Solutions for Quiz 2 (10pts)

1. (1+1+1pts)
 (a) direct proof (p → q)
 Show that if n is an even number, then \(n^2 \) is also an even number.
 Let \(n = 2k \) is an even number, where \(k \) is an integer
 then \(n^2 = (2k)^2 = 4k^2 = 2(2k^2) \) is also an even number

 (b) indirect proof (\(~q \rightarrow ~p~\))
 Show that if \(n^2 \) is an odd number, then \(n \) is also an odd number.
 Let \(n^2 = 4k^2 + 4k + 1 = 2(2k^2 + 2k) + 1 \) is an odd number, where \(k \) is an integer
 then \(n = (4k^2 + 4k + 1)^{1/2} = 2k + 1 \) is an odd number
 so, if \(n \) is an even number, then \(n^2 \) is also an even number.

 (c) a proof by contradiction
 Let \(P \) be the statement that the square of an even number is an odd number, and \(P \) is true.
 Set \(n = 2k + 1 \) is an odd number, where \(k \) is an integer
 then \(n^2 = (2k + 1)^2 = 4k^2 + 4k + 1 = 2(2k^2 + 2k) + 1 \) is an odd number,
 which contradicts to the statement \(P \).
 So, the square of an even number is an even number is true.

2. (1+1+1+1pts)
 (a) Let \(P(x) \) denotes \(x \) in this class likes mathematics
 Negation: \(~ (\forall x P(x)) \equiv \exists x \sim P(x)\)
 At least one student in this class does not like mathematics.

 (b) Let \(P(x) \) denotes \(x \) in this class who has ever seen a computer
 Negation: \(~ (\exists x \sim P(x)) \equiv \forall x P(x)\)
 Every student in this class has ever seen a computer.

 (c) \(P(x,y) \): \(x \) in this class who has taken \((y \) course) offered at this school
 Negation: \(~ (\exists x \forall y P(x,y)) \equiv \forall x \exists y \sim P(x,y)\)
 Every student in this class hasn’t taken at least one mathematic course
 offered at this school.
(d) $P(x,y,z)$: x in this class who has been in (y room) of (z building) on campus

Negation: $\sim (\exists x \exists y \forall z P(x,y,z)) \equiv \forall x \forall y \exists z \sim P(x,y,z)$

Every student in this class hasn’t been in every room of some building on campus.

3.

\[
A \oplus B = (A - B) \cup (B - A) \\
= A' B' + A B' \\
= (\overline{A} \cap B) \cup (A \cap \overline{B}) \\
= \{x | x \notin A \land x \in B\} \cup \{x | x \in A \land x \notin B\} \\
= (B - A) \cup (A - B)
\]