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H Decentralized Fuzzy Model Reference Tracking
Control Design for Nonlinear Interconnected Systems

Chung-Shi Tseng, Member, IEEE,and Bor-Sen Chen, Senior Member, IEEE

Abstract—In general, due to the interactions among subsys-
tems, it is difficult to design an decentralized controller
for nonlinear interconnected systems. In this study, the model
reference tracking control problem of nonlinear interconnected
systems is studied via decentralized fuzzy control method.
First, the nonlinear interconnected system is represented by an
equivalent Takagi–Sugeno type fuzzy model. A state feedback
decentralized fuzzy control scheme is developed to override
the external disturbances such that the model reference
tracking performance is achieved. Furthermore, the stability of
the nonlinear interconnected systems is also guaranteed. If states
are not all available, a decentralized fuzzy observer is proposed
to estimate the states of each subsystem for decentralized control.
Consequently, a fuzzy observer-based state feedback decen-
tralized fuzzy controller is proposed to solve the tracking
control design problem for nonlinear interconnected systems.
The problem of decentralized fuzzy tracking control design
for nonlinear interconnected systems is characterized in terms of
solving an eigenvalue problem (EVP). The EVP can be solved very
efficiently using convex optimization techniques. Finally, simula-
tion examples are given to illustrate the tracking performance of
the proposed methods.

Index Terms— decentralized fuzzy tracking control, linear
matrix inequality problem (LMIP) and eigenvalue problem (EVP).

I. INTRODUCTION

T HE past three decades have witnessed serious applica-
tions of large-scale interconnected system methodologies

to urban planning, economic models, spacecraft dynamics,
power systems, industrial processes, transportation networks
and others. The properties of interconnected systems have
been widely studied and many different approaches have
been proposed to stabilize the interconnected linear systems
[1]–[4]. On the other hand, there are few studies concerning
with the stabilization control for the interconnected nonlinear
systems [5], [6]. Since linearization technique and linear robust
control are used, these results are always conservative and only
applicable to some special nonlinear interconnected systems.
Due to the physical configuration and high dimensionality
of interconnected systems, a centralized control is neither
economically feasible nor even necessary [7]. Therefore,
decentralized scheme is preferred in control design of the
large-scale interconnected systems [8]–[10]. In other words,
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decentralized control scheme attempts to avoid difficulties in
complexity of design, debugging, data gathering, and storage
requirements. However, due to the effects of nonlinear inter-
connection among subsystems, there is still no efficient way
to deal with the decentralized control problem of nonlinear
interconnected systems, especially for the model reference
tracking control case.

In the past few years, there has been rapidly growing interest
in fuzzy control of nonlinear systems, and there have been many
successful applications. The most important issue for fuzzy con-
trol systems is how to get a system design with the guarantee of
stability and control performance, and recently there have been
significant research efforts on these issues in fuzzy control sys-
tems [19]–[21], [23]–[27]. In these studies, a nonlinear plant
was approximated by a Takagi–Sugeno fuzzy linear model [15],
and then a model-based fuzzy control was developed to stabi-
lize the Takagi–Sugeno fuzzy linear model. Similarly, there are
very few studies concerning with the control problems for the
nonlinear interconnected systems using Takagi–Sugeno fuzzy
model.

The tasks of stabilization and tracking are two typical control
problems. In general, tracking problems are more difficult than
stabilization problems. Since fuzzy model is a suitable method
to approximate a nonlinear system, a Takagi and Sugeno fuzzy
model is employed in this study to approximate the nonlinear
interconnected systems. In this paper, a state feedback decen-
tralized fuzzy controller with constant control parameters is pro-
posed to tackle the model reference tracking control design
problem for nonlinear interconnected systems. A robust tech-
nique is developed to efficiently override the effect of external
disturbances and interconnections among subsystem to guar-
antee the stability of global system. The problem of state feed-
back decentralized fuzzy tracking control design is charac-
terized in terms of solving an eigenvalue problem (EVP).

All the results mentioned above are generated with state
feedback. In practice, the states of the system are not all avail-
able. Several researchers have devoted to the observer design
for large-scale systems; e.g., [11], [12]. If a full state observer
constructed by the centralized method is used to estimate the
state of a large-scale system, it will be difficult to implement
and large estimation errors will also arise due to the number of
computations involved [13], [14]. In this study, a decentralized
fuzzy observer is proposed to estimate the states of each sub-
system for decentralized control. Then, a fuzzy observer-based
state feedback decentralized fuzzy controller is proposed to
solve the model reference tracking control design problem
for nonlinear interconnected systems. The problem of output
feedback decentralized fuzzy tracking control design for
nonlinear interconnected systems is also characterized in terms
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of solving an eigenvalue problem (EVP). The EVP can be
solved very efficiently using convex optimization techniques
[31], [32].

The paper is organized as follows. The problem formulation
is presented in Section II. In Section III, the design problems of

decentralized fuzzy tracking control for the nonlinear inter-
connected systems are introduced, while a fuzzy observer-based

decentralized tracking control design for the nonlinear in-
terconnected systems is considered in Section IV. In Section V,
simulation examples are provided to demonstrate the design
procedures. Finally, concluding remarks are made in Section VI.

II. PROBLEM FORMULATION

Consider a class of nonlinear interconnected systemwhich
is composed of subsystems as follows:

(1)

where
state vector;
control signal;
external disturbance of the
th subsystem;

, smooth functions, where
denotes the in-

terconnection between the
th subsystem and theth

subsystem.
A fuzzy dynamic model has been proposed by Takagi and

Sugeno [15] to represent locally linear input/output relations for
nonlinear systems. This fuzzy dynamic model is described by
fuzzy If-Then rules and will be employed here to deal with the
control design problem of a nonlinear interconnected system.
The th rule of this fuzzy model for the nonlinear interconnected
subsystem is proposed as the following form:

is and is

(2)

for where is the state and
is the control signal of theth subsystem,

is the fuzzy set, is the number of If-Then rules, the
matrices and are of appropriate dimensions,
and are the premise variables, for

.
The overall fuzzy model of subsystem can be rearranged

as the following form [19], [20], [22], [23]:

(3)

where

(4)

where is the grade of membership of in
[16]–[18].

We assume

and

for

for all .
Therefore, we get

for (5)

and

(6)

Consider a reference model for theth subsystem as follows
[29], [30]:

(7)

where
denotes reference state;
denotes a specific asymptotically stable matrix;
denotes bounded reference input.

It is assumed that , for all , represents a desired
trajectory for to follow.

Suppose the following fuzzy decentralized controller is em-
ployed to deal with the stabilization problem of the above inter-
connected subsystem.

is and is

(8)

Hence, the fuzzy decentralized controller is given by

(9)

Substituting (9) into (3) yields the closed-loop decentralized
control of the subsystem as the following:

(10)
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Let us consider the tracking performance related to the
tracking error as follows [28], [23]:

(11)

or

(12)

where for all reference input and
external disturbance is terminal time of control, is
symmetric positive definite weighting matrix,is a prescribed
attenuation level. The physical meaning of (11) or (12) is that
the effect of any on tracking error must be
attenuated below a desired levelfrom the viewpoint of energy,
no matter what is, i.e., the gain from to

must be equal to or less than a prescribed value. The
tracking performance with a prescribed attenuation level is

useful for a robust tracking design without knowledge of
and .

After manipulation, the augmented system can be expressed
as the following form:

(13)

Let us denote

(14)

Therefore, the augmented system defined in (13) can be ex-
pressed as the following form:

(15)

Hence, the tracking performance can be rewritten as fol-
lows

(16)

where

(17)

If the initial condition is also considered, the inequality (16)
can be modified as

(18)

where is a symmetric positive definite weighting matrix.
The purpose of this study is to determine a decentralized

fuzzy controller in (9) for the augmented system in (15) with
the guaranteed tracking performance in (18) for all .
Thereafter, the attenuation level can also be minimized so
that the tracking performance in (18) is reduced as small as
possible. Furthermore, the closed-loop systems for whole inter-
connected systems

(19)

are stable.

III. DECENTRALIZED TRACKING CONTROL OF

INTERCONNECTEDSYSTEMS

Stability is the most important issue in the control system.
Obviously, it is appealing for control engineers to specify the
decentralized control parameters in the fuzzy controller
(9) such that the stability for the whole interconnected non-
linear system can be guaranteed. To prove the augmented
closed-loop system in (19) to be stable, let us define a Lyapunov
function for the system of (19) as

for (20)

where the weighting matrix . Thus the Lyapunov
function for the overall interconnected systemis

(21)

The time derivative of is

(22)

By substituting (19) into (22), we get

(23)
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Then, we get the following result:
Theorem 1: In the augmented nonlinear interconnected

system (19), if is the common solution of the
following matrix inequalities:

(24)

for and , then the
whole interconnected nonlinear systemis stable in the sense
of Lyapunov.

Proof: From (23), we get

(25)

From (24), we obtain . Then, the whole intercon-
nected nonlinear system is stable in the sense of Lyapunov.
This completes the proof.

Next, the design purpose in this study is to specify the de-
centralized fuzzy control in (9) to achieve tracking control
performance in (18).

Then, we obtain the following main result.
Theorem 2: In the nonlinear system (15), if is

the common solution of the following matrix inequalities:

(26)

for and . Then,
the whole interconnected nonlinear systemis stable in the
sense of Lyapunov if and the tracking control
performance in (18) is guaranteed for a prescribed.

Proof: Note that (26) implies

According to Theorem 1, the stability of the whole intercon-
nected nonlinear system is immediately followed. From (16),
we obtain

(27)

By (26), we obtain

(28)

Therefore, the tracking control performance is achieved
with a prescribed . This completes the proof.

To obtain a better robust tracking performance, the robust
tracking control problem can be formulated as the following
minimization problem so that the tracking performance in
(18) is reduced as small as possible

subject to and (29)

Note that the matrix inequalities in (26) can be transformed
into certain forms of linear matrix inequalities (LMIs). There-
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fore, the minimization problem in (29) can be formulated as
a minimization problem subject to some LMIs, which is also
called an eigenvalue problem (EVP).

By introducing a new matrix

where and multiplying it into (26), we obtain

(30)

By the Schur complements [31], (30) is equivalent to

(31)

Therefore, the minimization problem in (29) is equivalent to

subject to and (32)

For the convenience of design, let

(33)

where and thus

(34)

where .

With , (31) are equivalent to the following
linear matrix inequalities (LMIs) (see (35) at the bottom of the
page) where

Finally, the minimization problem in (32) is equivalent to the
following eigenvalue problem (EVP).

subject to and (35) (36)

Based on the analysis above, the design procedures for the
fuzzy decentralized tracking control of interconnected sys-

tems are summarized as follows:
Design Procedure 1:

Step 1) Construct the fuzzy plant rules (2).
Step 2) Solve the EVP in (36) to obtain and (thus

) can also be obtained).
Step 3) Obtain fuzzy decentralized control rule in (9).

IV. DECENTRALIZED OBSERVERSYNTHESIS FORNONLINEAR

INTERCONNECTEDSYSTEMS

In the previous sections, we assumed that all the state vari-
ables are available. In practice, this assumption often does not
hold. In this situation, we need to estimate state vector
from output of each subsystem for state feedback control.
The th rule of this fuzzy model for the nonlinear interconnected
subsystem is proposed as the following form:

is and is

(37)

where is measurement noise of subsystem.
Therefore, the overall output of subsystemcan be arranged

as the following form:

(38)

(35)
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Suppose the following fuzzy decentralized observer is pro-
posed to deal with the state estimation of the nonlinear inter-
connected system

is and is

(39)

where are the fuzzy observer gains for theth ob-
server rule for the th interconnected subsystem and

.
The overall fuzzy decentralized observer for theth sub-

system is represented as follows:

(40)

The fuzzy observer-based decentralized controller is modi-
fied as

(41)

for , where is obtained from the fuzzy
observer in (40).

Remark 1: The premise variables can be measurable
state variables, outputs or combination of measurable state vari-
ables. For Takagi–Sugeno type fuzzy model, using state vari-
ables as premise variables are common, but not always [19],
[21]–[23]. The limitation of this approach is that some state
variables must be measurable to construct the fuzzy observer
and fuzzy controller. This is a common limitation for control
system design of Takagi–Sugeno fuzzy approach [22], [23]. If
the premise variables of the fuzzy observer depend on the es-
timated state variables, i.e., instead of in the fuzzy
observer, the situation becomes more complicated. In this case,
it is difficult to directly find decentralized control gains
and observer gains .

Let us denote the estimation error as

(42)

By differentiating (42), we get error dynamic of fuzzy decen-
tralized observer as follows:

(43)

Then, the augmented system is equivalent to the following
form:

(44)

After manipulation, (44) can be expressed as the following
form:

(45)

Let us denote
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Therefore, the augmented system of theth subsystem de-
fined in (45) can be expressed as the following form:

(46)

Hence, the tracking performance in (18) can be modified
as follows:

(47)

where is a symmetric positive definite weighting matrix and

(48)

The purpose of this study is to determine a fuzzy controller in
(41) for the augmented system in (46) with the guaranteed
tracking performance in (47) for all . Thereafter, the atten-
uation level can also be minimized so that the tracking
performance in (47) is reduced as small as possible. Further-
more, the closed-loop systems for whole interconnected systems

(49)

are stable.
Let us choose a Lyapunov function for each subsystem (49)

as follows:

for (50)

where the weighting matrix .
Thus, the Lyapunov function for the overall intercon-

nected system is

(51)

By differentiating (51), we get

(52)

Then, we get the following results:
Theorem 3: In the augmented nonlinear interconnected

system (49), if is the common solution of the
following matrix inequalities

(53)

for and , then the
whole interconnected nonlinear systemis stable in the sense
of Lyapunov.

Proof: From (52) and (53), we obtain . Then, the
whole interconnected nonlinear systemis stable in the sense
of Lyapunov. This completes the proof.

Theorem 4: In the nonlinear augmented system (46), if
is the common solution of the following matrix in-

equalities

(54)

for and . Then,
the whole interconnected nonlinear systemis stable in the
sense of Lyapunov if and the tracking control
performance in (47) is guaranteed for a prescribed.

Proof: According to Theorem 3 and by the same argument
as that in Theorem 2, the stability of the whole interconnected
nonlinear system is obtained. From (47), we obtain
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(55)

By (54), we obtain

(56)

Therefore, the tracking control performance is achieved
with a prescribed . This completes the proof.

To obtain a better robust racking performance, the robust
tracking control problem can be formulated as the following
minimization problem so that the tracking performance in
(47) is reduced as small as possible.

subject to and (57)

From the analysis above, the most important work of the
fuzzy decentralized observer-based tracking control problem is
how to solve the common solution from the
minimization problem (57). In general, it is not easy to ana-
lytically determine common solution for (57).
Similarly, (57) can be transferred into a minimization problem
subject to some linear matrix inequalities (LMIs) called eigen-
value problem (EVP) [31]. The EVP can be solved in a computa-
tionally efficient manner using a convex optimization technique
such as the interior point method [31].

The following decoupling technique is employed to simplify
the design problem. For the convenience of design, we assume

(58)

where .
This choice is suitable for the separate design of the fuzzy

controller and fuzzy observer. By substituting (58) into (54),
we obtain (see (59) at the bottom of the page) where

.

(59)
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By introducing a new matrix

...
...

.. .
...

...
...

...
...

...
. . .

...
...

. . .
...

...
...

...
...

...
. . .

where and multiplying it into (59), we obtain

Left hand side of (59) (60)

With and , the inequali-
ties in (60) are equivalent to following matrix inequalities (see
(61) at the bottom of the page) where

.
Therefore, the fuzzy decentralized observer-based

tracking control problem can be reformulated as the following
optimization problem:

subject to

and (61) (62)

The analysis above shows that when dealing with the
stabilization design problem of the fuzzy observer-based

decentralized control system, the most important task is to
solve common solutions
and from (62). Since the variables and

are cross-coupled, there are no effective
algorithms for solving these matrix inequalities till now. By the
choice of (58), the control problem and observer problem can
be decoupled and can be solved separately by the following
two-stage procedures which solve the fuzzy control parameters
first and then solve the fuzzy observer parameters. These will
be discussed in detail in the following.

We first solve and from the following matrix in-
equalities

(63)

Note, that by the Schur complements, (63) is equivalent to
(see (64) at the bottom of the next page).

Note that solving and from (64) is a convex linear
matrix inequality problem (LMIP). After solving the LMIP in
(64) to obtain and (thus ) and by
substituting and and into (61), (61) becomes a
convex linear matrix inequalities (LMIs).

Second, we can solve the following eigenvalue problem
(EVP)

subject to

and (61) (65)

to obtain and (thus ).
Therefore, the fuzzy decentralized observer-based

tracking control problem in (62) is equivalent to solving

subject to (64) and (65) (66)

(61)
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The design procedures for the fuzzy observer-based de-
centralized tracking control of interconnected systems are sum-
marized as follows:

Design Procedure 2:

Step 1) Select fuzzy plant rules (37).
Step 2) Solve the LMIP in (64) to obtain and (thus

) can also be obtained).
Step 3) Substituting , and into (61) and then

solve the EVP in (65) to obtain and
(thus can also be obtained).

Step 4) Construct the fuzzy observer in (40).
Step 5) Obtain fuzzy decentralized control rule in (41).

V. SIMULATION EXAMPLES

We consider a two-machine interconnected system which is
composed of two-machine subsystemsas follows [33]

(67)

where
, absolute rotor angle and angular velocity of

the th machine, respectively;
inertia coefficient;
damping coefficient;
internal voltage;
modulus of the transfer admittance between
the th and th machines;
phase angle of the transfer admittance be-
tween the th and th machines;
external disturbance which is assumed to be
sinusoidal with amplitude 1 and period;
measurement noise which is assumed to be
zero mean white noise with variance 0.1 for

.
We assume the two-machine interconnected systems’ param-

eters as follows:

Example 1: Suppose the state variables are available. Now,
following theDesign Procedure 1in the above section, a design
procedure of fuzzy decentralized state feedback controller for
model reference tracking of the interconnected system is given
as follows:

Step 1) To use the fuzzy decentralized control approach,we
represent the interconnected system (67) by a fuzzy
model. The problem of constructing Takagi–Sugeno
fuzzy model for nonlinear systems can be found
in [35]–[37]. To minimize the design effort and
complexity, we try to use as few rules as possible.
Hence, we approximate the system by the following
nine-rule fuzzy model.

Rule 1

If is about and is about

Then

Rule 2

If is about and is about

Then

Rule 3

If is about and is about

Then

Rule 4

If is about and is about

Then

Rule 5

If is about and is about

Then

(64)
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Rule 6

If is about and is about

Then

Rule 7

If is about and is about

Then

Rule 8

If is about and is about

Then

Rule 9

If is about and is about

Then

where are listed in Appendix A,
and for

and .
The reference models are given as

and

for

For the convenience of desin, triangle type mem-
bership functions are chosen for Rule 1–Rule 9.

Step 2) Solve EVP using the LMI optimization toolbox in
Matlab [34]. In this case

and

Step 3) The control parameters can be found in Appendix B.
Figs. 1–4 present the simulation results. Initial condition is as-

sumed to be
in the simulations. The trajectories of the state variable
including reference state variable are shown in Fig. 1.

Fig. 1. The trajectories of the state variablex (t) (solid line) and reference
state variablex (t) (dashdot line).

Fig. 2. The trajectories of the state variablex (t) (solid line) and reference
state variablex (t) (dashdot line).

Fig. 3. The trajectories of the state variablex (t) (solid line) and reference
state variablex (t) (dashdot line).

The trajectories of the state variable including reference
state variable are shown in Fig. 2. The trajectories of the



806 IEEE TRANSACTIONS ON FUZZY SYSTEMS, VOL. 9, NO. 6, DECEMBER 2001

Fig. 4. The trajectories of the state variablex (t) (solid line) and reference
state variablex (t) (dashdot line).

Fig. 5. The trajectories of the state variablex (t) (solid line) and reference
state variablex (t) (dashdot line).

state variable including reference state variable
are shown in Fig. 3. The trajectories of the state variable
including reference state variable are shown in Fig. 4.

Example 2: Suppose the state variables are not all available.
Then, following theDesign Procedure 2in the above section,
a design procedure of fuzzy observer-based decentralized con-
troller for the model reference tracking of the interconnected
system is given as follows. We assume the state variables

and can be
measured to construct the fuzzy model. In other words, the
state variables and should be estimated.

Step 1) The same asExample 1.
Step 2) Solve LMIP and EVP using the LMI opti-
mization toolbox in Matlab. In this case

Fig. 6. The trajectories of the state variablex (t) (solid line) and reference
state variablex (t) (dashdot line).

Fig. 7. The trajectories of the state variablex (t) (solid line) and estimated
state variablêx (t) (dashdot line).

Step 3) The observer parameters can be found in Ap-
pendix C.
Step 4) The control parameters can be found in Ap-
pendix D.

Figs. 5–10 present the simulation results. The trajectories
of the state variable including reference state variable

is shown in Fig. 5. The trajectories of the state variable
including reference state variable is shown in

Fig. 6. The trajectories of the state variable including
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Fig. 8. The trajectories of the state variablex (t) (solid line) and reference
state variablex (t) (dashdot line).

Fig. 9. The trajectories of the state variablex (t) (solid line) and reference
state variablex (t) (dashdot line).

estimated state variable is shown in Fig. 7. The tra-
jectories of the state variable including reference state
variable is shown in Fig. 8. The trajectories of the state
variable including reference state variable is
shown in Fig. 9. The trajectories of the state variable
including estimated state variable is shown in Fig. 10.
From the simulation results, the proposed decentralized
control scheme can solve the tracking problem for nonlinear
interconnected systems effectively and systematically with the
aid of LMI toolbox in Matlab.

VI. CONCLUSION

In this paper, a Takagi and Sugeno fuzzy model is proposed
to study the model reference tracking control problems for non-
linear interconnected systems using fuzzy decentralized control.
A fuzzy decentralized controller is proposed to override the ef-
fect of external disturbances such that the model reference
tracking performance is achieved. Furthermore, the stability of
the nonlinear interconnected systems is also guaranteed. If states

Fig. 10. The trajectories of the state variablex (t) (solid line) and estimated
state variablêx (t) (dashdot line).

are not all available, a decentralized fuzzy observer is also pro-
posed to estimate the states of each subsystem for decentral-
ized control. Consequently, a fuzzy observer-based state feed-
back decentralized fuzzy controller is proposed to solve the
tracking control design problem for nonlinear interconnected
systems. The problem of decentralized fuzzy tracking con-
trol design for nonlinear interconnected systems is characterized
in terms of solving an eigenvalue problem (EVP). The EVP can
be efficiently solved using convex optimization techniques. The
proposed fuzzy observer-based decentralized control scheme is
simple without complex control algorithms. Therefore, it is suit-
able for practical applications. Simulation example is given to
illustrate the design procedure and tracking performance of the
proposed method.

APPENDIX A
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APPENDIX B

APPENDIX C

APPENDIX D
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