Lesson 1
Introduction

楊尚達 Shang-Da Yang
Institute of Photonics Technologies
Department of Electrical Engineering
National Tsing Hua University, Taiwan
Sec. 1-1
Basics

1. What is EM
2. Why to study EM
3. Overview
4. Analysis of different types of EM problems
What is Electromagnetism (EM)?

- The study of electric charges at rest and in motion
Why to study EM?

- To understand the natural EM phenomena
 E.g. The “blue” sky (EM wave scattering), the lightening (discharge)

- To create EM devices to facilitate (and complicate) our lives
 E.g. The compass, motors, memories, solar cells

- To be an EE alumnus(alumna)

- To appreciate the beauty of the universal laws
Overview of EM

- Electric charges establish electric fields
- Moving charges become electric currents and create magnetic fields
- Timing-varying charges and currents cause the coupling between electric and magnetic fields such that they behave like “waves”
Types of EM problems

- Lumped circuit
 - $L \ll \lambda$
 - $V_s(t)$
 - R_1
 - R_2

- Transmission line
 - $D \ll \lambda$
 - $L > \lambda$

- Waveguide (cross-section)
 - $L \gg \lambda$
 - $D > \lambda$
Analysis of EM problems

<table>
<thead>
<tr>
<th>Conditions</th>
<th>Theory</th>
<th>Unknowns</th>
<th>Math tool</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>$L << \lambda$</td>
<td>Lumped circuits</td>
<td>$V(t)$, $I(t)$</td>
<td>Ordinary differential equations (ODEs)</td>
<td>All points react to the source instantly</td>
</tr>
<tr>
<td>$L > \lambda$,</td>
<td>Transmission lines</td>
<td>$V(z,t)$, $I(z,t)$</td>
<td>Partial differential equations (PDEs)</td>
<td>Delay along the longitudinal (z) direction matters</td>
</tr>
<tr>
<td>$D << \lambda$</td>
<td>Kirchhoff’s laws</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$L >> \lambda$,</td>
<td>Waveguides</td>
<td>$\bar{E}(x,y,z,t)$, $\bar{H}(x,y,z,t)$</td>
<td>Full vectorial PDEs</td>
<td>Delay along the longitudinal (z), and transversal (x,y) directions matter</td>
</tr>
<tr>
<td>$D > \lambda$</td>
<td>Maxwell’s equations</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Example: Monopole antenna

- Lumped circuit theory: it’s an “open circuit”, no current can flow.
- EM theory: it may carry spatially nonuniform current.
Sec. 1-2
EM Model

1. Methodology
2. Our approach
Methodology

- **Inductive (歸納) approach:** Starting with observations of experiments, inferring laws and theorems (from particular phenomena to general principles)

- **Deductive (演繹) approach:** Starting with fundamental postulates, deriving particular laws and theorems, which can be verified by experiments
Our approach: Deductive

1. Defining the basic quantities:

 (i) Electric charge \(q \) \((e = 1.6 \times 10^{-19} \text{ C}) \), volume charge density \(\rho \) \(\text{C/m}^3 \)

 (ii) Current \(I \) \(\text{C/s, or A} \), volume current density \(\vec{j} \) \(\text{A/m}^2 \)

 (iii) Electric field intensity \(\vec{E} \) \(\text{V/m} \): Electric force on a unit charge

 (iv) Electric flux density \(\vec{D} \) \(\text{C/m}^2 \): Useful in studying electric field in materials

 (v) Magnetic flux density \(\vec{B} \) \(\text{T} \): Magnetic force on a charge moving with a given velocity

 (vi) Magnetic field intensity \(\vec{H} \) \(\text{A/m} \): Useful in studying magnetic field in materials
Our approach-2

2. Rules of operations:

 (i) Vector analysis

 (ii) Partial differential equations

3. Fundamental postulates: Maxwell equations and conservation of electric charges relate the source and field quantities. The solutions describe all the EM phenomena.