EE 565000 Homework Assignment #3

Fall Semester, 2008 Due Date: October 9, 2008

If mentioned, $(\Omega, \mathcal{F}, \mathcal{P})$ is assumed to be a probability space.

1. (10%) Given two real-valued random variables $X, Y : \Omega \to R$, define a set function $\mu_{X,Y}$ on all Borel sets in \mathbb{R}^2 as follows:

$$\mu_{X,Y}(B) \equiv \mathcal{P}((X,Y)^{-1}(B)), \ \forall \ B \in \mathcal{B}^2.$$

(cf. Exercise #8 of Homework #2.) Please show that $\mu_{X,Y}$ is a probability measure on the Borel measurable space (R^2, \mathcal{B}^2) ($\mu_{X,Y}$ is called the probability measure induced by r.v.'s X, Y and $(R^2, \mathcal{B}^2, \mu_{X,Y})$ becomes to a probability space). Note that the distribution function $F_{X,Y}(x, y) \equiv \mu_{X,Y}((-\infty, x] \times (-\infty, y]), x, y \in R$, corresponding to the probability measure $\mu_{X,Y}$ is called the joint probability distribution function of r.v.'s X and Y. (Indeed, $F_{X,Y}(x, y)$ and $\mu_{X,Y}$ relate to each other uniquely similar to the relation between $F_X(x)$ and μ_X as stated in Theorem 1.2.3 of the lecturenotes.)

2. Let X and Y be two real-valued random variables. Let $\mu_{X,Y}$ be the probability measure on (R^2, \mathcal{B}^2) induced by X and Y and $F_{X,Y}(x, y)$ the joint probability distribution function of X and Y as in the above exercise. X and Y are said to have a joint probability density function $f_{X,Y}(x, y)$ on R^2 if $f_{X,Y}(x, y)$ is a non-negative integrable function on R^2 such that

$$F_{X,Y}(x,y) = \int_{-\infty}^{x} \int_{-\infty}^{y} f_{X,Y}(s,t) ds dt, \quad \forall \ x,y$$

- (a) (10%) Please show that $f_X(x) \equiv \int_R f_{X,Y}(x,y) dy$ and $f_Y(y) \equiv \int_R f_{X,Y}(x,y) dx$ are probability density functions of X and Y respectively.
- (b) (10%)Suppose that

$$f_{X,Y}(x,y) = \frac{1}{2\pi\sigma_X\sigma_Y\sqrt{1-\rho^2}} \exp\left\{-\frac{1}{2(1-\rho^2)}\left(\frac{x^2}{\sigma_X^2} - \frac{2\rho xy}{\sigma_X\sigma_Y} + \frac{y^2}{\sigma_Y^2}\right)\right\}$$

is a joint probability density function of X and Y, where $\sigma_X > 0$, $\sigma_Y > 0$, $0 < \rho < 1$. Please find $f_X(x)$ and $f_Y(x)$.

- 3. (10%) Suppose that X₁, X₂, ..., X_n be n r.v.'s taking values on the subset {0,1} of integers. Please find the σ-algebra F(X₁, X₂, ..., X_n) generated by X₁, X₂, ..., X_n, i.e., the smallest σ-algebra on Ω which contains F(X_i) for i = 1, 2, ..., n.
- 4. (10%) Please find an uncountable partition and a countable partition of the real line R. Are these partitions Borel measurable?
- 5. Please find sup, \inf , \limsup , \limsup , \liminf and the set E of all subsequential limits of each of the following sequences:

- (a) (5%) $a_n = (-1)^n$;
- (b) (5%) $a_n = (-1 + \frac{1}{n})^n;$
- (c) (5%) $a_n = (-1)^n n;$
- (d) (5%) $a_n = (1 + \frac{1}{n}) \sin n\pi;$
- (e) (5%) $a_n = n \sin \frac{n\pi}{3};$
- (f) (5%) $a_n = \frac{n}{3} \lfloor \frac{n}{3} \rfloor$.
- 6. (20%) Let $\{\Lambda_j, j \ge 1\}$ be a countable measurable partition of Ω . Then $\{1_{\Lambda_j}, j \ge 1\}$ is a sequence of r.v.'s. Please find $\sup_j 1_{\Lambda_j}$, $\inf_j 1_{\Lambda_j}$, $\limsup_j 1_{\Lambda_j}$ and $\liminf_j 1_{\Lambda_j}$.