Lecture 1: Introduction

- Acronyms for the technology:
 - MEMS (Microelectromechanical Systems) in US
 - MST (Microsystems Technology) in Europe

- Definitions of MEMS
 - Miniaturization (most would agree..)
 - A toolbox of techniques and processes (Micromachining)
 - Many “borrowed” from IC industry
 - Specialized, not generic physical application (e.g., Bio-MEMS)
 - A way of merging the functions of sensing and actuation
 with communication and computation at microscale
 - Components → Subsystems → Microsystems

Introduction

- MEMS advantages
 - Miniaturization
 - Multiple components
 - Microelectronics
 - Low Cost

- Example: Accelerometer for airbag system
 - Less than $10, 10 Billions sold by Sept, 2002

Micromechanical sensor surrounded by on-chip excitation, self-test, and signal-conditioning circuitry

Analog Devices’ ADXL-50 accelerometer
Miniaturization

- Suitable for portable applications
 - Small
 - Light-weight
- Better performance in many (but not all!) applications
 - Lighter structures
 - Higher mechanical bandwidths
 - Shock-resistant structures
 - Low thermal mass
 - Fast thermal actuator and sensor
- Smaller means more devices and complexity can fit into the same space at the same cost

Micromachined Transducers

- Transducers convert one energy domain into another form:
 - Thermal, Mechanical, Magnetic, Electrical, Chemical, Radiant
 - Actuators: energy -> mechanical motion
 - Micro-actuators are not widely used because of limited output power, mostly for moving themselves (e.g., micro-mirrors, read/write head servo)
 - Sensors: energy -> electrical signal
 - Microsensor packaging and testing account for ¾ of total cost
Emerging Applications and Market*

- Market dominated by a few devices (e.g., accelerometer, pressure sensor, and inkjet head), no "killer app"
- 1.6 MEMS devices per person as of now. 5 devices per person by 2004 (MEMS Industry Group 2002)

Micro Probe Array

- Micromachined probe array as the platform for nano-scale applications

* Pictures from Calvin Quate, Stanford Univ.
To MEMS or not to MEMS?

- Must meet required specifications and pricing
- SCALING vs. PERFORMANCE (e.g., Uncooled IR imager)
- A good MEMS solution enables
 - A new function (e.g., Medical applications)
 - Cost reduction (e.g., Auto industry)
- Technology success is evaluated by economic success, which must be enabled by “Batch Fabrication”
 - To dilute overall cost of cleanroom maintenance, packaging, etc

High-level Design Issues

- Evaluation of competition
- Manufacturing consideration
- Market projection
- Technological capabilities
- Creative designer
- Modeling and Analysis
Modeling Levels

- **System**
 - Block diagram and lumped-parameter Models (solving of ODE's)
- **Device**
 - Analytic macro-model
- **Physical**
 - Numerical simulation of PDE's
- **Process**
 - Technology CAD

Standards for MEMS?

- Lack of dominant MEMS standards as the Complementary Metal oxide semiconductor (CMOS) technology for IC industry
 - Contributed by diverse applications with specific needs
 - Resulting in difficulties for developing CAD tools for MEMS design as for IC
 - Technology file
 - Design rules
 - Micromechanical device models
MEMS Information Resources

- **Journals**
 - IEEE/ASME J. of Microelectromechanical Systems, 1992-.
 - Sensors and Actuators: A. Physical, Elsevier Science, Lausanne, Switzerland, 1980-.
 - Sensors and Materials, Japan, 1989-.

- **Conferences**
 - Int’l Conf. on Solid-State Sensors and Actuators (Transducers): odd years in US, Asia, or Europe, 1981-.
 - Solid-State Sensor and Actuator Workshop: Hilton Head Is., SC, June, even years, 1984-.
 - MicroElectroMechanical Systems Workshop, Feb., yearly, 1987-.
 - Int’l Conf. on Modeling and Simulation of Microsystems, 1998-.
 - SPIE Symposium on Micromachining and microfabrication, Nov., yearly, 1995-.
 - Also, IMECE, MRS, IEDM, ISSCC