+ eknk,

where n1, n2, . . . , nk belong to M and e1, e2 . . . , ek are positive or negative integers. It is
clear that M is a subset of E. Let d′ be the smallest member in E with

d′ = a1n1 + a2n2 + · · ·+ alnl (2.29)

for some integers n1, n2, . . . , nl in M and positive or negative integers a1, a2, . . . , al. It is
clear that d | d′. Furthermore, d′ is a common divisor of all integers in M . Otherwise, if n
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is in M and d′ 6 | n, then there exists positive integers q and r such that n = qd′ + r with
1 ≤ r < d′. Thus

r = n − qd′ = n + (−qa1)n1 + (−qa2)n2 + · · ·+ (−qal)nl

is in E and is less than the smallest member d′ of E, which is a contradiction. Thus we
have d = d′. By rearranging the terms in (2.29) such that terms with positive coefficients
are written first, we have

d = x − y

for some positive integers x and y in M . Since d is the greatest common divisor of all
integers in M , there exists positive integers x′ and y′ such that x = x′d, y = y′d and then
x′ − y′ = 1. Now for any k ≥ y′2, there exist unique non-negative integers a and b such that
k = ay′ + b with a ≥ y′ and 0 ≤ b < y′. Thus we have

k = ay′ + b(x′ − y′) = bx′ + (a − b)y′

and then
kd = bx + (a − b)y ∈ M.

The proof is now completed by letting k0 = y′2. 2

Theorem 2.4.39 For a return state s with period d, there exists a positive integer k0 such
that P (k·d)(s, s) > 0 for all k ≥ k0.

Proof. Let M be the set of all positive integers n such that P (n)(s, s) > 0. If n1 and n2 are
in M , i.e. P (n1)(s, s) > 0 and P (n2)(s, s) > 0, then

P (n1+n2)(s, s) ≥ P (n1)(s, s)P (n2)(s, s) > 0

where the first inequality is from the Chapman-Kolmogorov equation. Thus n1 + n2 is in
M . This shows that M is closed under addition. Since s is a return state, M is non-empty
and the period d of s is the greatest common divisor of all integers in M . By Lemma
2.4.38, there exists a positive integer k0 such that k · d ∈ M for all k ≥ k0 which says that
P (k·d)(s, s) > 0 for all k ≥ k0. 2

Theorem 2.4.40 Two return states which communicate have the same period.

Proof. Suppose that s ↔ s′. Then there exist n, m ≥ 1 such that P (n)(s, s′) > 0 and
P (m)(s′, s) > 0. As in the proof of Theorem 2.4.19, we have

P (n+k+m)(s, s) ≥ P (n)(s, s′)P (k)(s′, s′)P (m)(s′, s)

and
P (n+2k+m)(s, s) ≥ P (n)(s, s′)P (k)(s′, s′)P (k)(s′, s′)P (m)(s′, s)

for all k ≥ 1. Now for any k such that P (k)(s′, s′) > 0, we have

P (n+k+m)(s, s) > 0 and P (n+2k+m)(s, s) > 0,

which implies that d(s)|(n + k + m) and d(s)|(n + 2k + m) and then d(s)|k. Since d(s′) is
the g.c.d. of all such k’s, we have d(s)|d(s′). Similarly, by changing the roles of s and s′, we
have d(s′)|d(s). We then conclude that d(s) = d(s′). 2
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From the above theorem, period is a class property and we can define the period of a
communication class to be the common period of states in the class.

Let s be a recurrent state in the state space S. Let the initial state of the Markov chain
be set to s with probability one, i.e., P(X0 = s) = 1. Consider the successive visiting times

T
(s)
1 , T

(s)
2 , . . . of state s. Since s is recurrent, we have f(s, s) = 1 and then P(N (s) = ∞|X0 =

s) = g(s, s) = 1 by Theorem 2.4.12. Thus we have

P(N (s) = ∞) = P(X0 = s)P(N (s) = ∞|X0 = s) = 1

and then P(T
(s)
m < +∞) = 1 for all m ≥ 1. By Lemma 2.4.11, we have

P
(

T
(s)
m+1 − T (s)

m = k|T (s)
1 = n1, T

(s)
2 = n2, . . . , T

(s)
m = nm

)

= fk(s, s)

for all m ≥ 0. This implies that the intervisit times T
(s)
n − T

(s)
n−1, n ≥ 1, of state s are

independent and identically distributed. Furthermore, the first return probabilities in k
steps {fk(s, s), k = 1, 2, . . .} form the distribution of the intervisit times T

(s)
n − T

(s)
n−1 and the

mean return time m(s, s) is the mean of the distribution.

A sequence {Tm, m = 0, 1, . . .} of finite random times, i.e., P(Tm < +∞) = 1 ∀ m, taking
values in the set of all finite non-negative integers with

T0 ≡ 0 and T0 < T1 < T2 < · · ·
is called an ordinary recurrent renewal process if the differences Tm−Tm−1 of successive times
are independent and identically distributed. Tm’s are called renewal times and Tm − Tm−1

are called interarrival times. Let {fk, k = 1, 2, . . .} be the distribution of interarrival times.
Let d be the greatest common divisor of all k such that fk > 0. Then the interarrival times
only take the multipliers of d as values. And d is called the period of the ordinary recurrent
renewal process. The mean m of the distribution of interarrival times is called the mean
return time of the renewal process. We next state a general theorem without a proof 2.

Theorem 2.4.41 [Blackwell’s Theorem] For an ordinary recurrent renewal process with
period d and mean return time m, we have

lim
k→∞

P (there is a renewal at time kd) =
d

m
.

2

As shown in above, the successive visiting times T
(s)
0 , T

(s)
1 , T

(s)
2 , . . . of a reccurent state s in

the Markov chain with initial state set to s, i.e., P(X0 = s) = 1, form an ordinary recurrent
renewal process with the first return probabilities in k steps {fk(s, s), k = 1, 2, . . .} as the

distribution of the intervisit times T
(s)
n −T

(s)
n−1 and the mean return time m(s, s) as the mean

of this distribution. To apply Blackwell’s Theorem, we will show that the period of this
ordinary recurrent renewal process is just the period d(s) of the state s. At first, we need
the following lemma.

2For a proof, please see W. Feller, An Introduction to Probability Theory and Its Applications, vol. 2, 2nd
edn. New York: Wiley, 1971, pp. 364–366.
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Lemma 2.4.42 For any s, s′ in the state space S,

P (n)(s, s′) =
n
∑

k=1

fk(s, s
′)P (n−k)(s′, s′)

for all n ≥ 1.

Proof. As an exercise. 2

Let d̃ be the period of the ordinary recurrent renewal process T
(s)
0 , T

(s)
1 , T

(s)
2 , . . .. Let n be a

positive integer such that fn(s, s) > 0. By Lemma 2.4.42, we have

P (n)(s, s) =

n
∑

k=1

fk(s, s)P
(n−k)(s, s) > fn(s, s) > 0

and then n is divisible by the period d(s) of the state s, which implies d(s)|d̃ and

P (nd(s))(s, s) =

n
∑

k=1

fkd(s)(s, s)P
((n−k)d(s))(s, s) (2.30)

again by Lemma 2.4.42. Suppose that d̃ = `d(s) for some ` > 1. We will show that
P ((k`+1)d(s))(s, s) = 0 for all k ≥ 0 by induction. When k = 0, we know that

P (d(s))(s, s) = fd(s)(s, s) = 0

by (2.30). Assume that P ((i`+1)d(s))(s, s) = 0 for all i = 0, 1, . . . , k− 1. Then again by (2.30),
we have

P ((k`+1)d(s))(s, s) =

k
∑

i=1

fi`d(s)(s, s)P
(((k−i)`+1)d(s))(s, s) = 0

by the induction step. Thus we have P ((k`+1)d(s))(s, s) = 0 for all k ≥ 0, which is a contra-
diction to Theorem 2.4.39 and then we must have d̃ = d(s).

Now for the ordinary recurrent renewal process T
(s)
0 , T

(s)
1 , T

(s)
2 , . . ., we have

P(there is a renewal at time kd(s)) = P
(

Xkd(s) = s
)

= P(Xkd(s) = s|X0 = s)

= P (kd(s))(s, s)

and by Blackwell’s Theorem, we have the following theorem.

Theorem 2.4.43 Let s be a recurrent state with period d(s). Then

lim
k→∞

P (kd(s))(s, s) =
d(s)

m(s, s)
.

2
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If s is periodic positive recurrent with period d > 1, then

lim inf
n

P (n)(s, s) = 0 and lim sup
n

P (n)(s, s) =
d

m(s, s)
> 0.

Thus the limit of the sequence {P (n)(s, s), n = 0, 1, . . .} does not exist. If s is periodic null
recurrent with period d > 1, then

lim inf
n

P (n)(s, s) = 0 and lim sup
n

P (n)(s, s) =
d

m(s, s)
= 0.

Thus the limit of the sequence {P (n)(s, s), n = 0, 1, . . .} exists and equals to 0. Finally, if s
is aperiodic recurrent, then

lim
n→∞

P (n)(s, s) =
1

m(s, s)
.

We now summarize the above discussion in the following corollary.

Corollary 2.4.44 Let s be a recurrent state. Then s is null recurrent if and only if
limn→∞ P (n)(s, s) = 0. 2

Theorem 2.4.45 If s is a null recurrent state and s communicates with s′, then s′ is also a
null recurrent state.

Proof. As in the proof of Theorem 2.4.19, we have

P (n+k+m)(s, s) ≥ P (n)(s, s′)P (k)(s′, s′)P (m)(s′, s)

where P (n)(s, s′) > 0 and P (m)(s′, s) > 0 for some n, m ≥ 1 and for all k ≥ 0. By taking
limsup as k → ∞ on both sides, we have

0 = lim sup
k→∞

P (n+k+m)(s, s) ≥ P (n)(s, s′)P (m)(s′, s) lim sup
k→∞

P (k)(s′, s′) ≥ 0

which implies limk→∞ P (k)(s′, s′) = 0 and then s′ is a null recurrent state by Theorem
2.4.19 and Corollary 2.4.44. 2

The above theorem says that null recurrency and positive recurrency are class properties.

Corollary 2.4.46 If s′ is a null recurrent state, then for any state s in the state space S,

lim
n→∞

P (n)(s, s′) = 0.
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Proof. From Lemma 2.4.42, we have

P (n)(s, s′) =

n
∑

k=1

fk(s, s
′)P (n−k)(s′, s′)

=
N
∑

k=1

fk(s, s
′)P (n−k)(s′, s′) +

n
∑

k=N+1

fk(s, s
′)P (n−k)(s′, s′)

≤
N
∑

k=1

fk(s, s
′)P (n−k)(s′, s′) +

n
∑

k=N+1

fk(s, s
′) since P (n−k)(s′, s′) ≤ 1

for any given N and for all n ≥ N . We take limit superior over n first and obtain

lim sup
n

P (n)(s, s′)

≤
N
∑

k=1

fk(s, s
′) lim sup

n
P (n−k)(s′, s′) + lim sup

n

n
∑

k=N+1

fk(s, s
′)

=
∞
∑

k=N+1

fk(s, s
′) by Corollary 2.4.44

for all N . By taking N → ∞, we have lim supn P (n)(s, s′) = 0 and then
limn→∞ P (n)(s, s′) = 0. 2

Theorem 2.4.47 If C is a null recurrent communication class, then C has infinitely many
states.

Proof. For any s ∈ C, we have

1 =
∑

s′∈S

P (n)(s, s′) =
∑

s′∈C

P (n)(s, s′)

for all n ≥ 1, since C is closed. Thus we have

lim
n→∞

∑

s′∈C

P (n)(s, s′) = 1.

Suppose that C is finite. Then

lim
n→∞

∑

s′∈C

P (n)(s, s′) =
∑

s′∈C

lim
n→∞

P (n)(s, s′) = 0

by Corollary 2.4.46, which is a contradiction. Thus C must be infinite. 2

In Corollary 2.4.46, we have shown that for a null recurrent state s′,

lim
n→∞

P (n)(s, s′) = 0 (2.31)



62 CHAPTER 2. DISCRETE-TIME MARKOV CHAINS

for any state s ∈ S. Furthermore, for a transient state s′, we have

lim
n→∞

P (n)(s, s′) = 0 (2.32)

for any state s ∈ S, since R(s, s′) =
∑∞

n=0 P (n)(s, s′) is finite by Theorem 2.4.13. The next
theorem gives similar results for positive recurrent states.

Theorem 2.4.48 For a periodic positive recurrent state s′ with period d(s′), we have

lim
n→∞

P (nd(s′)+i)(s, s′) =
f (i)(s, s′)d(s′)

m(s′, s′)

for any state s ∈ S and 0 ≤ i ≤ d(s′) − 1, where f (i)(s, s′) =
∑∞

k=0 fkd(s′)+i(s, s
′).

Proof. From Theorem 2.4.43, we have

lim
n→∞

P (nd(s′))(s′, s′) =
d(s′)

m(s′, s′)
.

And from Lemma 2.4.42, we have

P (nd(s′)+i)(s, s′) =

n
∑

k=1

fkd(s′)+i(s, s
′)P ((n−k)d(s′))(s′, s′) ≥

N
∑

k=1

fkd(s′)+i(s, s
′)P ((n−k)d(s′))(s′, s′)

for all n ≥ N ≥ 1. By fixing N and taking lim inf over all n ≥ N , we have

lim inf
n≥N

P (nd(s′)+i)(s, s′) ≥
N
∑

k=1

fkd(s′)+i(s, s
′) lim inf

n≥N
P ((n−k)d(s′))(s′, s′) =

d(s′)

m(s′, s′)

N
∑

k=1

fkd(s′)+i(s, s
′)

for all N ≥ 1. Since

lim inf
n

P (nd(s′)+i)(s, s′) = lim inf
n≥N

P (nd(s′)+i)(s, s′)

for any N ≥ 1, we have

lim inf
n

P (nd(s′)+i)(s, s′) ≥ f (i)(s, s′)d(s′)

m(s′, s′)

by taking N → ∞. On the other hand, as in the proof of Corollary 2.4.46, we have

lim sup
n

P (nd(s′)+i)(s, s′) ≤ f (i)(s, s′)d(s′)

m(s′, s′)
.

We now conclude that

lim
n→∞

P (nd(s′)+i)(s, s′) =
f (i)(s, s′)d(s′)

m(s′, s′)
.

2
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0 1

q

p p

q

Figure 2.8: The state transition diagram of Example 2.5.2.

2.5 Limiting Behavior

In this section, we will develop the limiting distribution of a homogeneous Markov chain.

Definition 2.5.1 A (homogeneous) Markov chain is said to have an invariant distribution
(or a stationary distribution) if there exists a probability vector π (a non-negative vector
with the sum of all its components to be 1) such that

π = πP.

Any such a probability vector π is called an invariant distribution of the Markov chain. 2

Example 2.5.2 Consider a Markov chain with state transition diagram as shown in Figure
2.8, whose one-step transition probability matrix is

P =

[

p q
q p

]

,

With π = [1/2, 1/2], we have

πP = [1/2 1/2]

[

p q
q p

]

= [1/2 1/2] = π

and then π = [1/2 1/2] is an invariant distribution of the Markov chain. 2
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Suppose that a Markov chain has an invariant distribution π. Let π be the initial dis-
tribution of the Markov chain, i.e. π0 = π. Then the distribution πn of states at time n
is

πn = π0P
n = (πP )P n−1 = πP n−1 = · · · = π (2.33)

for all n ≥ 0. Furthermore,

P (Xm = s0, Xm+1 = s1, . . . , Xm+n = sn)

= P (Xm = s0)P (Xm+1 = s1, . . . , Xm+n = sn|Xm = s0)

= P (X0 = s0)P (X1 = s1, . . . , Xn = sn|X0 = s0) by (2.33) and the homogeneity

= P (X0 = s0, X1 = s1, . . . , Xn = sn)

which says that the joint distribution of X0, X1, . . . , Xn is the same as the joint distribution
of Xm, Xm+1, . . . , Xm+n for any n, m ≥ 0.

Definition 2.5.3 A stochastic process {Xn, n = 0, 1, . . .} is said to be strictly station-
ary if the joint distribution of Xn1

, Xn2
, . . . , Xnk

is the same as the joint distribution of
Xm+n1

, Xm+n2
, . . . , Xm+nk

for all 0 ≤ n1 < n2 < . . . < nk, for all k and for all m. 2

It is now clear that a Markov chain with an invariant initial distribution is strictly stationary.
We next prove several convergence theorems which are needed for future purposes.

Theorem 2.5.4 [Fatou’s lemma] Let Y1, Y2, . . . be a sequence of non-negative r.v.’s. Then

E
(

lim inf
n

Yn

)

≤ lim inf
n

E (Yn) .

Proof. Let
Zk = inf

n≥k
Yn, ∀ k ≥ 1.

Then Zk ≤ Yk and E(Zk) ≤ E(Yk) for all k ≥ 1 by Lemma 1.4.4. Thus we have

lim inf
k

E(Zk) ≤ lim inf
k

E(Yk) (2.34)

by the eighth property listed after Definition 1.3.10. Since Z1, Z2, . . . is an increasing
sequence of r.v.’s and converges to lim infn Yn by Definition 1.3.10, we have

lim inf
k

E (Zk) = lim
k→∞

E (Zk) = E
(

lim
k→∞

Zk

)

= E
(

lim inf
k

Yk

)

(2.35)

by the Lebesgue’s monotone convergence theorem. Combining (2.34) and (2.35), the proof
is completed. 2

Theorem 2.5.5 [Lebesgue’s dominated convergence theorem] Let Y1, Y2, . . . be a sequence
of r.v.’s such that there exists a r.v. Y with

Y = lim
n→∞

Yn w.p.1.
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If there exists a non-negative r.v. Z with finite expectation such that

|Yn| ≤ Z w.p.1 ∀ n ≥ 1,

then the r.v. Y has finite expectation, limn→∞ E (|Yn − Y |) = 0 and

lim
n→∞

E (Yn) = E (Y ) = E
(

lim
n→∞

Yn

)

.

Proof. Since |Yn| ≤ Z w.p.1, we have E(|Yn|) ≤ E(Z) < ∞ by Lemma 1.4.4. Also since
|Yn| ≤ Z w.p.1, we have |Y | ≤ Z w.p.1 and then E(|Y |) < ∞, |Yn − Y | ≤ 2Z w.p.1 and
E(|Yn − Y |) < ∞. Now we have

E (2Z)

= E
(

lim inf
n

{2Z − |Yn − Y |}
)

≤ lim inf
n

E (2Z − |Yn − Y |) by applying Fatou’s lemma to

the sequence {2Z − |Yn − Y |, n = 1, 2 . . .} of r.v.’s

= E (2Z) + lim inf
n

{−E (|Yn − Y |)} by Theorem 1.4.11

= E (2Z) − lim sup
n

E (|Yn − Y |) ,

which implies that
lim sup

n
E (|Yn − Y |) ≤ 0.

Since |Yn − Y | ≥ 0 for all n, we have

lim inf
n

E (|Yn − Y |) ≥ 0

and then
lim

n→∞
E (|Yn − Y |) = 0.

Finally since
|E(Yn) − E(Y )| ≤ E(|Y − Yn|)

by the absolute-valued dominancy property of expectation in Theorem 1.5.8, we have

lim
n→∞

E(Yn) = E(Y ).

This completes the proof. 2

Theorem 2.5.6 [Bounded convergence theorem] Let Y1, Y2, . . . be a sequence of r.v.’s such
that there exists a r.v. Y with

Y = lim
n→∞

Yn w.p.1.

If there exists a constant M such that

|Yn| ≤ M w.p.1 ∀ n ≥ 1,

then the r.v. Y has finite expectation, limn→∞ E (|Yn − Y |) = 0 and

lim
n→∞

E (Yn) = E (Y ) = E
(

lim
n→∞

Yn

)

.
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Proof. Apply the dominated convergence theorem to the sequence Y1, Y2, . . . of r.v.’s with
Z = M a constant r.v. which has finite expectation clearly. 2

Corollary 2.5.7 Let S be a countable set. Let f1(s), f2(s), . . . be a sequence of real-valued
functions on S such that the limit f(s) = limn→∞ fn(s) exists for each s ∈ S. Let w(s) be
a non-negative function on S with

∑

s∈S w(s) < ∞. If there exists a constant M such that
|fn(s)| ≤ M for all n = 1, 2, . . . and all s ∈ S, then the sums

∑

s∈S w(s)f(s),
∑

s∈S w(s)fn(s),
n = 1, 2, . . ., exist and are finite such that

lim
n→∞

∑

s∈S

w(s)fn(s) =
∑

s∈S

w(s)f(s) =
∑

s∈S

w(s) lim
n→∞

fn(s).

Proof. We first construct a discrete probability space (Ω,F ,P) as follows. Let Ω = S and
F = 2S. Define a p.m. P by assigning the singleton {s} with probability

P ({s}) =
w(s)

∑

s′∈S w(s′)

for any s ∈ S. Then f and fn’s become r.v.’s on this probability space and

E(fn) =
1

∑

s′∈S w(s′)

∑

s∈S

w(s)fn(s), E(f) =
1

∑

s′∈S w(s′)

∑

s∈S

w(s)f(s).

By applying the bounded convergence theorem to the sequence f1, f2, . . . of r.v.’s with
Z = M , the proof is completed. 2

Theorem 2.5.8 For an irreducible aperiodic Markov chain, all states are positive recurrent
if and only if the Markov chain has an invariant distribution. Furthermore, if such an
invariant distribution π exists, then it is unique and

π(s) = lim
n→∞

P (n)(s′, s) =
1

m(s, s)
,

for any s′, s ∈ S.

Proof. We first assume that all states are positive recurrent. Then by Theorem 2.4.48, we
have

lim
n→∞

P (n)(s′, s) =
1

m(s, s)
> 0 (2.36)

for any s′, s ∈ S. For convenience, let γ(s) = 1/m(s, s), ∀ s ∈ S. Now by the
Chapman-Kolmogorov equation, we have

P (n+1)(s′, s) =
∑

s′′∈S

P (n)(s′, s′′)P (s′′, s)
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for s′, s ∈ S. By letting n → ∞, we have

γ(s) = lim
n→∞

P (n+1)(s′, s) = lim
n→∞

∑

s′′∈S

P (n)(s′, s′′)P (s′′, s). (2.37)

With fn(s′′) = P (n)(s′, s′′) and w(s′′) = P (s′′, s), we have limn→∞ fn(s′′) = γ(s′′) by (2.36),
∑

s′′∈S w(s′′) = 1 < ∞, and |fn(s′′)| < 2. By Corollary 2.5.7, (2.37) becomes

γ(s) = lim
n→∞

∑

s′′∈S

P (n)(s′, s′′)P (s′′, s) =
∑

s′′∈S

(

lim
n→∞

P (n)(s′, s′′)
)

P (s′′, s) =
∑

s′′∈S

γ(s′′)P (s′′, s)

and in matrix form, we have
γ = γP

where γ = (γ(s), s ∈ S). We next show that α =
∑

s∈S γ(s) is finite. Let A be a finite
subset of S. Then

1 =
∑

s∈S

P (n)(s′, s) ≥
∑

s∈A

P (n)(s′, s)

and by letting n → ∞ on both side, we have

1 ≥
∑

s∈A

γ(s).

Now by a given increasing sequence A1 ⊆ A2 ⊆ . . . of finite subsets of S with limi→∞ Ai =
∪∞

i=1Ai = S, we have
∑

s∈A1

γ(s) ≤
∑

s∈A2

γ(s) ≤ . . .

and then
1 ≥ lim

i→∞

∑

s∈Ai

γ(s) =
∑

s∈S

γ(s).

Now α is a positive number and then α−1γ becomes to a probability vector and satisfies
the matrix equation (α−1γ) = (α−1γ)P , which implies that α−1γ = (α−1γ(s)), s ∈ S, is an
invariant distribution of the Markov chain. Suppose that µ be another invariant
distribution of the Markov chain. Since

µ(s) =
∑

s′∈S

µ(s′)P (n)(s′, s)

for all n ≥ 1, we have

µ(s)

= lim
n→∞

∑

s′∈S

µ(s′)P (n)(s′, s)

=
∑

s′∈S

µ(s′) lim
n→∞

P (n)(s′, s) by Corollary 2.5.7

=
∑

s′∈S

µ(s′)γ(s)

= γ(s),
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which implies that α is equal to 1, γ is a probability vector, and there is one and only one
invariant distribution of the Markov chain, which is equal to γ. Conversely, we assume that
the Markov chain has an invariant distribution π. If all states are transient or null
recurrent, then we have

π(s)

=
∑

s′∈S

π(s′) lim
n→∞

P (n)(s′, s) again by Corollary 2.5.7

=
∑

s′∈S

π(s′)0 by (2.32) and (2.31)

= 0,

for any s ∈ S, which is a contradiction to the fact that π is a probability vector. Thus all
states are positive recurrent. This completes the proof. 2

To extend the above results to irreducible Markov chain with period d greater than 1, we
note that from Theorem 2.4.48, we have

lim
n→∞

1

d(s)

d(s)−1
∑

i=0

P (nd(s)+i)(s′, s) =
f(s′, s)

m(s, s)
(2.38)

for any s′ ∈ S and for any positive recurrent state s with period d(s). With (2.38), we have
the following extension of Theorem 2.5.8.

Theorem 2.5.9 For an irreducible Markov chain with period d, all states are positive re-
current if and only if the Markov chain has an invariant distribution. Furthermore, if such
an invariant distribution π exists, then it is unique and

π(s) = lim
n→∞

1

d

d−1
∑

i=0

P (nd+i)(s′, s) =
1

m(s, s)
,

for any s′, s ∈ S.

Proof. Left as an exercise. 2

Corollary 2.5.10 For an (aperiodic or periodic) irreducible Markov chain with finite state
space S, the system of homogeneous linear equations

π = πP, π ≥ 0,
∑

s∈S

π(s) = 1,

has a unique solution, which is the invariant distribution of the Markov chain.

Proof. Left as an exercise. 2
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We shall call an irreducible aperiodic positive recurrent Markov chain as an ergodic

Markov chain. It is important to note that for an ergodic Markov chain with one-step
transition probability matrix P and an arbitrarily given initial distribution π0, the limit of
the distribution πn = (πn(s), s ∈ S) at time n as n → ∞ is

lim
n→∞

πn(s) = lim
n→∞

∑

s′∈S

π0(s
′)P (n)(s′, s) =

∑

s′∈S

π0(s
′) lim

n→∞
P (n)(s′, s) =

∑

s′∈S

π0(s
′)

1

m(s, s)
=

1

m(s, s)

for all s ∈ S, which is independent of π0.

Definition 2.5.11 A Markov chain is said to have a long-run (or steady-state) distribution,
γ = (γ(s), s ∈ S), γ(s) ≥ 0,

∑

s∈S γ(s) = 1, if

γ(s) = lim
n→∞

πn(s), ∀ s ∈ S,

independent of the initial distribution π0. 2

Note that long-run distribution, if exists, must be unique.

Lemma 2.5.12 A Markov chain has a long-run distribution γ = (γ(s), s ∈ S) if and only if
γ(s) = limn→∞ P (n)(s′, s) for all s′, s ∈ S, i.e.

lim
n→∞

P (n) =











γ
γ
...
γ











.

Proof. We first assume that a long-run distribution γ exists. Fix a state s0 and let π0 be
an initial distribution with

π0(s) =

{

1, if s = s0,
0, otherwise.

Then
πn(s) = P (n)(s0, s)

and as n → ∞,
γ(s) = lim

n→∞
πn(s) = lim

n→∞
P (n)(s0, s),

independent of s0. Conversely, we assume that γ(s) = limn→∞ P (n)(s′, s) for all s′, s ∈ S.
Then we have

lim
n→∞

πn(s) = lim
n→∞

∑

s′∈S

π0(s
′)P (n)(s′, s) =

∑

s′∈S

π0(s
′) lim

n→∞
P (n)(s′, s) =

∑

s′∈S

π0(s
′)γ(s) = γ(s)

for all s ∈ S, which is independent of π0. This completes the proof. 2

It is now clear that an ergodic Markov chain has a long-run distribution.
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20

1
1

1

1

Figure 2.9: An irreducible Markov chain with periodic states.

Theorem 2.5.13 If a Markov chain has a long-run distribution γ = (γ(s), s ∈ S), then γ
is the only invariant distribution of the Markov chain.

Proof. Left as an exercise. 2

The following example shows that aperiodicity is required for a positive recurrent irre-
ducible Markov chain to have a long-run distribution.

Example 2.5.14 Consider a Markov chain with state space {0, 1, 2} and state-transition
diagram as shown in Figure 2.9. It can be seen that this Markov chain is irreducible, positive
recurrent and periodic with period 3. This Markov chain has an invariant distribution
(1/3, 1/3, 1/3). But for m ≥ 0, we have

P (3m+1) =





0 1 0
0 0 1
1 0 0



 , P (3m+2) =





0 0 1
1 0 0
0 1 0



 , P (3m) =





1 0 0
0 1 0
0 0 1



 ,

which implies that limn→∞ P (n) does not exist. And then this Markov chain has no long-run
distribution. 2

Corollary 2.5.15 For an aperiodic irreducible Markov chain with finite state space S, the
system of homogeneous linear equations

π = πP, π ≥ 0,
∑

s∈S

π(s) = 1,

has a unique solution, which is the long-run distribution of the Markov chain.

Proof. This is a direct consequence of Corollary 2.5.10. 2
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The following example demonstrates a typical limiting behavior of a Markov chain with
more than one positive recurrent classes.

Example 2.5.16 Consider a Markov chain with state space S = {1, 2, 3, 4} and one-step
transition probability matrix

P =









1 0 0 0
1/4 1/4 1/4 1/4
0 0 1/2 1/2
0 0 1/2 1/2









.

It can be easily found that

P (n) =









1 0 0 0
1/3(1 − 1/4n) 1/4n 1/3(1 − 1/4n) 1/3(1 − 1/4n)

0 0 1/2 1/2
0 0 1/2 1/2









, ∀ n ≥ 1.

Thus we have

lim
n→∞

P (n) =









1 0 0 0
1/3 0 1/3 1/3
0 0 1/2 1/2
0 0 1/2 1/2









,

which says that this Markov chain has no long-run distribution. On the other hand, this
Markov chain has two aperiodic positive recurrent classes C1 = {1} and C2 = {3, 4} which
have long-run distributions γ1 = (1) and γ2 = (1/2, 1/2) associated with the two restricted
irreducible positive recurrent aperiodic Markov chains with state spaces C1 and C2 respec-
tively. Now for any given α, 0 ≤ α ≤ 1, the probability vector

µ = α(1, 0, 0, 0) + (1 − α)(0, 0, 1/2, 1/2)

is an invariant distribution of the original Markov chain since

µ = µP.

Thus this Markov chain has uncountably many invariant distributions. 2
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Chapter 3

Second-order Processes

3.1 Hilbert Spaces

A complex inner product space H is a vector space over the complex numbers C together
with an additional binary operation in H, called an inner product, which associates each
ordered pair of vectors x and y in H with a complex number (x, y) such that the following
properties hold:

1. (x, x) ≥ 0 for all x ∈ H and (x, x) = 0 if and only if x = 0. (Non-negativity)

2. (y, x) = (x, y). (Hermitian symmetry)

3. (αx + βy, z) = α(x, z) + β(y, z) for all x, y, z in H and α, β in C. (Linearity)

Example 3.1.1 The vector space Cn of all n-tuples over C becomes a complex inner product
space if we define an inner product in Cn as follows:

(x, y) =
n
∑

i=1

ηiξi

where x = (η1, η2, . . . , ηn) and y = (ξ1, ξ2, . . . , ξn). 2

Example 3.1.2 The vector space C[0, 1] of all continuous complex functions on [0, 1] is a
complex inner product space if

(f, g) =

∫ 1

0

f(t)g(t)dt

is defined as an inner product of f and g in C[0, 1]. (Please verify it.) Contrast to Cn which
is a finite-dimensional complex vector space, the vector space C[0, 1] is infinite-dimensional.
Suppose that C[0, 1] has a basis {f1, f2, . . . , fn}, i.e., for each g ∈ C[0, 1], g is a linear

73
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combination of fi, i.e., g(t) =
∑n

i=1 αifi(t) for some complex numbers αi’s. Picking up
N > n distinct t such as t1, t2, ....., tN , we must have











g(t1)
g(t2)

...
g(tN)











=











f1(t1) · · · fn(t1)
f1(t2) · · · fn(t2)

...
. . .

...
f1(t1) · · · fn(t1)





















α1

α2
...

αn











,

where the N × n matrix will be denoted as A. Regarding A as a linear transformation from
Cn to CN , the vector [g(ti)] must be in the range Im(A) of A for each g ∈ C[0, 1]. Since
n < N , the dimension of Im(A) is less than N and there is a vector u ∈ CN such that u 6∈
Im(A). By Lagrange’s interpolation formula, we can construct a polynomial function p(t)
such that the vector [p(ti)] is equal to u = [νi] as

p(t) =

N
∑

i=1

νi

N
∏

j=1,j 6=i

t − tj
ti − tj

.

Since P (t) ∈ C[0, 1] and [p(ti)] 6∈ Im(A), we have a contradiction. 2

Two vectors x, y in a complex inner product space H is called orthogonal to each other,
denoted as x ⊥ y, if their inner product is zero. Let M be a vector subspace of H. The
orthogonal complement M⊥ of M is the set of all vectors x in H such that x is orthogonal
to every vector y in M . It is clear that M⊥ is also a vector subspace of H.

Since (x, x) is non-negative, we define the norm ||x|| of a vector x to be the square root
of (x, x), i.e. ||x||2 = (x, x). The application of the following lemma is far-reaching.

Lemma 3.1.3 [Schwarz Inequality] For x, y in a complex inner product space H,

|(x, y)| ≤ ||x|| ||y||.

Proof. If y = 0, the inequality is trivially true. Noe suppose y 6= 0. Since (x, y) is in
general a comlex number, we find a complex number α with |α| = 1 such that
ᾱ(x, y) = |(x, y)|. Since α(y, x) = ᾱ(x, y), we have α(y, x) = |(x, y)|. Now for each real r,
we have

0 ≤ (x − rαy, x − rαy) = ||x||2 − r(ᾱ(x, y) + α(y, x)) + r2||y||2 = ||x||2 − 2|(x, y)|r + ||y||2r2

=

(

||x||2 − |(x, y)|2
||y||2

)

+

(

||y||r − |(x, y)|
||y||

)2

which implies that

0 ≤ ||x||2 − |(x, y)|2
||y||2 , i.e., |(x, y)|2 ≤ ||x||2 ||y||2.

This completes the proof. 2
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Example 3.1.4 Let A be any set, countable or uncountable. Let `2(A) be the complex
vector space of all complex-valued functions on A such that φ(ι) = 0 for all but countably
many ι in A and

∑

ι∈A |φ(ι)|2 < ∞ 1 . The space `2(A) becomes to a complex inner product
space when defining an inner product of φ and ρ as

(φ, ρ) =
∑

ι∈A

φ(ι)ρ(ι).

It can be shown that the inner product is well-defined, i.e. |∑ι∈A φ(ι)ρ(ι)| < ∞. 2

Lemma 3.1.5 [Triangle Inequality] For x, y in a complex inner product space H,

||x + y|| ≤ ||x|| + ||y||.

Proof. As an exercise. 2

The norm || · || in a complex inner product space H has the following metric properties:

1. ||x − y|| ≥ 0 and ||x − y|| = 0 if and only if x = y. (Non-negativity)

2. ||x − y|| = ||y − x||. (Symmetry)

3. ||x − y|| ≤ ||x − z|| + ||z − y||. (Triangle Inequality)

Thus we may regard the quantity ||x − y|| (sometimes denoted as d(x, y)) as a distance
measure between two vectors x and y in H.

A sequence of vectors xn, n = 1, 2 . . . , in a complex inner product space H is said to
converge in H if there exists a vector x in H such that ||xn − x|| → 0 as n → ∞, i.e., for
all ε > 0, there exists a positive integer N(ε), which depends on ε, such that ||xn − x|| < ε
for all n ≥ N(ε). It can be shown that x is unique. We call x as the limit of the convergent
sequence {xn}.

A sequence {xn} in H is called a Cauchy sequence if ||xm − xn|| → 0 as m, n → ∞,
i.e, for every ε > 0, there exists a positive integer N(ε) such that ||xm − xn|| < ε for all
n, m ≥ N(ε). It is clear that every convergent sequence in H is a Cauchy sequence. A
complex inner product space H is called complete if every Cauchy sequence in H converges
in H. A complete complex inner product space is called a Hilbert space. The space Cn in
Example 3.1.1 is a Hilbert space, while the space C[0, 1] in Example 3.1.2 is not. Consider
the sequence of continuous functions on [0, 1]

fn(t) =







1 − 2nt, t ∈ [0, 1/2n]
0, t ∈ [1/2n, 1 − 1/2n]
2nt − (2n − 1), t ∈ [1 − 1/2n, 1]

1Since φ(ι) 6= 0 only for ι in a countable subset A0 of A, the sum
∑

ι∈A |φ(ι)|2 is (defined to be) the
countable sum

∑

ι∈A0
|φ(ι)|2. The evaluation of such a countable sum of non-negative numbers is independent

of the way of enumerating the countable set A0, i.e. independent of the arrangement of elements in A0 as a
list ι1, ι2, . . .. Please see W. Rudin, Principles of Mathematical Analysis , 3rd edn. New York: McGraw-Hill,
1976, page 78.
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for n = 1, 2, . . .. It can be seen that fn is a Cauchy sequence in C[0, 1] but cannot converges
in C[0, 1] since fn would converges to the function f with f(0) = f(1) = 1 and f(t) = 0 for
0 < t < 1 and f is obviously not a continuous function on [0, 1].

Example 3.1.6 In this example, we will show that C is a Hilbert space. Suppose that
{cn} is a Cauchy sequence in C. It is clear that {cn} is a bounded sequence, i.e., there
exists a positive number s such that |cn| < s for all n. Let cn = an + ibn where an and
bn are real and imaginary parts of cn respectively. Thus both real sequences {an} and
{bn} are bounded and then lim supn an = infn{supm≥n am}, lim infn an = supn{infm≥n am},
lim supn bn = infn{supm≥n bm}, and lim infn bn = supn{infm≥n bm} are all finite. Given an
ε > 0, there are ai and aj such that (a) |ai − aj| < ε/3, (b) lim supn an − ε/3 < ai <
lim supn an + ε/3, (c) lim infn an − ε/3 < aj < lim infn an + ε/3, where (a) is due to the
facts that |ai − aj| ≤ |ci − cj| and that {cn} is a Cauchy sequence, (b) and (c) are from the
properties of limsup and liminf. Now by triangle inequality, we have

| lim sup
n

an − lim inf
n

an| ≤ | lim sup
n

an − ai| + |ai − aj| + |aj − lim inf
n

an| < ε.

By letting ε → 0, we have lim supn an = lim infn an and then limn→∞ an exists. Similarly
limn→∞ bn exists. It is then clear that the sequence {cn} converges to limn→∞ an+i limn→∞ bn.
2

Hereafter, H will be refered as a Hilbert space. Let S be a subset of H. We define the
closure S̄ of S as the subset of H which consists of the limits of all Cauchy sequences in S.
It is clear that S̄ contains S. And S is called closed in H if S = S̄.

Lemma 3.1.7 For a vector subspace M of H, its closure M̄ is also a vector subspace of H.

Proof. Let x, y be in M̄ . Then there are sequences {xn} and {yn} in M which converge to
x and y respectively. Since M is a vector subspace of H, αxn + βyn is in M for α, β ∈ C.
The sequence {αxn +βyn} converges to αx+βy since It is clear that {αxn +βyn} is in M 2

Theorem 3.1.8 For a vector subspace M of H, we have ¯̄M = M̄ , i.e., M̄ is a complete
complex inner product space.

Proof. As an exercise. 2

The above theorem shows that the closure of a vector subspace of H is closed and a closed
subspace of H is a Hilbert space itself. In particular, every finite-dimensional vector subspace
of H is closed.

Let H and K be two Hilbert spaces. A mapping f from H to K is said to be continuous
at x ∈ H if for every ε > 0, there is a δ > 0 such that ||f(y) − f(x)||K < ε whenever
||y − x||H < δ.
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Proposition 3.1.9 A mapping f from H to K is continuous at x ∈ H if and only if for
every sequence {xn} which converges to x in H, the sequence {f(xn)} converges to f(x) in
K.

Proof. As an exercise. 2

The mapping f is called continuous over H if f is continuous at every x ∈ H. And f is
called uniformly continuous over H if the selection of δ is independent of x ∈ H in the ε-δ
definition of continuity.

Lemma 3.1.10 For any fix z ∈ H, the mappings

x 7→ (x, z) and x 7→ (z, x)

from H to C are uniformly continuous over H.

Proof. By the linearity of inner product and the Schwarz Inequality, we have

|(y, z)− (x, z)| = |(y − x, z)| ≤ ||y − x|| ||z|| and|(z, y)− (z, x)| = |(z, y − x)| ≤ ||y − x|| ||z||

for all x, y ∈ H. It is clear that we can select δ = ε/||z|| which is indepedent of x ∈ H. 2

Let S be a subset of H. The orthogonal complement S⊥ of S in H is the set of all vectors
x in H such that (x, y) = 0 for all y ∈ S. It is easy to show that S⊥ is a vector subspace of
H. The following corollary is an application of the continuity of inner product.

Corollary 3.1.11 The orthogonal complement M⊥ of a vector subspace M in H is closed.

Proof. Let {xn} be a Cauchy sequence in M⊥. Since {xn} is also a Cauchy sequence in H,
the sequence has a limit x in H. We will show that x ∈ M⊥. Fix a y in M . Since {xn}
converges to x, we have {(xn, y)} converges to (x, y) by the continuity of inner product.
But (xn, y) = 0 since xn ∈ M⊥ and y ∈ M , we have (x, y) = limn 0 = 0. This completes the
proof. 2

Let S be a subset of H. We next investigate the existence and uniqueness of a unique x
in S such that ||x|| = min{||y|| | y ∈ S}. We will show that closedness and convexity of S
are sufficient conditions for such an x in S. S is called convex if for x, y ∈ S, tx + (1 − t)y
is in S for 0 ≤ t ≤ 1. We need the following simple lemma.

Lemma 3.1.12 [Parallelogram Law] For x, y in a complex inner product space, we have

||x + y||2 + ||x − y||2 = 2||x||2 + 2||y||2.

Proof. As an exercise. 2
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Theorem 3.1.13 For a non-empty, closed and convex subset S of H, there is a unique
vector of the smallest norm in S.

Proof. Let
η = inf{||y|| | y ∈ S}

which must be finite since S is non-empty. Then there exists a sequence {yn} in S such
that ||yn|| converges to η as n → ∞. From the parallelogram law, we have

||yn − ym||2 = 2||yn||2 + 2||ym||2 − 4||yn + ym

2
||2 ≤ 2||yn||2 + 2||ym||2 − 4η2

since (yn + ym)/2 is in S by the convexity of S. When n, m go to infinity, we have
||yn||, ||ym|| go to η and then ||yn − ym|| goes to zero. Thus {yn} is a Cauchy sequence in S
and converges to an x in S by the closedness of S. Thus ||x|| ≥ η. But
||x|| ≤ ||x − yn||+ ||yn|| and by letting n → ∞, we have ||x|| ≤ η. This proves the existence
of an x in S with ||x|| = η. To prove the uniqueness of x, we suppose that there exists x′ in
S such that ||x′|| = η. Then again by the parallelogram law, we have

||x − x′||2 = 2||x||2 + 2||x′||2 − 4||x + x′

2
||2 ≤ 2η2 + 2η2 − 4η2 = 0

which says that x = x′. 2

We are now able to state a key theorem of orthogonal projection.

Theorem 3.1.14 Let M be a closed vector subspace of H. Then for each x in H, there
exists a unique decomposition

x = y + z

where y ∈ M and z ∈ M⊥. And the above y and z have the following properties:

1. ||x − y|| = min{||x − u|| | u ∈ M}, i.e., y is the nearest vectors in M to x.

2. ||x − z|| = min{||x − v|| | v ∈ M⊥}, i.e., z is the nearest vectors in M⊥ to x.

3. [Pythogorean Identity] ||x||2 = ||y||2 + ||z||2.

Proof. Consider the subset S = {x − u|u ∈ M} of H. Since the zero vector 0 is in M , S is
a non-empty set. For u, u′ ∈ M and t ∈ [0, 1], (1 − t)u + tu′ is in M since M is a vector
space. Then

(1 − t)(x − u) + t(x − u′) = x − ((1 − t)u + tu′)

is in S which implies that S is convex. If {x − un} is a Cauchy sequence in S, then {un} is
a Cauchy sequence in M since ||(x − um) − (x − un)|| = ||un − um||. Since M is closed, the
sequence {un} converges to a limit u in M and then the sequence {x − un} converges to a
limit x − u in S. Thus S is closed. By Theorem 3.1.13, S has a unique element x − y,
y ∈ M , with

||x − y|| = min{||x − u|| | u ∈ M}.
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Let z = x − y. We will show that z ∈ M⊥, i.e., (z, u) = 0 for all u ∈ M . If u = 0, then it is
clear that (z, u) = 0. For each u 6= 0 in M and α in C, z − α u

||u|| is in S and then

||z||2 ≤ ||z − α u
||u||||2 which implies that

0 ≤ −α(z,
u

||u||) − α(z,
u

||u||) + |α|2.

By taking α = (z, u
||u||), we have 0 ≤ −|(z, u

||u||)|2, i.e., (z, u) = 0. Now for each v ∈ M⊥, we
have

||x − v||2 = ||(x − z) + (z − v)||2 = ||x − z||2 + ||z − v||2

since x − z = y ∈ M and z − v ∈ M⊥. Thus we have ||x − z|| ≤ ||x − v|| for all v ∈ M⊥,
where the equality holds if and only if v = z. Thus we conclude that

||x − z|| = min{||x − v|| | v ∈ M⊥}.
If there exist y′ ∈ M and z′ ∈ M⊥ such that x = y′ + z′, then we have y − y′ = z′ − z which
is in M ∩ M⊥ = {0}, i.e., y′ = y and z′ = z. This proves the uniqueness of the
decomposition x = y + z. The Pythogorean identity follows since y ⊥ z. 2

As in the above theorem, we let y = PM(x) and z = PM⊥(x). The mappings PM and PM⊥

are called the projections of H onto M and M⊥ respectively. And y and z are called the
projections of x in M and in M⊥ respectively.

Corollary 3.1.15 The mappings PM and PM⊥ are linear transformations from H onto M
and M⊥ respectively.

Proof. For x, y in H and α, β in C, we have

PM(αx + βy) + PM⊥(αx + βy) = αx + βy = α (PM(x) + PM⊥(x)) + β (PM(y) + PM⊥(y)) .

Thus we have

PM(αx + βy)− αPM(x) − βPM(y) = αPM⊥(x) + βPM⊥(y) − PM⊥(αx + βy),

where the left-hand side is in M and the right-hand side in M⊥. Since M ∩ M⊥ = {0}, we
have

PM(αx + βy) = αPM(x) + βPM(y) and PM⊥(αx + βy) = αPM⊥(x) + βPM⊥(y),

which completes the proof. 2

A subset {uκ|κ ∈ A} of vectors in a Hilbert space H with index set A is called orthonormal
if (uκ, uι)) = 0 for all κ 6= ι and ||uκ|| = 1 for all κ. Given an orthonormal set {uκ|κ ∈ A} in
H, each x ∈ H is associated with a function x̂ on the index set A, defined as

x̂(κ) = (x, uκ), ∀ κ ∈ A.

The complex numbers x̂(κ) are called Fourier coefficients of x relative to the orthonormal
set {uκ|κ ∈ A}. It is clear that the orthonormal set {uκ|κ ∈ A} is a linearly independent set
in H. Let MA be the subspace of H spanned by the set {uκ|κ ∈ A}. We first consider the
case that the index set A is finite.
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Lemma 3.1.16 Let {uκ|κ ∈ A} be a finite orthonormal set in a Hilbert space H.

1. For each x ∈ H, the projection PMA
(x) of x in the subspace MA is PMA

(x) =
∑

κ∈A x̂(κ)uκ.

2. [Bessel Inequality] For each x ∈ H, we have
∑

κ∈A

|x̂(κ)|2 ≤ ||x||2.

3. The mapping f : x 7→ x̂ from H to `2(A) is linear and onto. And the restriction of f
to MA is one-to-one. Furthermore, for x, y ∈ MA, we have (x, y) = (x̂, ŷ).

Proof. As an exercise. 2

A linear, one-to-one and onto mapping f from a Hilbert space H to a Hilbert space K which
also preserves inner product, i.e., (x, y) = (f(x), f(y)) for all x, y ∈ H, is called a Hilbert
space isomorphism. And the two Hilbert space H and K are called equivalent. The above
lemma asserts that the mapping f : x 7→ x̂ from MA to `2(A) is a Hilbert space isomorphism
if A is a finite set. We will extend these results to a general A.

A subset S of a Hilbert space H is called dense in H if H = S̄, i.e., H is the closure of S.

Example 3.1.17 Let F be a subset of `2(A) which consists of all functions φ on A such that
φ(κ) 6= 0 only for a finitely many κ ∈ A. We now show that F is a dense set of `2(A). This
is equivalent to show that each φ in `2(A) but not in F is the limit of a Cauchy sequence in
F . Such a φ takes non-zero values only in a countably infinite subset {κ1, κ2, . . .} of A. For
each positive integer n, we define φn to be the function on A such that φn(κi) = φ(κi) for
1 ≤ i ≤ n and φn(κ) = 0 otherwise. It is clear that φn is in F for each n. And we have

||φn − φ||2 =
∞
∑

i=n+1

|φ(κi)|2

which converges to zero as n → ∞ since
∑∞

i=1 |φ(κi)|2 = ||φ||2 is finite. This concludes that
φ is the limit of the Cauchy sequence {φn} in F . 2

A mapping f from a subset S of a Hilbert space H to a Hilbert space K is called an
isometry if ||f(x)−f(y)||K = ||x−y||H for all x, y ∈ S, i.e., an isometry preserves the distance
between vectors. It is clear that an isometry is one-to-one and uniformly continuous. If f is
a linear transformation from a vector subspace S of a Hilbert space H to a Hilbert space K
and preserves the norm, i.e., ||x||H = ||f(x)||K for all x ∈ S, then f is an isometry from S
to K since ||x− y||H = ||f(x− y)||K = ||f(x)− f(y)||K. Conversely, if f is a linear isometry
from S to K, then f preserves the norm since f(0) = 0 and

||x||H = ||x − 0||H = ||f(x) − f(0)||K = ||f(x) − 0||K = ||f(x)||K.

The following extension theorem is useful.
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Theorem 3.1.18 Let S be a dense subset of a Hilbert spaces H. Let f be an isometry from
S to a Hilbert space K with the range f(S) of S a dense set of K. Then there is a unique
isometry g from H onto K such that f = g|S, the restriction of g on S. If S is a vector
subspace of H and f is linear, then g is also linear.

Proof. For an x in H, there exists a Cauchy sequence {xn} in S which converges to x,
since S is dense in H. Since f is an isometry and preserves the distance between vectors,
{f(xn)} is a Cauchy sequence in K and then converges to a z in K. This z is independent
of the choice of {xn}. For if {x′

n} is another Cauchy sequence in S which converges to x,
then the combined sequence

x1, x
′
1, x2, x

′
2, . . .

converges to x and then is a Cauchy sequence in S. This implies that the sequence

f(x1), f(x′
1), f(x2), f(x′

2), . . .

is a Cauchy sequence in K and this sequence and all its subsequences converge to the same
limit in K. In particular, subsequences {f(xn)} and {f(x′

n)} converge to the same limit
which must be z. We now define g(x) = z and g is a well-defined function from H to K.
And for an x ∈ S, the sequence {xn} in S with xn = x converges to x and then g(x) =
limn f(xn) = limn f(x) = f(x). Thus we have f = g|S, the restriction of g on S. We next
show that g is an isometry. Consider x, y in H and two Cauchy sequences {xn} and {yn} in
S which converge to x and y respectively. By the definition of g, {f(xn)} and {f(yn)}
converge to g(x) and g(y) in K respectively. Then the sequence {xn − yn} converges to
x − y and the sequence {f(xn) − f(yn)} converges to g(x) − g(y). By the continuity of the
norm || · || (as an exercise), we have

||xn − yn||H → ||x − y||H and ||f(xn) − f(yn)||K → ||g(x) − g(y)||K
as n → ∞. But ||f(xn) − f(yn)||K = ||xn − yn||H, we have ||g(x) − g(y)||K = ||x − y||H.
Thus g is an isometry from H to K. Suppose that there is another isometry g ′ from H to
K such that f = g′|S. For an x ∈ H and a Cauchy sequence {xn} in S which converges to
x, we have

g(xn) → g(x), g′(xn) → g′(x) as n → ∞
by the continuity of g and g′ on H. Since g(xn) = f(xn) = g′(xn), we have g(x) = g′(x).
This shows the uniquness of g. To show that g is onto, we consider an arbitrary z ∈ K.
Since f(S) is dense in K, there is a Cauchy sequence {zn} in f(S) which converges to z.
For each n, there exists an xn in S such that zn = f(xn). Since f is an isometry on S, the
sequence {xn} is also a Cauchy sequence and converges to a limit, says x, in H. By the
definition of g, we have g(x) = limn f(xn) = limn zn = z and g is onto. Assume that S is a
subspace of H and f is linear on S. Consider x, y ∈ H, α, β ∈ C and two Cauchy sequences
{xn} and {yn} in S which converge to x and y respectively. Then {αxn + βyn} in S
converges to αx + βy and then

g(αx + βy) = lim
n

f(αxn + βyn) = α lim
n

f(xn) + β lim
n

f(yn) = αg(x) + βg(y),

which shows that g is linear. 2
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Corollary 3.1.19 Let f be a continuous mapping from a Hilbert space H to a Hilbert space
K. Let S be a dense subset of H. If

1. f is an isometry when restricted to S, i.e., ||f(x)−f(y)||K = ||x−y||H for all x, y ∈ S,

2. f(S) is a dense subset of K,

then f is an isometry from H onto K.

Proof. Since the restriction f |S of f to S is an isometry from S to K and f(S) is a dense
set of K, there is a unique isometry g from H onto K such that g|S = f |S by Theorem
3.1.18. The proof will be completed if f(x) = g(x) for all x ∈ H. Let x be in H. Then
there exists a Cauchy sequence {xn} in S which converges to x. By continuity of f and g,
we have f(xn) → f(x) and g(xn) → g(x) as n → ∞. Since f(xn) = g(xn) for all n, we must
have f(x) = g(x). 2

The following lemma will be needed which expresses the inner product in terms of norms.

Lemma 3.1.20 [Polarization Identity] For x, y in a complex inner product space, we have

4(x, y) = ||x + y||2 − ||x − y||2 + i||x + iy||2 − i||x − iy||2.

Proof. As an exercise. 2

Here is an application of the polarization identity.

Corollary 3.1.21 A mapping g is a linear isometry from a Hilbert space H onto a Hilbert
space K if and only if g is a Hilbert space isomorphism from H to K.

Proof. As an exercise. 2

Theorem 3.1.22 Let {uκ|κ ∈ A} be an orthonormal set in a Hilbert space H. Then

1. x̂ is in `2(A) for all x in H,

2. [Bessel Inequality]
(

||x̂||2`2(A) =
)

∑

κ∈A |x̂(κ)|2 ≤ ||x||2H for all x in H,

3. the mapping f : x 7→ x̂ is a Hilbert space isomorphism from the closure MA of MA to
`2(A).

Proof. We first show that x̂ is in `2(A) for each x in H. For an ε > 0, let Aε be the subset
of κ in the index set A such that |x̂(κ)| > ε. We claim that Aε is a finite set. If not, there
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exists a countably infinite subset {κ1, κ2, . . .} of Aε. By the Bessel inequality in Lemma
3.1.16, we have

n
∑

i=1

|x̂(κi)|2 ≤ ||x||2

for all n. Since
∑n

i=1 |x̂(κi)|2 > nε2, the sum
∑n

i=1 |x̂(κi)|2 is greater than ||x||2 for
sufficient large n, a contradiction. Now, let A0 be the subset of κ in A such that |x̂(κ)| > 0.
It is clear that A0 is the union ∪∞

m=1A1/m of the sets A1/m, m = 1, 2, . . .. Since each A1/m is
finite, the set A0 is a countable set, says {ι1, ι2, . . .}. Again by the Bessel inequality in
Lemma 3.1.16, we have

k
∑

i=1

|x̂(ιi)|2 ≤ ||x||2

for all k. By letting k → ∞, we have

∑

κ∈A

|x̂(κ)|2 =
∞
∑

i=1

|x̂(ιi)|2 ≤ ||x||2.

We conclude that x̂ is in `2(A) and ||x̂||2`2(A) ≤ ||x||2H. Let f be the mapping x 7→ x̂ from H

to `2(A). Since

̂(αx + βy)(κ) = (αx + βy, uκ) = α(x, uκ) + β(y, uκ) = αx̂(κ) + βŷ(κ),

we have f(αx + βy) = αf(x) + βf(y) and f is a linear transformation from H to `2(A).
Also since

||x̂ − ŷ||2`2(A) = ||x̂ − y||2`2(A) ≤ ||x − y||H,

the mapping f : x 7→ x̂ is continuous from H to `2(A). In particular, f is a continuous
linear transformation from the closure MA of MA to `2(A). Note that MA is dense in its
closure MA. An x in MA is a linear combination

∑n
i=1 αiuκi

of finitely many uκi
in the

orthonormal set, where αi are complex numbers. Thus x̂(κ) = αi if κ = κi, i = 1, 2, . . . , n
and x̂(κ) = 0, otherwise. This says that x̂ is in the dense subset F of `2(A) in Example
3.1.17 for all x ∈ MA. Conversely, for a φ in F with φ(κ) 6= 0 only for κ = κi, i = 1, 2, . . . , n
for some n, the element x =

∑n
i=1 φ(κi)uκi

is in MA and has x̂ = φ. Thus f(MA) is equal to
F and is dense in `2(A). Furthermore for each x ∈ MA, we have

||x||2H =
n
∑

i=1

|αi|2 =
n
∑

i=1

|x̂(κi)|2 = ||x̂||`2(A),

which implies that

||x̂ − ŷ||`2(A) = ||x̂ − y||`2(A) = ||x − y||H
for x, y ∈ MA, i.e., f is an isometry when restricted to MA. By Corollary 3.1.19, f is an
isometry from MA onto `2(A). By Corollary 3.1.21, f is a Hilbert space isomorphism from
MA to `2(A). 2
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An orthonormal set in a Hilbert space H is called maximal if there is no other orthonormal
set in H which contains this set properly. We will state the following fundamental theorem
without giving any proof 2.

Theorem 3.1.23 Every orthonormal set in a Hilbert space H is contained in a maximal
orthonormal set in H.

The importance of a maximal orthonormal set in a Hilbert space can be seen from the
following theorem.

Theorem 3.1.24 Let {uκ|κ ∈ A} be an orthonormal set in a Hilbert space H. The following
statements are equivalent:

1. {uκ|κ ∈ A} is a maximal orthonormal set in H.

2. MA is a dense set in H.

3. The mapping f : x 7→ x̂ is a Hilbert space isomorphism from H to `2(A).

Proof. (“1⇒2”) If MA is not dense in H, then there exists an x in H but not in MA.

Consider the decomposition x = y + z of x with y ∈ MA and z ∈ MA
⊥

as promised in
Theorem 3.1.14. Then we have z 6= 0 and (z, uκ) = 0 for all κ ∈ A. Thus we can extend the
orthonormal set {uκ|κ ∈ A} by adding z/||z|| to it, which is a contradiction to the
maximality of the orthonormal set {uκ|κ ∈ A}. (“2⇒3”) This is just a consequence of
Theorem 3.1.22. (“3⇒1”) Suppose that {uκ|κ ∈ A} is not a maximal orthonormal set in
H. Then there is a non-zero x in H such that (x, uκ) = 0 for all κ ∈ A, i.e. x̂ is the zero
vector in `2(A). But

0 < ||x||H = ||x̂||`2(A) = ||0||`2(A) = 0,

which is a contradiction, where the first equality is due to the fact that f : x 7→ x̂ is a
Hilbert space isomorphism. 2

Let {uκ|κ ∈ A} be a maximal orthonormal set in a Hilbert space H. For an x in H,
the function x̂ in `2(A) takes non-zero values only over a countably infinite subset A0 of A.
With a specific enumeration κ1, κ2, . . . of A0, we define φn in `2(A) to be

φn(κ) =

{

x̂(κi), if κ = κi, 1 ≤ i ≤ n,
0, otherwise,

for each n = 1, 2, . . .. It is clear that the sequence {φn} converges to x̂ in `2(A). Since
∑n

i=1 x̂(κi)uκi
corresponds to φn under the Hilbert space isomorphism f : x 7→ x̂, we have

∑n
i=1 x̂(κi)uκi

→ x as n → ∞. If we rearrange the enumeration list κ1, κ2, . . . of A0 to obtain
another enumeration list ι1, ι2, . . . of A0, we also have

∑n
i=1 x̂(ιi)uιi → x as n → ∞. Thus we

2For a proof, please see W. Rudin, Real and Complex Analysis , 3rd edn. New York: McGraw-Hill, 1987,
page 87.
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can denote x as the countable sum
∑

κ∈A0
x̂(κ)uκ to illustrate that the evaluation of this sum

is independent of the enumeration of the countable set A0. Since x̂(κ) = 0 for all κ 6∈ A0,
we finally represent x as

x =
∑

κ∈A

x̂(κ)uκ. (3.1)

3.2 The Space L2(Ω,F ,P)

Consider a probability space (Ω,F ,P) with sample space Ω, σ-algebra F , and probability
measure P. Let L̃2(Ω,F ,P) be the set of all complex-valued random variables X on the
probability space (Ω,F ,P) with second moments, i.e., E(|X|2) < ∞.

Lemma 3.2.1 [Schartz Inequality for Random Variables] If X, Y are in L̃2(Ω,F ,P), then

E(|XY |) ≤ E(|X|2)1/2E(|Y |2)1/2.

Proof. Let A = E(|X|2)1/2 and B = E(|Y |2)1/2. Since the geometric average of two
non-negative numbers is no more than their arithmetic average, we have

√

|X(ω)|2
A2

|Y (ω)|2
B2

≤
|X(ω)|2

A2 + |Y (ω)|2
B2

2

for all ω ∈ Ω. By taking expectation, we have

E(|XY |)
AB

≤
E(|X|2)

A2 + E(|Y |2
B2

2
= 1,

which completes the proof. 2

Let X, Y be in L̃2(Ω,F ,P). By triangle inequality for complex numbers, we have |X(ω)+
Y (ω)|2 ≤ (|X(ω)| + |Y (ω)|)2 for all ω ∈ Ω, and then

E(|X + Y |2) ≤ E(|X|2) + 2E(|XY |) + E(|Y |2) < ∞

by Lemma 3.2.1. And for a complex number α, we have

E(|αX|2) = |α|2E(|X|2) < ∞.

Thus L̃2(Ω,F ,P) is a vector space over C. We define

(X, Y ) = E(XY )
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which satisfies the three properties of an inner product except that (X, X) = E(|X|2) = 0
may not imply that X = 0. Consider such an X with E(|X|2) = 0. Since for each ε > 0,

0 =

∫

Ω

|X(ω)|2P(dω) ≥
∫

(|X|≥ε)

|X(ω)|2P(dω) ≥ ε2

∫

(|X|≥ε)

P(dω) = ε2P((|X| ≥ ε)),

we have P(|X| ≥ ε) = 0. Since the event (X 6= 0) is the union ∪∞
m=1(|X| ≥ 1/m) of the

events (|X| ≥ 1/m), we have

P(X 6= 0) ≤
∞
∑

m=1

P(|X| ≥ 1/m) =
∞
∑

m=1

0 = 0

which says that X is equal to 0 with probability one (abbreviated as w.p.1). Conversely, if
a r.v. X is equal to 0 w.p.1, then we have E(|X|2) = 0. Thus, the ambiguity between a r.v.
X with (X, X) = 0 and the zero random variable 0 is that X is equal to 0 w.p.1. Two r.v.s
X and Y are said to be equivalent, denoted as X ≡ Y , if X = Y w.p.1, i.e., X − Y = 0
w.p.1. It is clear that (a) X ≡ X (b) X ≡ Y ⇒ Y ≡ X (c) X ≡ Y and Y ≡ Z ⇒ X ≡ Z.
Thus ≡ is an equivalent relation among random variables and partitions the vector space
L̃2(Ω,F ,P) into equivalent classes. We will denote [X] as the equivalent class which the
r.v. X belongs to. And we call X as a representative of the class [X]. Let L2(Ω,F ,P) be
the set of all equivalent classes in L̃2(Ω,F ,P). We next show that L2(Ω,F ,P) is a complex
vector space by defining

[X] + [Y ] ≡ [X + Y ] and α[X] ≡ [αX] (3.2)

for all classes [X] and [Y ] and for all complex number α. The operations in (3.2) is well
defined as follows. Assume that [X] = [X ′] and [Y ] = [Y ′], i.e., there exist Ω1, Ω2 ∈ F with
P(Ω1) = P(Ω2) = 1 such that

X(ω) = X ′(ω) ∀ ω ∈ Ω1, Y (ω) = Y ′(ω) ∀ ω ∈ Ω2.

Now for ω ∈ Ω1 ∩ Ω2, we have

X(ω) + Y (ω) = X ′(ω) + Y ′(ω).

Since P(Ω1 ∩Ω2) = 1, we have X + Y = X ′ + Y ′ w.p.1, i.e., [X + Y ] = [X ′ + Y ′]. Similarly,
for ω ∈ Ω1, we have

αX(ω) = αX ′(ω)

for all complex α and then [αX] = [αX ′]. Furthermore, an inner product can be defined in
L2(Ω,F ,P) as

([X], [Y ]) ≡ E(XY )

which is clearly well-defined as in above and satisfies the three properties of an inner product
in the previous section. Thus L2(Ω,F ,P) is a complex inner product space. Hereafter, we
will identify an equivalent class in L2(Ω,F ,P) with any of its representative random variables
in L̃2(Ω,F ,P). In particular, we will say that X = 0 in L2(Ω,F ,P) to mean that [X] = [0].
We now show that the space L2(Ω,F ,P) is a Hilbert space.
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Let {Xn} be a Cauchy sequence in L2(Ω,F ,P). Then there exist 0 < n1 < n2 < · · · <
ni < · · · such that

||Xn − Xni
|| < 2−i, ∀ n ≥ ni,

for each i ≥ 1. In particular, we have

||Xni+1
− Xni

|| < 2−i, ∀ i ≥ 1.

Now we define Yk =
∑k

i=1 |Xni+1
− Xni

| for all k ≥ 1. It is clear that {Yk} is a monotone
increasing sequence of non-negative r.v.’s and converges pointwise to the r.v.

Y =

∞
∑

i=1

|Xni+1
− Xni

|.

By the Lebesgue’s monotone convergence theorem (Theorem 1.4.5), we have

E(Y 2) = E( lim
n→∞

Y 2
k ) = lim

n→∞
E(Y 2

k ). (3.3)

And by the triangle inequality of the norm || · ||, we have

||Yk|| ≤
k
∑

i=1

||Xni+1
− Xni

|| <

k
∑

i=1

2−i < 1

for all k ≥ 1 and then E(Y 2
k ) = ||Yk||2 < 1 which implies that E(Y 2) < 1 by (3.3)and then

Y =

∞
∑

i=1

|Xni+1
− Xni

| < +∞ w.p.1.

Thus the series Xn1
+
∑∞

i=1(Xni+1
− Xni

) converges absolutely w.p.1. Let X(ω) be the
limit of the series Xn1

(ω) +
∑∞

i=1(Xni+1
(ω) − Xni

(ω)) when the series converges absolutely.
Otherwise, we let X(ω) = 0. Note that the partial sum of the series Xn1

+
∑∞

i=1(Xni+1
−Xni

)
is

Xnk+1
= Xn1

+
k
∑

i=1

(Xni+1
− Xni

)

which says that the sequence {Xni
} of r.v.’s converges pointwise to the r.v. X w.p.1. We next

show that X is the limit of the Cauchy sequence {Xn} in L2-norm, i.e., X ∈ L2(Ω,F ,P)
and ||Xn − X|| → 0 as n → ∞. Since {Xn} is a Cauchy sequence in L2(Ω,F ,P), for ε > 0,
there exists N(ε) such that ||Xn − Xm|| < ε for all n, m ≥ N(ε). In particular, we have
||Xni

− Xm|| < ε for all ni, m ≥ N(ε). Since

X − Xm = lim
i→∞

(Xni
− Xm) w.p.1,

we have by Fatou’s Lemma (Theorem 2.5.4),

E(|X−Xm|2) = E(lim inf
i

|Xni
−Xm|2) ≤ lim inf

i
E(|Xni

−Xm|2) = lim inf
i

||Xni
−Xm||2 < ε2,

(3.4)
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for all m ∈ N(ε). Since |X| = |(X − Xm) + Xm| ≤ |X − Xm| + |Xm|, we have

||X|| = E(|X|2)1/2 ≤ E((|X−Xm|+|Xm|)2)1/2 = |||X−Xm|+|Xm||| ≤ ||X−Xm||+||Xm|| < +∞

by the triangle inequality of the L2-norm || · ||. Thus X is in L2(Ω,F ,P) and from (3.4), X
is the limit of the Cauchy sequence {Xn} in the complex inner product space L2(Ω,F ,P)
with L2-norm. This completes the proof of the following theorem.

Theorem 3.2.2 The complex inner product space L2(Ω,F ,P) is a Hilbert space.

A useful side result in the above proof will be stated in the following theorem.

Theorem 3.2.3 Every Cauchy sequence in the Hilbert space L2(Ω,F ,P) has a subsequence
which converges pointwise to a r.v. in L2(Ω,F ,P).

The following theorem provides a dense subset of the Hilbert space L2(Ω,F ,P).

Theorem 3.2.4 The set S of all complex simple r.v.’s is a dense subset of L2(Ω,F ,P).

proof. It is clear that every complex simple r.v. has 2nd-moment and thus S is a subset of
L2(Ω,F ,P). Consider a non-negative r.v. X in L2(Ω,F ,P). As stated in Lemma 1.4.6,
there is a monotone increasing sequence {Xn} of non-negative simple r.v.’s

0 ≤ X1 ≤ X2 ≤ · · · ≤ X

which converges to X pointwise. Since X − Xn ≤ X for all n ≥ 1 and E(|X|2) < ∞, we
have

lim
n→∞

||X − Xn||2 = lim
n→∞

E(|X − Xn|2) = E( lim
n→∞

|X − Xn|2) = E(0) = 0

by Lebesgue’s dominated convergence theorem (Theorem 2.5.5) which shows that {Xn} is a
Cauchy sequence in S and converges to X in L2-norm. Since a complex r.v. X in
L2(Ω,F ,P) is a linear combination of non-negative r.v.’s in L2(Ω,F ,P), X is the L2-limit
of a Cauchy sequence in S by a similar argument as in above. 2

3.3 Differential Calculus on L2(Ω,F ,P)

A 2nd-order process is a mapping X(t) from a subset T of the real line R into the hilbert
spapce L2(Ω,F ,P). Thus a 2nd-order process is a ”curve” in the Hilbert space L2(Ω,F ,P),
just like a curve in the complex Euclidean space Cn. In this section , we will assume that T
is an interval of R such as T = R, T = [0,∞) or T = [a, b].

A 2nd-order process X(t) over T is said to be differentiable at an interior point t0 of T
(i.e., (t0 − ε, t0 + ε) ⊆ T for some ε > 0) if

X ′(t0) = lim
h→0

X(t0 + h) − X(t0)

h
in L2-norm
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exists in L2(Ω,F ,P)m, which means that for any sequence {hn} in R with hn 6= 0 and

limn→∞ hn = 0, the sequence {X(t0+hn)−X(t0)
hn

} converges in L2-norm to an r.v. X ′(t0) in

L2(Ω,F ,P), independent of the sequence {hn} chosen.

Recall that X(t) is continuous at a point t0 in T if limn→∞ X(tn) = X(t0) in L2-norm for
any sequence {tn} in T with limn→∞ tn = t0.

Theorem 3.3.1 If X(t) is differentiable at an interior point t0 of T , then X(t) is continuous
at t0.

Proof. As an exercise. �

The covariance function of a 2nd-order process X(t) over T is defined as

K(s, t) , E(X(s)X(t)) = (X(s), X(t))

which is a complex-valued function on T ×T . We will show that the properties of a 2nd-order
process is closely related to the properties of its covariance function. We first give a result
on the continuity of inner product.

Lemma 3.3.2 If limm→∞ xm = x and limn→∞ yn = y in a complex inner product space H,
then we have

lim
m,n→∞

(xm, yn)H = (x, y)H = ( lim
m→∞

xm, lim
n→∞

yn)H .

Proof. Since limm→∞ xm = x and limn→∞ yn = y, for ε > 0, there exists a positive integer
N(ε) such that

‖xm − x‖H < ε, ‖yn − y‖H < ε

for all m, n ≥ N(ε). Now for δ > 0, we select an ε > 0 such that ε2 + (‖x‖H + ‖y‖H)ε < δ
and then we have

|(xm, yn)H − (x, y)H | = |(xm, yn)H − (x, yn)H + (x, yn)H − (x, y)H |
≤ |(xm − x, yn)H | + |(x, yn − y)H|
≤ ‖xm − x‖H‖yn‖H + ‖x‖H‖yn − y‖H

≤ ‖xm − x‖H(‖yn − y‖H + ‖y‖H) + ‖x‖H‖yn − y‖H

< ε2 + (‖x‖H + ‖y‖H)ε < δ

for all m, n ≥ N(ε) ≡ N(δ). This proves limm,n→∞(xm, yn)H = (x, y)H. 2

Theorem 3.3.3 Let X(t) be a 2nd-order process over T and K(s, t) be the covariance
function of X(t). Let t0 be an interior point of T .

1. limt→t0 X(t) exists in L2-norm if and only if lims,t→t0 K(s, t) exists.

2. X(t) is continuous at t0 if and only if K(s, t) is continuous at (t0, t0).
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Proof. Assume that limt→t0 X(t) = Z in L2-norm for some Z in L2(Ω,F ,P), i.e., for any
sequence {tn} in T with tn 6= t0 and limn→∞ tn = t0, we have

lim
n→∞

X(tn) = Z in L2-norm. (3.5)

Now consider two sequences {sm}, {tn} in T with sm 6= t0, tn 6= t0 and limm→∞ sm = t0,
limn→∞ tn = t0. By (3.5), we have

lim
m→∞

X(sm) = Z, lim
n→∞

X(tn) = Z in L2-norm

and then by the continuity of inner product, we have

lim
m,n→∞

K(sm, tn) = lim
m,n→∞

(X(sm), X(tn)) = (Z, Z),

which proves that lims,t→t0 K(s, t) = (Z, Z). Furthermore, if X(t) is continuous at t0, then
for any sequence {(sn, tn)} in T × T with limn→∞(sn, tn) = (t0, t0), we have limn→∞ sn = t0
and limn→∞ tn = t0. Then limn→∞ X(sn) = X(t0) and limn→∞ X(tn) = X(t0). Again by
the continuity of inner product, we have

lim
n→∞

K(sn, tn) = lim
n→∞

(X(sn), X(tn)) = ( lim
n→∞

X(sn), lim
n→∞

X(tn)) = (X(t0), X(t0)) = K(t0, t0)

which proves that K(s, t) is continuous at (t0, t0). Conversely, assume that
lims,t→t0 K(s, t) = a for some complex number a. Consider a sequence {tn} in T with
tn 6= t0 and limn→∞ tn = t0. Since

lim
n,m→∞

‖X(tn) − X(tm)‖2

= lim
n,m→∞

((X(tn), X(tn)) − (X(tn), X(tm)) − (X(tm), X(tn)) + (X(tm), X(tm)))

= lim
n,m→∞

(K(tn, tn) − K(tn, tm) − K(tm, tn) + K(tm, tm))

= a − a + a − a = 0,

{X(tn)} is a Cauchy sequence and then converges in L2-norm to a r.v. Z in L2(Ω,F ,P).
Now consider another sequence {sm} in T with sm 6= t0 and limm→∞ sm = t0. With similar
argument, {X(sm)} is a Cauchy sequence and converges in L2-norm to a r.v. Y in
L2(Ω,F ,P). Define a new sequence {uk} in T with u2n−1 = sn and u2n = tn for n ≥ 1.
Then uk 6= t0, limk→∞ uk = t0 and {X(uk)} is a Cauchy sequence and converges in L2-norm
to a r.v. W in L2(Ω,F ,P). Since {X(sm} and {X(tn)} are subsequences of {X(uk)}, we
must have W = Y = Z. This proves that limt→t0 X(t) = Z. Furthermore, if K(s, t) is
continuous at (t0, t0), then for a sequence {tn} in T with limn→∞ tn = t0, we have

lim
n→∞

‖X(tn) − X(t0)‖2

= lim
n→∞

((X(tn), X(tn)) − (X(tn), X(t0)) − (X(t0), X(tn)) + (X(t0), X(t0)))

= lim
n→∞

(K(tn, tn) − K(tn, t0) − K(t0, tn) + K(t0, t0))

= K(t0, t0) − K(t0, t0) + K(t0, t0) − K(t0, t0) = 0,

which proves that limn→∞ X(tn) = X(t0), i.e., X(t) is continuous at t0. �
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Lemma 3.3.4 Let f(s, t) be a complex-valued function over (a, b) × (a, b). If ∂f(s,t)
∂s

, ∂f(s,t)
∂t

and ∂2f(s,t)
∂s∂t

exist and are continuous over (a, b) × (a, b), then

lim
h,k→0

1

hk
(f(s + h, t + k) − f(s + h, t) − f(s, t + k) + f(s, t)) =

∂2f(s, t)

∂s∂t

for all s, t ∈ (a, b).

Theorem 3.3.5 Let X(t) be a 2nd-order process over T and K(s, t) be the covariance
function of X(t). Let t0 be an interior point of T . Then X(t) is differentiable at t0 if and
only if the limit

lim
h,k→0

1

hk
{K(t0 + h, t0 + k) − K(t0 + h, t0) − K(t0, t0 + k) + K(t0, t0)}

exists. Moreover, X(t) is continuously differentiable over an interval (a, b) of T if and only

if ∂K(s,t)
∂s

, ∂K(s,t)
∂t

and ∂2K(s,t)
∂s∂t

exist and are continuous over (a, b) × (a, b).

Proof. Since t0 is an interior point of T , there exists an ε > 0 such that (t0 − ε, t0 + ε) ∈ T .
Define a 2nd-order process Y (h) over (−ε, ε) as

Y (h) ,
X(t0 + h) − X(t0)

h

for all h ∈ (−ε, 0) ∪ (0, ε) and Y (0) , 0. Thus X(t) is differentiable at t0, i.e., X ′(t0) exists
if and only if

lim
h→0

Y (h) = lim
h→0

X(t0 + h) − x(t0)

h
exists and by Theorem 3.3.3, if and only if limh,k→0 KY (h, k) exists, where KY (h, k) is the
covariance function of the process Y (h)

KY (h, k) , (Y (h), Y (k))

=

(

X(t0 + h) − X(t0)

h
,
X(t0 + k) − X(t0)

k

)

=
1

hk
(X(t0 + h) − X(t0), X(t0 + k) − X(t0))

=
1

hk
((X(t0 + h), X(t0 + k)) − (X(t0 + h), X(t0)) − (X(t0), X(t0 + k))

+(X(t0), X(t0)))

=
1

hk
(K(t0 + h, t0 + k) − K(t0 + h, t0) − K(t0, t0 + k) − K(t0, t0)) .

This completes the proof of the first part. For the second part, we assume that X(t) is
continuously differentiable over an interval (a, b) of T . Since

lim
h→0

K(s + h, t) − K(s, t)

h
= lim

h→0

(

X(s + h) − X(s)

h
, X(t)

)

=

(

lim
h→0

X(s + h) − X(s)

h
, X(t)

)

= (X ′(s), X(t))
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for all s, t ∈ (a, b) × (a, b) by the continuity of inner product and X ′(t) is continuous over

(a, b), the partial derivative ∂K(s,t)
∂s

exists and is continuous over (a, b) × (a, b). Similarly,

the partial derivative ∂K(s,t)
∂t

∂K(s, t)

∂t
= (X(s), X ′(t))

also exists and is continuous over (a, b) × (a, b). Furthermore,

lim
h→0

∂K(s + h, t)/∂t − ∂K(s, t)/∂t

h
= lim

h→0

(

X(s + h) − X(s)

h
, X ′(t)

)

=

(

lim
h→0

X(s + h) − X(s)

h
, X ′(t)

)

= (X ′(s), X ′(t)) (3.6)

by the continuity of inner product. Thus the partial derivative ∂2K(s,t)
∂s∂t

exists and is

continuous over (a, b) × (a, b). Conversely, assume that ∂K(s,t)
∂s

, ∂K(s,t)
∂t

and ∂2K(s,t)
∂s∂t

exist and
are continuous over (a, b) × (a, b). By Lemma 3.3.4, we have

lim
h,k→0

1

hk
(f(t0 + h, t0 + k) − f(t0 + h, t0) − f(t0, t0 + k) + f(t0, t0)) =

∂2f(s, t)

∂s∂t
|s=t=t0

for all t0 ∈ (a, b), which implies that the derivative X ′(t) exists for all t ∈ (a, b) by the first
part of the proof. Now let Y (t) = X ′(t) over (a, b). Since the covariance function KY (s, t)
of Y (t)

KY (s, t) = (X ′(s), X ′(t)) =
∂2K(s, t)

∂s∂t
,

by (3.6), is continuous over (a, b)× (a, b), Y (t) = X ′(t) is continuous over (a, b) by Theorem
3.3.3. �

The following corollary is a side result of the proof of the above theorem.

Corollary 3.3.6 If X(t) is a continuously differentiable 2nd-order process over t ∈ (a, b),
then we have

[

E(X(s)X(t)) E(X(s)X ′(t))

E(X ′(s)X(t)) E(X ′(s)X ′(t))

]

=

[

K(s, t) ∂K(s,t)
∂t

∂K(s,t)
∂s

∂2K(s,t)
∂s∂t

]

.

2

A stochastic process X(t), t ∈ T , (not necessarily a 2nd-order process) is said to have
independent increments if for t0 < t1 < t2 < ... < tn−1 < tn in T , the increments X(t1) −
X(t0), X(t2) − X(t1), . . . , X(tn) − X(tn−1) are statistically independent r.v.s. The process
X(t) is said to have stationary increments if the joint distribution of the increments X(t1 +
h) − X(t0 + h), X(t2 + h) − X(t1 + h), . . . , X(tn + h) − X(tn−1 + h) is independent of h.

A Brownian motion X(t), t ∈ [0,∞), is a real-valued 2nd-order process which has
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1. independent and stationary increments,

2. X(0) = 0,

3. X(t) normally distributed with zero mean and variance σ2t,

4. X(t) continuous over [0,∞).

If σ = 1, then X(t) is called a standard Brownian motion.

Theorem 3.3.7 The covariance function of a Brownian motion X(t) is

K(s, t) = σ2 min(s, t).

Proof. For 0 ≤ s ≤ t, we have

K(s, t) = E(X(s)X(t))

= E(X(s)(X(s) + X(t) − X(s)))

= E(X2(s)) + E(X(s)(X(t) − X(s)))

and with X(0) = 0,

E(X(s)(X(t) − X(s))) = E((X(s) − X(0))(X(t) − X(s)))

= E(X(s) − X(0))E(X(t) − X(s)) ∵ independent increments

= E(X(s))E(X(t) − X(s))

= 0 · E(X(t) − X(s)) = 0.

Thus we have K(s, t) = E(X2(s)) = σ2s ∀ 0 ≤ s ≤ t. Similarly, K(s, t) = σ2t ∀ 0 ≤ t ≤ s.
Then we have K(s, t) = σ2 min(s, t) ∀ s, t ≥ 0. 2

Remark 3.3.8 Assume that the condition 3 is missing in the definition of a Brownian
motion. Then define

m(t) = E(X(t)),

v(t) = E((X(t) − m(t))2) = ‖X(t) − m(t)‖2,

for all t ∈ [0,∞). We first show that m(t) and v(t) are continuous functions over [0,∞).
Note that for a r.v. Z in L2(Ω,F ,P), we have

|E(Z)| = |E(Z · 1)| ≤
√

E(|Z|2)E(1) =
√

E(|Z|2) = ‖Z‖

by Schwartz inequality. Now for any t ∈ [0,∞) and any sequence {tn} in [0,∞) such that

tn → t as n → ∞,

we have
‖X(tn) − X(t)‖ → 0 as n → ∞,
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by the (L2-)continuity of X(t) over [0,∞), which implies that

|m(tn) − m(t)| → 0 as n → ∞,

since
|m(tn) − m(t)| = |E(X(tn) − X(t))| ≤ ‖X(tn) − X(t)‖.

Thus m(t) is continuous over T = [0,∞). With similar arguments, we can show that the
continuity of X(t) implies the continuity of v(t). Now for s, t ≥ 0, we have

m(s + t) = E(X(s + t))

= E(X(s) + X(s + t) − X(s))

= E(X(s)) + E(X(s + t) − X(s))

= m(s) + E(X(t) − X(0)) by stationary increments

= m(s) + m(t)

and by the continuity of m(t) and m(0) = 0, we have

m(t) = at,

where a is the expectation of X(1). Similarly, for t, s ≥ 0, we have

v(s + t) = E((X(s + t) − m(s + t))2)

= E({(X(s) − m(s)) + (X(s + t) − X(s) − m(t))}2)

= E((X(s) − m(s))2) + 2E((X(s) − m(s))((X(s + t) − X(s) − m(t))))

+E((X(s + t) − X(s) − m(t))2)

= v(t) + v(s),

from the property of independent and stationary increments, and by the continuity of v(t)
and v(0) = 0, we have

v(t) = σ2t,

where σ2 is the variance of X(1). Thus, if condition 3 is replaced by

3’. X(t) normally distributed,

then X(t) will be called a Brownian motion with linear drift for the mean function m(t)
is a linear function m(t) = at. And a Brownian motion in our previous defintion is just a
Brownian motion with zero drift. 2

It can be seen from the covariance function of a Brownian motion and Theorem 3.3.5
that a Brownian motion is nowhere differentiable.


