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H~o Decentralized Fuzzy Model Reference Tracking
Control Design for Nonlinear Interconnected Systems

Chung-Shi TsengMember, IEEEand Bor-Sen CherSenior Member, IEEE

Abstract—In general, due to the interactions among subsys- decentralized control scheme attempts to avoid difficulties in
tems, it is difficult to design an H. decentralized controller complexity of design, debugging, data gathering, and storage
fo; “O”““etar ii?terconnteclted sgl’Stem? In lt.his St.“?y’ the mct)déel requirements. However, due to the effects of nonlinear inter-
erence ecking contl pobe f et MEfMESe comecion among subsystems, here i sl 1 eficiet way
First, the nonlinear interconnected system is represented by an 0 deal with the decentralized control problem of nonlinear
equivalent Takagi-Sugeno type fuzzy model. A state feedback interconnected systems, especially for the model reference
decentralized fuzzy control scheme is developed to override tracking control case.
the external disturbances such that the H., model reference |n the past few years, there has been rapidly growing interest
tracking performance is achieved. Furthermore, the stability of in fuzzy control of nonlinear systems, and there have been many

the nonlinear interconnected systems is also guaranteed. If states ful licati Th ti tant | for fi
are not all available, a decentralized fuzzy observer is proposed SUCCESSIUlapplications. The mostimportantissueforiuzzy con-

to estimate the states of each subsystem for decentralized control.trol systems is how to get a system design with the guarantee of
Consequently, a fuzzy observer-based state feedback decenstability and control performance, and recently there have been
tralized fuzzy controller is proposed to solve theH .. tracking  significant research efforts on these issues in fuzzy control sys-
control design problem for nonlinear interconnected systems. tams [19][21], [23]-[27]. In these studies, a nonlinear plant

The problem of H., decentralized fuzzy tracking control design . o .
for nonlinear interconnected systems is characterized in terms of was approximated by a Takagi-Sugeno fuzzy linear model [15],

solving an eigenvalue problem (EVP). The EVP can be solved very @1d then a model-based fuzzy control was developed to stabi-
efficiently using convex optimization techniques. Finally, simula- lize the Takagi—Sugeno fuzzy linear model. Similarly, there are
tion examples are given to illustrate the tracking performance of very few studies concerning with the control problems for the

the proposed methods. nonlinear interconnected systems using Takagi—Sugeno fuzzy
Index Terms—¥ .. decentralized fuzzy tracking control, linear model.
matrix inequality problem (LMIP) and eigenvalue problem (EVP). The tasks of stabilization and tracking are two typical control

problems. In general, tracking problems are more difficult than
stabilization problems. Since fuzzy model is a suitable method
to approximate a nonlinear system, a Takagi and Sugeno fuzzy
HE past three decades have witnessed serious applicadel is employed in this study to approximate the nonlinear
tions of large-scale interconnected system methodologieserconnected systems. In this paper, a state feedback decen-
to urban planning, economic models, spacecraft dynamiaslized fuzzy controller with constant control parameters is pro-
power systems, industrial processes, transportation netwopksed to tackle th& .. model reference tracking control design
and others. The properties of interconnected systems haveblem for nonlinear interconnected systems. A robust tech-
been widely studied and many different approaches hanigue is developed to efficiently override the effect of external
been proposed to stabilize the interconnected linear systedisturbances and interconnections among subsystem to guar-
[1]-[4]. On the other hand, there are few studies concerniagtee the stability of global system. The problem of state feed-
with the stabilization control for the interconnected nonlinedrack decentralizel, fuzzy tracking control design is charac-
systems [5], [6]. Since linearization technique and linear robugtized in terms of solving an eigenvalue problem (EVP).
control are used, these results are always conservative and onlill the results mentioned above are generated with state
applicable to some special nonlinear interconnected systerfieedback. In practice, the states of the system are not all avail-
Due to the physical configuration and high dimensionalitgble. Several researchers have devoted to the observer design
of interconnected systems, a centralized control is neithfer large-scale systems; e.g., [11], [12]. If a full state observer
economically feasible nor even necessary [7]. Thereforggnstructed by the centralized method is used to estimate the
decentralized scheme is preferred in control design of tktate of a large-scale system, it will be difficult to implement
large-scale interconnected systems [8]-[10]. In other wordsd large estimation errors will also arise due to the number of
computations involved [13], [14]. In this study, a decentralized
fuzzy observer is proposed to estimate the states of each sub-
Manuscript received August 28, 2000; revised February 2, 2001. Tg%/stem for decentralized control. Then, a fuzzy observer-based
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of solving an eigenvalue problem (EVP). The EVP can bghere

solved very efficiently using convex optimization techniques gi

[31], [32]. (1) = [ ] oy (,(8))
i=1

The paper is organized as follows. The problem formulation

is presented in Section Il. In Section IlI, the design problems of B (1)
H decentralized fuzzy tracking control for the nonlinear inter- K(zi(t) = ZL (2 Y
: . ket 1 (2i(2))
connected systems are introduced, while a fuzzy observer-based £ — ; ; ; 4
H, decentralized tracking control design for the nonlinear in- zi(t) = [zil( ) %ig () -+ 7y, ( )] (4)

terconnected systems is considered in Section IV. In SectiomdhereF; (z;, (t))isthe grade of membershipaf (t)in F;,
simulation examples are provided to demonstrate the des[gg]- [18] 7 7 7
procedures. Finally, concluding remarks are made in Section VI\We assume

ll. PROBLEM FORMULATION plzi(t) 2 0
and
Consider a class of nonlinear interconnected systestich I
is composed ofV subsystems; (i = 1,...,N) as follows: Zﬂk(zi(t)) >0 fork=1,2,...,L
Si s di(t) = filzi(t)) +gz(wz( )wi(t) k=1
for all £.
+ Z Fig(i(8)) +wi(t) (1)  Therefore, we get
J=1,j7#i
hp(z(t) >0 fork=1,2,...,L 5
where d (1) > ©)
x;(t) € R™ state vector; an L
u;(t) € R™ control signal; B (4)) = 1 6
w; (t) external disturbance of the Z k=) =1 ©

ith subsystem; .
Fi(ws(®)), g3 (ws(0)), fis(w;(2)) smooth functions, where [Zg]io[n?’s(;(]j.er a reference model for tith subsystem as follows
fij(x;(t)) denotes the in- ' '
terconnection between the . .
ith subsystem and thgth Eril8) = Ariwnil8) +rilt) @
subsystem. where
A fuzzy dynamic model has been proposed by Takagi andxﬁ(t) denotes reference state;
Sugeno [15] to represent locally linear input/output relations for 4 . denotes a specific asymptotically stable matrix;
nonlinear systems. This fuzzy dynamic model is described byn(t) denotes bounded reference input.
fuzzy If-Then rules and will be employed here to deal with thg is assumed that,;(t), for all t > 0, represents a desired
control design problem of a nonlinear interconnected systetfajectory forz;(t) to follow.

Thekthrule of this fUZZy model for the nonlinear interconnected Suppose the f0||owing fuzzy decentralized controller is em-

subsystent; is proposed as the following form: ployed to deal with the stabilization problem of the above inter-
Plant Rule %: connected subsystef).
If 2, () is Iy, ... andz (1) is Iy, . Control Rule k:
Then $7(t) = A7k$7( ) + B7ku7( ) If Ziq (t) is .ka1 e andzigz_ (t) is Fkﬂz‘ y
N Then U,Z(t) = sz(azz(t) — a:”(t)) (8)
+ Z Az;kxj +w2( ) (2) H i R
Gy o Hence, the fuzzy decentralized controller is given by
for k = 1, .,L wherez;(t) € R is the state and
u;(t) € R™ is the control signal of theéth subsystem, th 2i () [Kin(wi(t) — 2ri(2))]- ©)

Figz_ is the fuzzy setL is the number of If-Then rules, the
matrices A;x, B;r, and A;;;, are of appropriate dimensions, Substituting (9) into (3) yields the closed-loop decentralized
and z;, (t), zi,(t), ..., 2, (t) are the premise variables, forcontrol of the subsysterﬂ as the following:
i,j=1,2,...,N.
The overall fuzzy model of subsystef can be rearranged 7 Z Z Pae( 25 (8) Y (2 (1))
as the following form [19], [20], [22], [23]: b1 el

L
t) = Z hi(z:(1) | Aipxi (t) + Bigwi(t) X | (Air + Bin Kim )i (t) — Bin Kimzri(t)
P

+ Z At ]+wz() ®) + Z A (t ]+wz() (10)

J=1,j7#i J=1,j7#1
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Let us consider théd .
tracking errorz;(t) — z,;(t) as follows [28], [23]:

@) = o) Qulanlt) — e}t _ g
Jo! @i (t)Fw;(t) dt
/0 @) — w7 QuCrsr) — e}
< / "t () dt (12)

wherew;(t) = [w;(t),(t)]* for all reference input;(¢) and
external disturbance;(t); ¢, is terminal time of control(); is
symmetric positive definite weighting matrix,is a prescribed

tracking performance related to the

797

If the initial condition is also considered, the inequality (16)
can be modified as

/ szz
< 77 (0)B3:(0) + p* / Ve et de (18)
0

whereP; is a symmetric positive definite weighting matrix.

The purpose of this study is to determine a decentralized
fuzzy controller in (9) for the augmented system in (15) with
the guaranteedl, tracking performance in (18) for adf;(¢).
Thereafter, the attenuation levet can also be minimized so
that theH , tracking performance in (18) is reduced as small as
possible. Furthermore, the closed-loop systems for whole inter-

attenuation level. The physical meaning of (11) or (12) is thabnnected systems

the effect of anyw; (¢) on tracking error; (¢) — x,;(¢) must be

attenuated below a desired leyedtom the viewpoint of energy, z;(t

no matter whatz;(t) is, i.e., theL, gain from;(t) to z; (¢) —
x,;(t) must be equal to or less than a prescribed valudhe
Ho
useful for a robust tracking design without knowledgewgft)
andr; (t).

After manipulation, the augmented system can be expressed

as the following form:

FO)- Y S Y )

j=1l,j#i k=1m=1

hom (2i(£))
c{[e et ] (0]

N [Am 8} [fﬂ((tt))} * [7((;)) H (19)

Let us denote

_ [ x; t
A = [Aik 4+ BinKim  —BixKim
ikm — I 0 A”
5 —Az 0 _ w; t
B = | it 0} wi(t) = {n((t))} . 4)

Therefore, the augmented system defined in (13) can be ex-

pressed as the foIIowing form:

S 33 W RAITS

M, 71( ))
j=1,j5%i k=1m=1

X (A7kn,.’f7(t) + Buk.fj(t)) + w7(t) (15)

Hence, thed, tracking performance can be rewritten as fol-

lows
/0 {(@ilt) — 2 )T Q) — i (1))} dt
_ /0 5T (H0::(t) dt
s [
<p /0 @ ()i (t) dt (16)
where
5 Qi —Q
N |:_Qi Qi } (17)

tracking performance with a prescribed attenuation level js

S 3 3 )

rn 72( ))
j=1,j5%i k=1 m=1
X (Aikm @i (t) + BijnZ; (1))
., N are stable.

(19)

IIl. H,, DECENTRALIZED TRACKING CONTROL OF

INTERCONNECTEDSYSTEMS

Stability is the most important issue in the control system.
Obviously, it is appealing for control engineers to specify the
decentralized control parametef§, in the fuzzy controller
(9) such that the stability for the whole interconnected non-
linear systemS can be guaranteed. To prove the augmented
closed-loop system in (19) to be stable, let us define a Lyapunov
function for the system of (19) as

vi(t) = @} ()P (t) fori=1,2,...,N (20)
where the weighting matri®; = P > 0. Thus the Lyapunov
function V' (¢) for the overall interconnected systefris

N N
> owi(t) =Y &l (1) Pai(t).
=1 i=1
The time derivative oV (¢) is
N
V() =Y [# (OPa(t) + 5F (Pt
=1

By substituting (19) into (22), we get

V()

(21)

(22)

X {[Aikmxz( )+ Bz;kxj( )]szfz(t)

4 t)E[Aanlxi()+Bijk-fj 1}

_ Z Z Z Z hk 71 hrn 7Z(t))
i=1 j=1,j#i k=1 m=1

} {AﬂmP + P Aikm  P,Biji

_|_
Kl
iﬁ

BL.P; 0

(23)
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Then, we get the following result:

Theorem 1:In the augmented nonlinear interconnected
system (19), if’, = PT > 0 is the common solution of the
following matrix inequalities:

Az;wnP +PAzkrn ‘PZBZJk
BE,P; o | =Y (24)
fori,j =1,2,...,N (j #¢)andk,m = 1,2,..., L, then the

whole interconnected nonlinear systeéhis stable in the sense
of Lyapunov.
Proof: From (23), we get

N N L
vo=3 3 ;:n 1)

X [i;%z%FW;;ﬁ%

<761} 25)

From (24), we obtair’(t) < 0. Then, the whole intercon-
nected nonlinear systesi is stable in the sense of Lyapunov.
This completes the proof. O

Next, the design purpose in this study is to specify the de-
centralized fuzzy control in (9) to achiewé., tracking control
performance in (18).

Then, we obtain the following main result.

Theorem 2:In the nonlinear system (15), B, = PT > 0 is
the common solution of the following matrix inequalities:

BingePi 0 0 | <0 (26
P; 0 —p2I

fore,j = 1,2,...,N (5 # ¢) andk,m = 1,2,...,L. Then,
the whole interconnected nonlinear systéhis stable in the
sense of Lyapunov ift; (t) = 0 and theH, tracking control
performance in (18) is guaranteed for a prescrip&d
Proof: Note that (26) implies
AL P+ P Aijm
{ BEL JkP

PiBijk
0

tkm

<0.

tr
According to Theorem 1, the stability of the whole intercon/0 z; (1)

nected nonlinear system is immediately followed. From (16),
we obtain

/{%
-],

— 2 ()T Qilwi(t) — wri(t))} dt

( )QZ$Z( ) dt

=z} (0)Pizi(0) — &} (tp)Pizi(ty)
+ [Harwann+ 4 @ orae) b a

with a prescribegh?. This completes the proof.
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:fﬂma@wwﬁé”{

(zzzm
=17t k=1 m=1

X (Aggemi(t) + By (t) + wi(1)F Bii(t)

Fon( 3 53wy
j=1,j%#i k=1m=1

hom 71( ))

N (2: (1))

X (Aikmfi(t) + Bijkizj(t) + U_Jz(t))} dt
= f?(O)P@i(O)

5 3 9) SN

j=1,j%1 k=1 m=1
tr _ _ _
x { / 7 ()Qi%i(t) + (AikmTi(t) + Bijr; ()
0
0 (1) Pzi(t) +

M, 71( ))

—~

j=1,j7#i k=1 m=1
o [0
<3 [t
O [wi(t)
_A;‘kapz J’:P%km"i'Qz szka -lf)z
X BL.P; 0 0
L P 0 —p?I
_.i’i(t)
x | Z;(t) | + pPwi(t) i (t) p dt. (27)
| (1)

By (26), we obtain

7] (£)Q;7;(t) dt

<l OPaO+7 [ w® wd @0

Therefore, the, tracking control performance is achieved
O

To obtain a better robust tracking performance, the robust

tracking control problem can be formulated as the following
minimization problem so that thH .,
(18) is reduced as small as possible

tracking performance in

min p, 0>
subjecttoP; = P >0 and (26). (29)

Note that the matrix inequalities in (26) can be transformed

into certain forms of linear matrix inequalities (LMIs). There-



TSENG AND CHEN:H ., DECENTRALIZED FUZZY MODEL REFERENCE TRACKING CONTROL DESIGN 799

fore, the minimization problem in (29) can be formulated as With ¥;,,, = K;,,W;11, (31) are equivalent to the following
a minimization problem subject to some LMIs, which is alsbnear matrix inequalities (LMIs) (see (35) at the bottom of the

called an eigenvalue problem (EVP). page) where
By introducing a new matrix
|:Qi11 Qi12:| —oY?
W, 0 0 pzfl 0 0 Qi21 Q2 ‘
Wi,=10 I 0|=| 0 I 0 Finally, the minimization problem in (32) is equivalent to the
0 0 I 0 0 I following eigenvalue problem (EVP).
whereW; = P! and multiplying it into (26), we obtain {Wmir; }p2
AL P+ B Ajgm+Q; PBign P subject toW;;; = W, >0 and (35) (36)
Wi Bl b 0 0 | W . .
;3 0 ey Based on the analysis above, the design procedures for the
I R — - - = = H_ fuzzy decentralized tracking control of interconnected sys-
AT ‘ ‘ OV, iy oo
Widipm + A%’;EWZ +WiQiW; 61" ! tems are summarized as follows:
- }Jk 0 27 Design Procedure 1:
p
<o (30) Step 1) Construct the fuzzy plant rules (2).

Step 2) Solve the EVP in (36) to obtdi¥i;;; andY;,, (thus
K;,.. = Y;,,W7]) can also be obtained).

By the Schur complements [31], (30) is equivalent to Step 3) Obtain fuzzy decentralized control rule in (9).

= T T 5 = (A1/2 5
W, AL+ AW, W, (Qi ) Big 1 IV. DECENTRALIZED OBSERVERSYNTHESIS FORNONLINEAR
T INTERCONNECTEDSYSTEMS
(@*) wi -1 0 0 |<o | , |
B 0 0 0 In the previous sections, we assumed that all the state vari-
IJ 0 0 I ables are available. In practice, this assumption often does not

hold. In this situation, we need to estimate state veet¢t)
from outputy; (¢) of each subsystem for state feedback control.

L ) . . Thekth rule of this fuzzy model for the nonlinear interconnected
Therefore, the minimization problem in (29) is equivalent t%ubsystenﬂ is proposed as the following form:

(31)

1%111 92 Plant Rule £:
subjecttolW; = W >0 and (31). (32) If 2, (t) is I, ... andz;, (t) is I,
&i(t) = Apxi(t) + Bawi(t),
For the convenience of design, let N
Then + Z Aijkl‘j(t) —l—wz(t)
= Py 0 j=1,j#4
P, =
i { 0 P} (33) uilt) = Cuas(t) + vi(8) (37)
whereP;;; = PT, > 0 and thus wherev;(t) is measurement noise of subsyst&m
' Therefore, the overall output of subsyst&gcan be arranged
= [Wur 0 as the following form:
Wz_[ : W} (34) )
y; () = hp (2 () Copz; (1) + v;(E). (38)
whereWia, = Pt (t) ; (zi(t)) (t) + vi(t)

T Wi AL + YL BE + ApWii + BinYim —BiYim Wit1Qi1r WinnQie A 0 1 0 7
Y1 B}, Wi AL + AiWin WiaiQizr WiiQiz 0 0 0 1
QhWin QL Win .y 0 0 0 0 0
QL Wi QL Wit 0 -1 0 O 0 0 <0
ALy, 0 0 0 0 0 O 0 |-
0 0 0 0 0 0 0 0
I 0 0 0 0 0 —p2I 0
i 0 I 0 0 0 0 0 —p

(35)
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Suppose the following fuzzy decentralized observer is pro- L
posed to deal with the state estimation of the nonlinear inter- = ()
connected system k=1

AirZ;(t) + Bipug(t)

Observer Rule k:

N
+ Az L (t +Lz Yi t —fl)i t
If 20(t) iS Iy, ... andz,, (t) is I, 2 Auedi(®)+ Lo (1) ())]

i =L
.f?z(t) = Azk.sz(t) + Bikui(t), N L L
N = > Y hlz(®) Y ha(zi())
Then + Z A (t) J=1,j+i k=1 m=1
J=1,j#1 X [(Azk — LikCim)ei(t) + Aijkej(t)
+ Lik(yi(t) — 9:(1)) (39) +w;(t) — Lipwi(t)]. (43)
where L;; are the fuzzy observer gains for thegh ob-  Then, the augmented system is equivalent to the following

server rulg for theith interconnected subsysterfi; and form:
Gi(t) = 2 k=g P (2 (D) Cini (1)

The overall fuzzy decentralized observer for thk sub- ?fi(t)
system is represented as follows: ﬂf_m‘((tt))
€
. L - N L L ] ] -
() = Z hi(2(8)) | Aini(t) + Baus(t) {Ej:l,j;éi 2 k=t 2om=t e (2i(8)) o (2:(1))
k=1 X[(Aix + Bir Kim )7i(t) — Bir Kim @i (t)
N — BinKimei(t) + Aijra, () + wz(t)]}
+ D Aundi(t)+ L (wi®) — 6:)) | . (40) = {Avizni(t) +7i(8)}
S jti N L L
=L {Z0 s Tk () Loy o (24(8))
The fuzzy observer-based decentralized controller is modi- [(Aik — LixCim)ei(t) + Aijre; (t)
fied as I + w7(t) _ Lm%(t)]} |
L (44)
wi(t) = D bz (D) Kim (2:(8) — 2(1))] (A1)
m=1 er manipulation, can be expressed as the followin
Aft ipulation, (44) be exp d as the following
fori = 1,2,...,N, wherez;(t) is obtained from the fuzzy form:
observer in (40). &i(t)
Remark 1: The premise variables;(t) can be measurable | z .(¢)
state variables, outputs or combination of measurable state vari- ¢, (¢)
ables. For Takagi—-Sugeno type fuzzy model, using state vari- N L I
ables as premise variables are common, but not always [19], — (2 (1)) P (2 (1))
[21]-[23]. The limitation of this approach is that some state j=§ #ikz_:—l ’ ,Z‘l o
variables must be measurable to construct the fuzzy observer A+ BinKiny  —Bin K _BuK;
and fuzzy controller. This is a common limitation for control P e o
system design of Takagi-Sugeno fuzzy approach [22], [23]. If 0 0” A — L
the premise variables of the fuzzy observer depend on the es- ’ R
timated state variables, i.€;(¢) instead ofz;(¢) in the fuzzy @i(t) A 00 (1)
observer, the situation becomes more complicated. In this case, * zt) |+ 0 0 0 ()
it is difficult to directly find decentralized control gaing’;,, ¢i(t) 0 0 A ¢;(t)
and observer gains;;. O I 0 0 w; (1)
Let us denote the estimation error as +1(0 I 0 ri(t) . (45)
I 0 —L; Ui(t)
Gz(t) = a:z(t) — .’IAZZ (t) (42)
Let us denote
By differentiating (42), we get error dynamic of fuzzy decen- -
tralized observer as follows: , At Biscbim = Bisbim = Birbim
. Aikrn, = 0 A17 0
Gz(t) = a:z(t) — aAZZ(t) L 0 0 A — LG
L [ az(t) N A“k 0 0
= Z hk(zz(t)) Azkl'z(t) + szuz(t) i’z(t) = .’L’m‘(t) B“k = 0 0 0
k=1 | ei(t) 0 0 Ay
N ) [7 0 o0 w;(t)
+ Y At +wi(?) Eax=10 1T 0 ai(t) = | m(t)
j=1,j5i _I 0 _Lik Ui(t)
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Therefore, the augmented system of ikl subsystem de- j;z(t) kaP + P A ﬁ’iBijk
fined in (45) can be expressed as the following form: #(t) qu;k P, 0
N L L ( )
D7 (1) Y hm(z(1)) X L (t)} } (52)
j=1,j5i k=1 m=1 i
X [Aikma?i(t) + Bijkgjj(t) + Eikwi(t)]- (46) Then, we get the following results:

Theorem 3:In the augmented nonlinear interconnected
Hence, thed, tracking performance in (18) can be modifiedsystem (49), if, = P > 0 is the common solution of the

as follows: following matrix inequalities
- -
/ { -Tz 37”( ))TQz(xz(t) _-Tri(t))} dt |:Azkm-g +]-§)Azkm -Pz-ﬁzjk S 0 (53)
ik
~ . fori,j =1,2,....N (j # ¢)andk,m = 1,...,L, then the
- /0 & (H)Qidi(t) dt whole interconnected nonlinear systeéhis stable in the sense
_ tr of Lyapunov. ]
< &} (0)PE:(0) + PQ/ W} (E)wi(t) dt (47) Proof: From (52) and (53), we obtaii(¢) < 0. Then, the
0 whole interconnected nonlinear systéhis stable in the sense
whereP; is a symmetric positive definite weighting matrix andf Lyapunov. This completes the proof. 0O
Theorem 4: In the nonlinear augmented system (46)if=
~ @ —Qi 0 PT > 0 is the common solution of the following matrix in-
Qi = —g&‘ % 8 : (48) equalities
AﬁmP + P Ajgem + Q; piBijk PEj,
The purpose of this study is to determine a fuzzy controller in ngﬁ’z 0 0 <0 (54)
(41) for the augmented system in (46) with the guarantégd EZTk P, 0 20
tracking performance in (47) for al}; (¢). Thereafter, the atten-for ij=1,2,....N(j # i) andk,m = 1,2,..., L. Then,

uation levelp* can also be minimized so that titg., tracking the whole mterconnected nonllnear systémnis stable in the

performance in (47) is reduced as small as possible. FurthSense of Lyapunov ifi(£) = 0 and theH... tracking control

more, the closed-loop systems for whole interconnected SyStep%‘?’formance in (47) is guaranteed for a prescriied

L Proof: According to Theorem 3 and by the same argument
Z Z ha(2i (1) D hn(2i(1) as that in Theorem 2, the stability of the whole interconnected
J=1,j7i k=1 m=1 nonlinear system is obtained. From (47), we obtain
X Aikmxi —I—szi’ t)]. 49 tr
k80 Bty 0] ) / {(@i(t) = 2ri()T Qilwilt) — 20i(®)) } dt
t=1,...,N are stable. .
Let us choose a Lyapunov function for each subsystem (49)  _ / ! ir(t)Qir(t) dt
as follows: o o

b (t) = T () Pyag(t), fori=1,2,....N  (50)

ty ~ d .
~ ~ 7T 5 Z (7T 5
where the weighting matri¥; = P} > 0. +/0 {$7 (£)izi(t) + dt (x’ (t)P”x”(t))} dt
Thus, the Lyapunov functio® (¢) for the overall intercon- R tr .
nected systens is < 77 (0)F:(0) +/ {f;(t)Qm(t)
0
N N AN TN T 2
V(t) = Z{)i(t) = Zj?(t)ﬂjz(t) (51) + % (t)Rx7(t) +I; (t)P7$7(t)} dt
=1 =1 t;
_ =T D ~T X
By differentiating (51), we get = z; (0)P;z:(0) +/0 {xz (H)Qiz:(1)

. N T N .
V() =0 {5 ORa) + T ()P0} ( Z Z Dt EL: (o8

j=1,jFi k=1 m=1

= | Z th(z7(t)) Z hom(zi(1)) X (Asrm @i (t) + Bijkfi,( )+ Eaai(£)" Py (t)
i1 j= ki kel o . .
<Clumsi)+ Bt O Rt it 3 S0 3 mint
+ 27 () Py [Ainm @i (t) + Bijnd; (t)] j=1,j%i k=1 m=1

) L L
= Z hi(z:(t)) Z R (2i(1)) X (Ajpm@i(t) + Bijad;(t) + Ezkﬁ)z(t))} dt

i=1 j=1,j%i k=1 m=1
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= #7(0)P;7;(0)
N L
+ Z Z I (2 ()

J=1,#i k=1

« | " {Fwame

Z hon (2 (t

m=1

+ (Aigm @i (t) + Bijrij (1) + Egabi ()T Py (t)
+ #F () Py Aigm®i (1) + Bijnij (t) + Epavi(t))

— pPi () i (t) + pPai (t) T i (t)} dt

=& (0 )sz( )
L
+ Z th Z() Y hon(zi(0))
Jj=1,7#i k=1 m=1
- T
t | @)
< [
0 71} )
Az;wn & "~ P"% km + Qz RB“k
X Bf 2 0
ELP; 0
Z:(t)
x| &i(t) | + ptwi ()" wi(t) p dt.

PE.
0
_p2]

(55)
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Therefore, theH ., tracking control performance is achieved
with a prescribeg?. This completes the proof. O

To obtain a better robust racking performance, the robust
tracking control problem can be formulated as the following
minimization problem so that th& ., tracking performance in
(47) is reduced as small as possible.

min p?
P,

subjecttoP, = P >0 and (54). (57)

From the analysis above, the most important work offhg
fuzzy decentralized observer-based tracking control problem is
how to solve the common solutioR, = PT > 0 from the
minimization problem (57). In general, it is not easy to ana-
lytically determine common solutio®;, = PiT > 0 for (57).
Similarly, (57) can be transferred into a minimization problem
subject to some linear matrix inequalities (LMIs) called eigen-
value problem (EVP) [31]. The EVP can be solved in a computa-
tionally efficient manner using a convex optimization technique
such as the interior point method [31].

The following decoupling technique is employed to simplify
the design problem. For the convenience of design, we assume

R P 0 0
P=| 0 Fan 0 (58)
0 0  Pis

Whereﬁ’ill = 1’577111 >0, piQQ = ISEQ > O,pigg = 1’577?:3 > 0.
This choice is suitable for the separate design of the fuzzy
controller and fuzzy observer. By substituting (58) into (54),

. tr we obtain (see (59) at the bottom of the page) whelig =
< T 2 > 1
< @ (0 FE:(0) +p /0 wi(8)" i(t) dt (56) (Air + BirKim)' Py + Pini(Aix + BixKim) + Qi
i M, P11 (B Kim) — Qi —Pa1(BiaKim)
—(BikKim)TPil; — Qi AlLPi+ PippAri + Qi 0
—(szsz) P 0 (Air — LinCim)T Piss + Piss(Ai — LirCim)
AL Py 0 0
ij
0 0 0
0 0 AL, Piss
Pill ~O -Pz33
0 22 0.
L 0 — L}, P33
PiiAije 0 0 Py 0 0 ]
0 0 0 0 Pioo 0
0 0 PiazAijn  Pias 0  —FiaaLi
0 0 0 0 0 0
o 0 0 0 0 0 <0 (59
0 0 0 0 0 0
O 0 0  —pI 0 0
o 0 0 0 —p 0
0 0 0 0 0 —p?I |
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By introducing a new matrix

whereW;;; = P71 and multiplying it into (59), we obtain
W; x {Left hand side of (59) x W; < 0.

decentralized control system, the most important task is to

solve common solution®;;; = W1, > 0, P2y = P4, > 0

and P33 = 11%;3 > 0 from (62). Since the variablek;,, and
Yim (=K;»W;11) are cross-coupled, there are no effective
algorithms for solving these matrix inequalities till now. By the
choice of (58), the control problem and observer problem can
be decoupled and can be solved separately by the following
two-stage procedures which solve the fuzzy control parameters
first and then solve the fuzzy observer parameters. These will
be discussed in detail in the following.

We first solveW;;; andY;,, from the following matrix in-

equalities
(AiWin1 4+ BinYim)T + (AuWin + BinYim)
+ W1 QiWin < 0. (63)

Note, that by the Schur complements, (63) is equivalent to
(see (64) at the bottom of the next page).

Note that solvingﬁ/ill andY;,, from (64) is a convex linear
matrix inequality problem (LMIP). After solving the LMIP in
(64) to obtaanzll andY;,, (thusK;,, = Y;lel) and by

With Zix = PiasLi, andY;,, = K;,,Wii1, the inequali- substitutingi;1; andY;,,, and K,,, into (61), (61) becomes a
ties in (60) are equivalent to following matrix inequalities (seeonvex linear matrix inequalities (LMIs).

(61) at the bottom of the page) wheid, = (AiWiry +
szY;nl) (Aszzll + szy;nl) + Wzlle

Therefore,

Second, we can solve the following eigenvalue problem
(EVP)

- fuzzy decentralized observer—based 9

min p

tracking control problem can be reformulated as the following (PraosPros, Zix}

optimization problem:

Inln
{Wir1,Pio2, Pizs}

subject toW;;; =

Pig3 = P33 >0 and (61)

subject toP;y; = PL, > 0,
Pz =PL, >0 and (61) (65)
to obtainPa2, Pizz and Ziy, (thusLi, = Pz Zix).
Therefore, the H,, fuzzy decentralized observer-based
tracking control problem in (62) is equivalent to solving

2

The analysis above shows that when dealing with the {v”vm,l%-l;:,ﬁss}p
stabilization design problem of the fuzzy observer-based subjectto (64) and (65) (66)
i Mz —BixKim
—(BirKim)" Al P122+R22A”+Qi N 0
—(szsz) (PiazAix — ZinCim)T + (PiazAix — ZinCim)
AL, 0 0
0 0 0
0 0 A“szgg
1 0 P33
0 Po 0
I 0 —Z},
Aijr 0 0 I 0 0
0 0 0 0 Py 0
0 0 PuagdAyjp Pas 0 —Zy
0 0 0 0 0 0
0 0 0 0 0 0 | <0 (61)
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 —pI 0
0 0 0 0 0 —pI|
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The design procedures for tit&,, fuzzy observer-based de-
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Example 1: Suppose the state variables are available. Now,

centralized tracking control of interconnected systems are sufoowing theDesign Procedure 1in the above section, a design

marized as follows:

Design Procedure 2:

Step 1) Select fuzzy plant rules (37).

Step 2) Solve the LMIP in (64) to obtalf;;; andY;,, (thus
Kim = YimW;11) can also be obtained).

Step 3) Substitutin@Vill,ng, andK;,, into (61) and then
solve the EVP in (65) to obtai#;»2, F;33 and Z;;
(thusL;, = P Z;, can also be obtained).

Step 4) Construct the fuzzy observer in (40).

Step 5) Obtain fuzzy decentralized control rule in (41).

as

V. SIMULATION EXAMPLES

We consider a two-machine interconnected system which is
composed of two-machine subsystefsas follows [33]
Si : i’il (t) = Ty, (t)
D;
2

b3 BB o (55, - 0y)

J=1,57 ¢
— Cos(alzi1 () —x;, (t) + 679]» — 97;j)]
+ Wi, (t)

yi(t) = @i, () +vi(t)

1
W

.7‘ t) = a7 Y
() v

®)

(67)

where

x4, (t), z;,(t) absolute rotor angle and angular velocity of
theith machine, respectively;
inertia coefficient;
damping coefficient;
internal voltage;
modulus of the transfer admittance between
theith andjth machines;
phase angle of the transfer admittance be-
tween theith andjth machines;
external disturbance which is assumed to be
sinusoidal with amplitude 1 and periad
measurement noise which is assumed to be
zero mean white noise with variance 0.1 for

ij=12(#j).

M;

B

Jlle

&

>
T
<

w;, (1)

Ui(t)

We assume the two-machine interconnected systems’ param-

eters as follows:

E,=1017  E,=1.005
M, =103  My=1.25
D =08 Dy=12

Yo =Y =198

O = —bo1 = 1.5 8% = —69, =1.2

procedure of fuzzy decentralized state feedback controller for
model reference tracking of the interconnected system is given

follows:

Step 1) To use the fuzzy decentralized control approach,we

represent the interconnected system (67) by a fuzzy
model. The problem of constructing Takagi—Sugeno
fuzzy model for nonlinear systems can be found
in [35]-[37]. To minimize the design effort and
complexity, we try to use as few rules as possible.
Hence, we approximate the system by the following
nine-rule fuzzy model.

Rule 1

If 21, (¢) is about — g andzs, (t) is about — g,

Thenj:i(t) = Ailxi(t) + Bilui(t)
2

+ Y Aiyr() Fwi(t).

J=1,j#i
Rule 2

If 21, (¢) is about— g andzo, (t) is abouto,
Thenz; (t) = A7‘,2 az(t) + B7‘,2 U,7(t)

+ Z Aijzxj(t)—i—wi(t)

J=1.57
Rule 3
. m . w
If z1,(¢) is about — 5 andz», (t) is aboutg,

Thena’:i(t) = Aig-Ti (t) + .BZ‘3 U (t)

g (t) + w; (t) .

\ +

LM

N
%

Rule 4

If z1,(¢) isaboutd and s, (¢) is about— g,
Thena’:i(t) = Ai4$i(t) + Bi4ui(t)
2
+ > A +wilt).
j=1,5#i
Rule 5

If 21, (¢) is aboutd andz», (¢) is abouto,
Thenj:i (t) = Ai5 a:z(t) + Bi5 U,Z(t)

+ D Agr() +wi(h).

J=Lji

(AisWitt + BiYim)' + (AuaWitt + BiYim)

Wi

(64)
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Rule 6
. . s 08 _
If 21, (¢) is aboutd andz,, (t) is aboutg, ~
os- 1
Theng; (t) = A a:z(t) + B, U,Z(t) /
2 0.4 ,/ i
+ Y A () + wi(h). 0al |
J=1,j#i /
or i
Rule 7
. T . T 02 B
If z1,(¢)is about5 andzs, (¢) is about — 7
04+ g
Thend:i(t) = Ai7$i (t) + Bi7 U (t)
2 06 i
+ Z Aijr i (t) +wit). o8} Ny
j=1.#i o= >
Rule 8 o 2 4 5 5 10 12 " 18 18 20
. ™ . Fig. 1. The trajectories of the state variablg (¢) (solid line) and reference
If z1,(t) is abOUtE andz, (t) is abouto, state variabler,., (t) (dashdot line). .
Thenz; (t) = A .Tz(t) + B, U,Z(t) 1 T T T T T T T T T
2 |
0.8 ~
> Ay (1) Fwi(), i
J=Lj#i o8 1
Rule 9 04

If z1,(¢)is aboutg andzs, (t) is aboutg, 02t

Thenz; (t) = Aig az(t) + Big U,7(t)

+ D Ay () wi()

J=1i#i

ok
02f
041
06

where A;x, Bi, Aiji are listed in Appendix A,
wi(t) = [0, w, ] andC;, =[10]fori=1,2 4

andkt =1,...,9.
The reference models are given as TeTTTTTTTTd e 8 w0 1z 4 18 18 2
0 1 ] Fig. 2. The trajectories of the state variablg, () (solid line) and reference
Ay = ~100 —101 state variabler 1, (t) (dashdot line).
and ) !
0 i 038
1 ) .
71(t) _ 00 COS(O Ot) fori: = 17 2. 05l
1005sin(0.5¢) | 04l

For the convenience of desin, triangle type mem- ,,|
bership functions are chosen for Rule 1-Rule 9.

Step 2) Solve EVP using the LMI optimization toolbox in  °[
Matlab [34]. In this case w02f
0.0092 —0.0376 5 0.4
Wi = [—0.0376 2.6558 } x 10 e
and '
0.0098 —0.0471 5 -08F
W = {—0.0471 3.4882 } X107 L | -

Step 3) The control parameters can be found in Appendix B.
: _ ; : i R ig. 3. The trajectories of the state variablg (%) (solid line) and reference
Figs. 1-4 present the simulation results. ITnltlaI COﬂdItIOhTIS agate variabler,. (t) (dashdot line).
sumed to bQ‘Th (0)7 L1,y (0)7 L2, (0)7 L2, (0)) = (17 0,1, 0)
in the simulations. The trajectories of the state variahldt) The trajectories of the state variable, (¢) including reference
including reference state variahlgy, (¢) are shown in Fig. 1. state variable:,.1,(¢) are shown in Fig. 2. The trajectories of the
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~o 2 4 6 8 10 12 14 16 18 20
Fig. 4. The trajectories of the state variablg, (¢) (solid line) and reference
state variabler,2, (t) (dashdot line). Fig. 6. The trajectories of the state variablg, () (solid line) and reference
state variable,1, (¢) (dashdot line).

o 2 4 6 8 10 12 14 16 18 20

0 2 4 6 8 10 12 14 16 18 20

Fig. 5. The trajectories of the state variablg () (solid line) and reference
state variabler,1, (¢) (dashdot line). Fig. 7. The trajectories of the state variablg, (¢) (solid line) and estimated
state variablei1, (1) (dashdot line).

state variablers, (¢) including reference state variablgs, (¢)

are shown in Fig. 3. The trajectories of the state variablé?) Prgo = 8'88?3 8'8822}

including reference state variakie,, () are shown in Fig. 4. - )
Example 2: Suppose the state variables are not all available. Pyoy = 33.8545 33-5434}

Then, following theDesign Procedure 2n the above section, [ 33.5434  33.8967

a design procedure of fuzzy observer-based decentralized con- P — [ 0.0686 —0.0067
troller for the model reference tracking of the interconnected 1937 ~0.0067  0.0017
system is given as follows. We assume the state variables . [ 0.0924 —0.0088
z1,(t) € [-m/2,7/2] and z3,(t) € [-w/2,7/2] can be Pz = | _g.0088  0.0020 } '
measured to construct the fuzzy model. In other words, the )
state variables, (¢) andzs,(t) should be estimated. Step 3) The observer parameters can be found in Ap-
Step 1) The same &xample 1 pendix C.
Step 2) Solve LMIP and EVP using the LMI opti- Step 4) The control parameters can be found in Ap-
mization toolbox in Matlab. In this case pendix D.
Figs. 5-10 present the simulation results. The trajectories
Wi = [ 0.0077 —0-0493} % 107 of the state variable:, (t) including reference state variable
—0.0493  1.7958 x,1,(t) is shown in Fig. 5. The trajectories of the state variable
W — [ 0.0079 —0.0488} 107 z1,(t) including reference state variahblg, (¢) is shown in
70,0488 1.7743 Fig. 6. The trajectories of the state variablg,(¢) including
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15 T T T T T T g T T 2

“o 2 4 6 8 1 12 14 16 18 20 7o

] 8 10 12

14 16 18 20

Fig. 8. The trajectories of the state variabig (¢) (solid line) and reference fig 10, The trajectories of the state variablg (#) (solid line) and estimated

state variabler 2, (t) (dashdot line).

state variablet 2, (t) (dashdot line).

are not all available, a decentralized fuzzy observer is also pro-
posed to estimate the states of each subsystem for decentral-
ized control. Consequently, a fuzzy observer-based state feed-

back decentralized fuzzy controller is proposed to solveithe
tracking control design problem for nonlinear interconnected
systems. The problem @i, decentralized fuzzy tracking con-
trol design for nonlinear interconnected systems is characterized
in terms of solving an eigenvalue problem (EVP). The EVP can
be efficiently solved using convex optimization technigues. The

3 _
proposed fuzzy observer-based decentralized control scheme is
4 ] simple without complex control algorithms. Therefore, itis suit-
able for practical applications. Simulation example is given to
* | illustrate the design procedure and tracking performance of the
ol i proposed method.
g z 4 s s 10 12 14 i 18 20 APPENDIX A
Fig. 9. The trajectories of the state variablg, (¢) (solid line) and reference [ 0 1 )
state variabler 2, (t) (dashdot line). All —0.7046 —0.7767
_ _ _ o [0 ] [0 0]
estimated state variable,, (t) is shown in Fig. 7. The tra- By, 09700 | 12 = | 05086 0
jectories of the state variable:, () including reference state - 0 N 1 E N
variablez,o, (t) is shown in Fig. 8. The trajectories of the state Ay, _1.4809 —0.7767
variable z,, (¢) including reference state variablg., (¢) is Lo : ; i
shown in Fig. 9. The trajectories of the state variabe(t) B, 0 Apy, = 0 0
including estimated state variablg, (#) is shown in Fig. 10. * 09709 | 15483 0]
From the simulation results, the proposed decentraliZed A [0 1
control scheme can solve the tracking problem for nonlinear Ls —1.4536 —0.7767}
interconnected systems effectively and systematically with the r 0 ] ) 0
aid of LMI toolbox in Matlab. Blz 0.9709 A123 = 1.4556 0:|
VI. CONCLUSION A 0 L }
- BT 10472 —0.7767
In this paper, a Takagi and Sugeno fuzzy model is proposed oo ] 0 0
to study the model reference tracking control problems for non- By, 0.9709 A, = —0.7669 0}
linear interconnected systems using fuzzy decentralized control. - - -
A fuzzy decentralized controller is proposed to override the ef- Al 0 1 }
fect of external disturbances such that fiig, model reference * [ 05139 —0.7767
tracking performance is achieved. Furthermore, the stability of B [0 ] A — [0 0
the nonlinear interconnected systems is also guaranteed. If states Ls 0.9709 1257 10.5249 0
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Ay,
Bi,

Ay

7

B,

7

A1

8

B,

8

A1

9

B,

9

A

1

Bs

1

A

2

Do

2

3
Bs,

Az

4

B,

4
Ao,

Bs

1

Az

[

Bs

[

Az

7

Bs

7

A

8

8

A

9

By,

0 1
| —1.5480 —0.7767
0
0.9709 | Aize =
[ o 1
| 11261 —0.7767
C
09709 | Aiz, =
[ o 1
|0.7686  —0.7767
C T
| 0.9709 | Az =
[0 1
| —0.5066 —0.7767
0
| 0.9709 | Arz, =
[0 1
| 0.2776  —0.96
o T i
| 0.800 | Ay = I
[0 1
| —0.6478 —0.96
o T i
| 0.800 | Ax, =
[0 1
| —0.9528 —0.96
0 ] i
| 0.800 | Az, =
o L
| 1.2532 —0.96 |
F
| 0.800 | Az, = I
A _
03200 —0.96 |
F o
| 0.800 | Az,
[0 1
| —0.9129 —0.96
o T i
| 0.800 | Az, =
[0 1
| 1.2135 —0.96
0 i
| 0.800 | Azy = I
[0 1
| 1.2206 —0.96
C o T i
| 0.800 | Az = I
[0 1
| —0.5133 —0.96
o T i
A219:

| 0.800 |

= -0.2912 0]

|

[0 0
14812 0

[0 0
10.7017 0

0 0
—0.4410 0

0 0
109436 0

0 0
10.9284 0

0 0]
—-1.2188 0]

0 0]

0 0
10,6472 0

0 0]
—-1.2104 0|

0 0]
—1.2670 0 |
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LlO

L22

L24

Lag

Log

APPENDIX B
K1) =[-140.6451 —67.8928]
Ko =[—140.3757 —67.7941]
K3 =[—140.3836 —67.7969]
K4 =[-141.3106 —68.1321]
K5 =[—140.7160 —67.9187]
Kig =[—140.3494 —67.7843]
K17 =[—141.3433 —68.1446]
Kz =[-141.2039 —68.0953]
Ko = [—140.7202 —67.9204]
Ky =[—184.0177 —85.4650]
Koo = [—183.7923 —85.4344]
Koz = [-183.7179 —85.4238]
Koy =[—184.2922 —85.5030]
Koy = [—184.0277 —85.4662]
Kog = [~183.7261 —85.4246]
Ko7 =[—184.2813 —85.5016]
Kog = [—184.2854 —85.5023]
Koy = [—184.0760 —85.4728)].
APPENDIX C
[15.2449] [15.2449
= L12 =
| 58.9788 | | 58.2905 |
[15.2449 [15.2449
= L14 =
| 58.8063 | | 58.1325 |
_ [15.2449] I — [15.2449 |
~ | 58.9632 | 167 | 58.9628 |
_ [15.2449] L= [15.2449 |
~ 589342 | 17| 58.4381 |
[15.2449 ] [17.2505 ]
= L21 =
| 58.9351 | | 83.9651 |
[17.2505 | Loe = [17.2505 |
~ 852093 | 37 | 88.9561 |
(17.2505]  _ [17.2505]
~ 186.4055 | 57 | 83.9011 |
[17.2505 | Lo — [17.2505 |
~ | 85.9321 | 2T 89.3109 |
_[172505) - [17.2505]
~ 856217 | 27 | 83.8479 |
APPENDIX D
Ky =[-225.3436 —23.8345]
K1y =[—224.4896 —23.8259]
K3 =[-224.5195 —23.8262]
Ky, =[—227.2713 —23.8540]
K5 =[-225.5534 —23.8366]
K6 = [-224.4156 —23.8251]
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(1]
(2]

(3]

[4]
(5]

(6]

(71

(8]
9]

(10]

[11]

(12]

(23]
[14]

[15]

[16]
[17]
(18]

[19]

(20]

K17 = [-227.3581 —23.8548] [21]
Ky = [-226.9647 —23.8509]
Ko = [-225.5614 —23.8367] [22]
Ka1 = [—239.0267 —24.5687] 2
Koy = [-237.8031 —24.5578]
Kjs = [-237.3998 —24.5542] 241
Koy = [~240.3168 —24.5803]
Kas = [239.0827 —24.5692] [25]
Ko = [-237.4526 —24.5547]
Ko7 = [~240.2643 —24.5798] [26]
Kag = [~240.2737  —24.5799] -
Ko = [239.3384 —24.5715].
[28]
[29]
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