EE641000 Quantum Information and Computation

Chung-Chin Lu
Department of Electrical Engineering
National Tsing Hua University

February 21, 2006
Unit Two – Principles of Quantum Mechanics
Postulates of Quantum Mechanics
Postulate 1 – States

Associated to an isolated physical system is a Hilbert space \mathcal{H} (eg, a finite-dimensional complex inner product space). The system is completely described by its state, which is represented by a one-dimensional subspace of the Hilbert space \mathcal{H}.

- A one-dimensional subspace of \mathcal{H} can be represented by a unit vector $|\psi\rangle$ in it.

- A state of the system can be represented by a unit vector $|\psi\rangle$ in the Hilbert space \mathcal{H}, where $|\psi\rangle$ is called a state vector.
 - This unit vector representation of a state is not unique since each of $|\psi\rangle$ and $e^{i\theta}|\psi\rangle$ spans the same one-dimensional subspace of \mathcal{H}.

A quantum bit (qubit) is the state represented by unit vectors of a two-dimensional Hilbert space \mathcal{H} associated with a physical system.

- $\{ |0\rangle, |1\rangle \}$: an orthonormal basis of \mathcal{H}.
- $|\psi\rangle = a|0\rangle + b|1\rangle$: a unit vector in \mathcal{H} where $|a|^2 + |b|^2 = 1$.

- The unit vector $|\psi\rangle$ and each of $e^{i\theta}|\psi\rangle$ represent the same state of a qubit.
Postulate 2 - Time Evolution

The evolution of a closed quantum system is described by a unitary operator. That is, the state $|\psi\rangle$ of the system at time t_1 is related to the state $|\psi'\rangle$ of the system at time t_2 by a unitary operator U which depends only on the times t_1 and t_2,\

$$|\psi'\rangle = U|\psi\rangle.$$
Postulate 2’ – Time Evolution Revisited

The time evolution of the state of a closed quantum system is described by the Schrödinger equation,

$$i\hbar \frac{d|\psi\rangle}{dt} = H|\psi\rangle.$$

where

- \hbar : the Planck’s constant
- H : a Hermitian operator known as the Hamiltonian of the closed system
Solution of Schrödinger Equation

\[|\psi(t)\rangle = e^{-i \frac{H}{\hbar} (t - t_0)} |\psi(t_0)\rangle = U(t; t_0) |\psi(t_0)\rangle \]

- \(H \) : a Hermitian operator
- \(U(t; t_0) = e^{-i \frac{H}{\hbar} (t - t_0)} \) : a unitary operator for given \(t \) and \(t_0 \).
A quantum measurement is described by a collection \(\{M_m\} \) of
\textit{measurement operators}, acting on the Hilbert space associated to a
quantum system being measured and satisfying the \textit{completeness}
equation

\[
\sum_m M_m^{\dagger} M_m = I.
\]

\(m \) : the index which represents possible measurement outcomes.
If the pre-measurement state of the quantum system is $|\psi\rangle$, then the probability that a measurement result m occurs is given by

$$P(m) = \langle \psi | M_m^\dagger M_m | \psi \rangle,$$

and the post-measurement state of the system is

$$\frac{M_m | \psi \rangle}{\sqrt{\langle \psi | M_m^\dagger M_m | \psi \rangle}}.$$

The completeness equation expresses the fact that probabilities sum to one

$$\sum_m P(m) = \sum_m \langle \psi | M_m^\dagger M_m | \psi \rangle = \langle \psi | \left(\sum_m M_m^\dagger M_m \right) | \psi \rangle = \langle \psi | \psi \rangle = 1.$$
Measurement of a Qubit

- \mathcal{H}: a two-dimensional Hilbert space associated to a quantum system.
- $\{|0\rangle, |1\rangle\}$: an orthonormal basis of \mathcal{H}.
- $M_0 = |0\rangle\langle 0|$, $M_1 = |1\rangle\langle 1|$: measurement operators.
 - Hermitian operators.
 - $M_0^2 = M_0$ and $M_1^2 = M_1$.
 - Completeness equation is satisfied

$$M_0^\dagger M_0 + M_1^\dagger M_1 = M_0^2 + M_1^2 = M_0 + M_1 = I.$$
• $|\psi\rangle = a|0\rangle + b|1\rangle$: a qubit being measured.

 $- \mathcal{P}(0) = \langle \psi \vert M_0^\dagger M_0 \vert \psi \rangle = \langle \psi \vert M_0 \vert \psi \rangle = \langle 0 \vert \langle 0 \vert \psi \rangle = |a|^2$.

 $- \mathcal{P}(1) = \langle \psi \vert M_1^\dagger M_1 \vert \psi \rangle = \langle \psi \vert M_1 \vert \psi \rangle = \langle 1 \vert \langle 1 \vert \psi \rangle = |b|^2$.

 $- \text{State after measurement}$

 \[
 \frac{M_0 \vert \psi \rangle}{|a|} = \frac{a}{|a|} \vert 0 \rangle, \\
 \frac{M_1 \vert \psi \rangle}{|b|} = \frac{b}{|b|} \vert 1 \rangle.
 \]
Projective (von Neumann) Measurements

- M: a Hermitian operator on the Hilbert space, called an *observable*, with the spectral decomposition

$$M = \sum_{m} mP_m$$

where P_m is the projector onto the eigenspace of M associated with eigenvalue m.

- The projectors $\{P_m\}$ are measurement operators.

 * $P_m^\dagger = P_m$ and $P_m^2 = P_m$.

- Completeness equation:

$$\sum_m P_m^\dagger P_m = \sum_m P_m^2 = \sum_m P_m = I.$$

- m: possible outcomes of the measurement.
If the pre-measurement state of the quantum system is $|\psi\rangle$, then the probability that an outcome m occurs is given by

$$P(m) = \langle \psi | P_m^\dagger P_m | \psi \rangle = \langle \psi | P_m | \psi \rangle,$$

and the post-measurement state of the system is

$$\frac{P_m | \psi \rangle}{\sqrt{\langle \psi | P_m | \psi \rangle}}.$$

The completeness relation expresses the fact that probabilities sum to one

$$\sum_m P(m) = \sum_m \langle \psi | P_m | \psi \rangle = \langle \psi | \left(\sum_m P_m \right) | \psi \rangle = \langle \psi | \psi \rangle = 1.$$
Repeatability of a Projective Measurement M

- $|\psi\rangle$: pre-measurement state.

- $|\psi_m\rangle = P_m|\psi\rangle/\sqrt{\langle\psi|P_m|\psi\rangle}$: post-measurement state once the outcome m is measured, which occurs with probability $\langle\psi|P_m|\psi\rangle$.

- $P_m|\psi_m\rangle = P_m|\psi\rangle/\sqrt{\langle\psi|P_m|\psi\rangle}$: post-measurement state after repeating the same projective measurement M, which occurs with probability

$$\langle\psi_m|P_m|\psi_m\rangle = \frac{\langle\psi|P_m^\dagger P_m|\psi\rangle}{\langle\psi|P_m|\psi\rangle} = \frac{\langle\psi|P_m|\psi\rangle}{\langle\psi|P_m|\psi\rangle} = 1.$$
Not every measurement is a projective measurement!
Average Value of an Observable M

$$\mathcal{E}(M) = \sum_m m\mathcal{P}(m) = \sum_m m\langle\psi|P_m|\psi\rangle$$

$$= \langle\psi\rvert \left(\sum_m mP_m \right) \rvert \psi\rangle = \langle\psi\rvert M \rvert \psi\rangle.$$

- $\langle M \rangle \equiv \langle\psi\rvert M \rvert \psi\rangle$.

- Variance of observable M

$$\sigma^2(M) = \langle (M - \langle M \rangle)^2 \rangle = \langle M^2 \rangle - \langle M \rangle^2.$$
Two Descriptions of Projective Measurements

- A complete set of orthogonal projectors \(\{P_m\} \)
 \[
 \sum_m P_m = I \quad \text{and} \quad P_m P_{m'} = \delta_{mm'} P_m
 \]
 - Observable: \(M = \sum_m m P_m \)
 - \(m \): real numbers

- An orthonormal basis \(\{|m\rangle\} \)
 \[
 P_m = |m\rangle \langle m|
 \]
 - Observable: \(M = \sum_m m |m\rangle \langle m| \)
 - \(m \): real numbers
Observable Z on a Qubit

- The observable $Z = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$ has eigenvalues +1 and -1
 with eigenvectors $|0\rangle$ and $|1\rangle$ respectively
- $Z = |0\rangle\langle 0| - |1\rangle\langle 1|$: spectral decomposition
- $|\psi\rangle = (|0\rangle + |1\rangle)/\sqrt{2}$: a qubit.

\[
P(+1) = \langle \psi | 0 \rangle \langle 0 | \psi \rangle = 1/2
\]
\[
P(-1) = \langle \psi | 1 \rangle \langle 1 | \psi \rangle = 1/2
\]
- $\langle Z \rangle = 0$
Heisenberg Uncertainty Principle
Commutator and Anti-commutator

- A and B : two operators.
- Commutator : $[A, B] \equiv AB - BA$
 - $[A, B] = 0 : A$ commutes with B.
- Anti-commutator : $\{A, B\} \equiv AB + BA$.
 - $\{A, B\} = 0 : A$ anti-commutes with B.
Pauli Matrices (Pauli Operators)

\[
X = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}, \quad Y = \begin{bmatrix} 0 & -i \\ i & 0 \end{bmatrix}, \quad Z = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}.
\]

- Hermitian and unitary.
- \([X, Y] = 2iZ, [Y, Z] = 2iX\) and \([Z, X] = 2iY\).
Simultaneous Diagonalization of Two Normal Operators

Let A and B be two normal operators. Then $[A, B] = 0$ if and only if there exists an orthonormal basis $\{|\psi_i\rangle\}$ such that A and B are diagonalizable with respective to that basis, i.e.,

\begin{align*}
A &= \sum_i \lambda_i |\psi_i\rangle\langle \psi_i|, \\
B &= \sum_i \mu_i |\psi_i\rangle\langle \psi_i|.
\end{align*}
\[|\langle \psi | [A, B] | \psi \rangle|^2 \leq 4\langle \psi | A^2 | \psi \rangle \langle \psi | B^2 | \psi \rangle \]

- \(A \) and \(B\) : two Hermitian operators.
- With \(\langle \psi | AB | \psi \rangle = x + iy\) where \(x, y\) real numbers, we have \(\langle \psi | BA | \psi \rangle = (\langle \psi | AB | \psi \rangle)^\dagger = x - iy\) and then
 \[\langle \psi | [A, B] | \psi \rangle = 2iy \quad \text{and} \quad \langle \psi | \{A, B\} | \psi \rangle = 2x. \]
- \(|\langle \psi | [A, B] | \psi \rangle|^2 + |\langle \psi | \{A, B\} | \psi \rangle|^2 = 4|\langle \psi | AB | \psi \rangle|^2.\]
- Schwarz inequality :
 \[|\langle \psi | AB | \psi \rangle|^2 \leq \langle \psi | A^2 | \psi \rangle \langle \psi | B^2 | \psi \rangle.\]

Thus we have
\[|\langle \psi | [A, B] | \psi \rangle|^2 \leq 4|\langle \psi | AB | \psi \rangle|^2 \leq 4\langle \psi | A^2 | \psi \rangle \langle \psi | B^2 | \psi \rangle.\]
Heisenberg Uncertainty Principle

\[\delta(C)\delta(D) \geq \frac{|\langle \psi | [C, D] | \psi \rangle|^2}{2}. \]

- \(C \) and \(D \): two observables.
- With \(A = C - \langle C \rangle \) and \(B = D - \langle D \rangle \), we have
 \[[A, B] = [C, D]. \]
- \(\delta^2(C) = \langle (C - \langle C \rangle)^2 \rangle = \langle A^2 \rangle = \langle \psi | A^2 | \psi \rangle. \)
- \(\delta^2(D) = \langle (D - \langle D \rangle)^2 \rangle = \langle B^2 \rangle = \langle \psi | B^2 | \psi \rangle. \)

Now we have
\[\delta^2(C)\delta^2(D) = \langle \psi | A^2 | \psi \rangle \langle \psi | B^2 | \psi \rangle \geq \frac{|\langle \psi | [A, B] | \psi \rangle|^2}{4} = \frac{|\langle \psi | [C, D] | \psi \rangle|^2}{4}. \]
If we prepare a large number of quantum systems in identical states, $|\psi\rangle$, and then perform measurements of C on some of those systems, and of D on others, then the standard deviation $\delta(C)$ of all measurement results of C times the standard deviation $\delta(D)$ of all measurement results of D will satisfy the inequality

$$\delta(C)\delta(D) \geq \frac{|\langle \psi | [C, D]|\psi\rangle|}{2}.$$
An Example

- X and Y: Pauli observables.
- $[X, Y] = 2iZ$.
- $|\psi\rangle = |0\rangle$: quantum system state.
- $\delta(X)\delta(Y) \geq \langle 0|Z|0 \rangle = 1$.
Positive Operator-Valued Measure (POVM) Measurements

- \(\{M_m\} \): a collection of measurement operators with
 \[
 \sum_m M_m^\dagger M_m = I.
 \]
- \(\mathcal{P}(m) = \langle \psi | M_m^\dagger M_m | \psi \rangle \).
- \(E_m \equiv M_m^\dagger M_m \): positive operators, called POVM elements
 \[
 \sum_m E_m = I \quad \text{and} \quad \mathcal{P}(m) = \langle \psi | E_m | \psi \rangle.
 \]
- \(\{E_m\} \): a POVM.
- Useful when only the measurement statistics matter.
For a projective measurement \(\{P_m\} \), all the POVM elements are the same as the measurement operators since

\[
E_m = P_m^\dagger P_m = P_m^2 = P_m.
\]
What Are POVMs?

- A collection of positive operators \(\{E_m\} \).
- Satisfying the completeness relation

\[
\sum_m E_m = I.
\]

The corresponding measurement operators can be chosen as \(\{\sqrt{E_m}\} \).
Postulate 4 – Composite Systems

- Q_i : ith quantum system.
- \mathcal{H}_i : the Hilbert space associated to the quantum system Q_i.
- $\mathcal{H} = \bigotimes_i \mathcal{H}_i$: the Hilbert space associated to the composite system of Q_i’s.
- $|\psi_i\rangle$: a state of quantum system Q_i.
- $|\psi\rangle = \bigotimes_i |\psi_i\rangle$: the joint state of the composite system.
Entangled States

- States in a composite quantum system.
- Not a direct product of states of component systems.
- \((|00\rangle + |01\rangle)/\sqrt{2}\) is not an entangled state since
 \[
 \frac{|00\rangle + |01\rangle}{\sqrt{2}} = |0\rangle \left(\frac{|0\rangle + |1\rangle}{\sqrt{2}} \right).
 \]
- Bell states in a two-qubit system are entangled states
 \[
 \frac{|00\rangle + |11\rangle}{\sqrt{2}}, \quad \frac{|00\rangle - |11\rangle}{\sqrt{2}}, \quad \frac{|01\rangle + |10\rangle}{\sqrt{2}}, \quad \frac{|01\rangle - |10\rangle}{\sqrt{2}}.
 \]
A Proof

Suppose that

$$\frac{|00\rangle + |11\rangle}{\sqrt{2}} = (a|0\rangle + b|1\rangle) \otimes (c|0\rangle + d|1\rangle)$$

$$= ac|00\rangle + ad|01\rangle + bc|10\rangle + bd|11\rangle,$$

where $|a|^2 + |b|^2 = |c|^2 + |d|^2 = 1$. Then we have

$$ad = bc = 0.$$

- $a = c = 0 \Rightarrow \frac{|00\rangle + |11\rangle}{\sqrt{2}} = e^{i\theta}|11\rangle$, a contradiction.
- $b = d = 0 \Rightarrow \frac{|00\rangle + |11\rangle}{\sqrt{2}} = e^{i\theta'}|00\rangle$, a contradiction.
The Density Operator Formulation of Quantum Mechanics

- A convenient means for describing quantum systems whose states is not completely known.
- A convenient tool for the description of individual subsystems of a composite quantum system.
An Ensemble of Quantum Pure States \(\{p_i, |\psi_i\rangle\} \)

- \(|\psi_i\rangle \): states of a quantum system, called pure states.
- \(p_i \): the probability that the quantum system is in pure state \(|\psi_i\rangle \),

\[
\sum_i p_i = 1.
\]

- The density operator or density matrix which represents this ensemble is

\[
\rho = \sum_i p_i |\psi_i\rangle \langle \psi_i|.
\]

- Not necessary a spectral decomposition of \(\rho \) since \(\{|\psi_i\rangle\} \) may not be an orthonormal set.
Evolution of a Density Operator

- U: a unitary operator, describing the evolution of a closed quantum system during a time interval.

- ρ: a density operator, representing an ensemble $\{p_i, |\psi_i\rangle\}$ of pure states, which describes the initial state of the system.

- $U\rho U^\dagger$: density operator, describing the final state of the system.

$$
|\psi_i\rangle \xrightarrow{U} U|\psi_i\rangle \\
\rho = \sum_i p_i |\psi_i\rangle\langle\psi_i| \xrightarrow{U} \rho' = \sum_i p_i U|\psi_i\rangle\langle\psi_i| U^\dagger = U\rho U^\dagger.
$$
Measurement Effect on a Density Operator

- \(\{M_m\} \) : a collection of measurement operators, acting on the Hilbert space associated to the system being measured and satisfying the completeness equation

\[
\sum_{m} M_m^\dagger M_m = I.
\]

- \(m \) : index which represents possible measurement outcomes.

- \(\rho \) : a density operator, representing an ensemble \(\{p_i, |\psi_i\rangle\} \) of pure states.
If the pre-measurement state of the quantum system is $|\psi_i\rangle$, then the probability of getting result m is

$$P(m|i) = \langle \psi_i | M_m^\dagger M_m | \psi_i \rangle = \text{tr}(M_m^\dagger M_m | \psi_i \rangle \langle \psi_i |),$$

and the post-measurement state of the system is

$$|\psi_i^{(m)}\rangle = \frac{M_m | \psi_i \rangle}{\sqrt{\langle \psi_i | M_m^\dagger M_m | \psi_i \rangle}}.$$

The total probability of getting result m is

$$P(m) = \sum_i p_i P(m|i) = \sum_i p_i \text{tr}(M_m^\dagger M_m | \psi_i \rangle \langle \psi_i |)$$

$$= \text{tr} \left(M_m^\dagger M_m \left(\sum_i p_i | \psi_i \rangle \langle \psi_i | \right) \right) = \text{tr}(M_m^\dagger M_m \rho) = \text{tr}(M_m \rho M_m^\dagger).$$
After a measurement which yields the result \(m \), we have

- \(\{ \mathcal{P}(i|m), |\psi_i^{(m)}\rangle \} \) : an ensemble of pure states

- \(\mathcal{P}(i|m) \) : the probability that the quantum system is in pure state \(|\psi_i^{(m)}\rangle \) given that outcome \(m \) is measured

\[
\mathcal{P}(i|m) = \frac{p_i \mathcal{P}(m|i)}{\mathcal{P}(m)}
\]

- \(\rho^{(m)} \) : density operator, describing the state of the quantum system after the outcome \(m \) is measured

\[
\rho^{(m)} = \sum_i \mathcal{P}(i|m)|\psi_i^{(m)}\rangle \langle \psi_i^{(m)}| = \sum_i \mathcal{P}(i|m) \frac{M_m |\psi_i\rangle \langle \psi_i| M_m^\dagger}{\langle \psi_i| M_m^\dagger M_m |\psi_i\rangle} = \sum_i p_i M_m |\psi_i\rangle \langle \psi_i| M_m^\dagger = \frac{M_m \rho M_m^\dagger}{\text{tr}(M_m^\dagger M_m \rho)} = \frac{M_m \rho M_m^\dagger}{\text{tr}(M_m \rho M_m^\dagger)}.
\]
Pure States vs Mixed States

- Pure state $|\psi\rangle$: a quantum system whose state is exactly known as $|\psi\rangle$ and can be described by the density operator

\[\rho = |\psi\rangle\langle\psi|. \]

- Mixed state ρ: a quantum system whose state is not completely known and is described by the density operator

\[\rho = \sum_i p_i |\psi_i\rangle\langle\psi_i|. \]

- A pure state can be regarded as a very special mixed state.
Characterization of Density Operators

ρ is a density operator associated with an ensemble \(\{ p_i, |\psi_i\rangle \} \) if and only if

- Unit trace condition : \(\text{tr}(\rho) = 1 \).
- Positivity condition : \(\rho \) is a positive operator.
Proof

- $\rho = \sum_i p_i |\psi_i \rangle \langle \psi_i|.$
- $\text{tr}(\rho) = \sum_i p_i \text{tr}(|\psi_i \rangle \langle \psi_i|) = \sum_i p_i \langle \psi_i | \psi_i \rangle = \sum_i p_i = 1.$
- $\langle \varphi | \rho | \varphi \rangle = \sum_i p_i \langle \varphi | \psi_i \rangle \langle \psi_i | \varphi \rangle = \sum_i p_i |\langle \varphi | \psi_i \rangle|^2 \geq 0.$
\[\rho = \sum_j \lambda_j |\psi_j\rangle \langle \psi_j|, \]

- \(\rho \) is positive with a spectral decomposition
- \(\lambda_j \) : non-negative eigenvalues.
- \(|\psi_j\rangle \) : eigenvectors.
- \(1 = \text{tr}(\rho) = \sum_j \lambda_j \).
- \(\{\lambda_j, |\psi_j\rangle\} \) : an ensemble of pure states giving rise to the density operator \(\rho \).
A Criterion of Pure States

A density operator \(\rho \) is in a pure state if and only if

\[
\text{tr}(\rho^2) = 1.
\]

- For a mixed (not a pure) state \(\rho \), we have \(\text{tr}(\rho^2) < 1 \).
Proof

Let ρ be a density operator with spectral decomposition

$$\rho = \sum_i \lambda_i |\psi_i\rangle\langle\psi_i|,$$

where $\lambda_i \geq 0$ and $\text{tr}(\rho) = \sum_i \lambda_i = 1$. Since

$$\rho^2 = \sum_i \lambda_i^2 |\psi_i\rangle\langle\psi_i|,$$

we have

$$\text{tr}(\rho^2) = \sum_i \lambda_i^2 \leq \sum_i \lambda_i^2 + 2 \sum_{i<j} \lambda_i \lambda_j = (\sum_i \lambda_i)^2 = 1,$$

where equality holds if and only if only one λ_i is non-zero and is equal to one, i.e., $\rho = |\psi_i\rangle\langle\psi_i|$, a pure state.
Mixture of Mixed States

\[\rho = \sum_i p_i \rho_i. \]

- \(\rho_i \) : density operator corresponding to an ensemble \(\{ p_{ij}, |\psi_{ij}\rangle\} \)
 \[\rho_i = \sum_j p_{ij} |\psi_{ij}\rangle \langle \psi_{ij}|. \]

- \(p_i \) : probability that the state of the quantum system is prepared in \(\rho_i \).

The probability of being in the pure state \(|\psi_{ij}\rangle \) is \(p_i p_{ij} \) and the overall density operator to describe the state of the quantum system is

\[\rho = \sum_{ij} p_i p_{ij} |\psi_{ij}\rangle \langle \psi_{ij}| = \sum_i p_i \sum_j p_{ij} |\psi_{ij}\rangle \langle \psi_{ij}| = \sum_i p_i \rho_i. \]
Density Operator After Unspecified Measurement $\{M_m\}$

\[
\rho' = \sum_m \mathcal{P}(m) \rho^{(m)} = \sum_m \text{tr}(M_m \rho M_m^\dagger) \frac{M_m \rho M_m^\dagger}{\text{tr}(M_m \rho M_m^\dagger)} = \sum_m M_m \rho M_m^\dagger.
\]
• \(\rho \): density operator for a quantum system

• \(M \): an observable for the quantum system with spectral decomposition

\[
M = \sum_{m} m P_{m}
\]

• \(\mathcal{P}(m) = \text{tr}(P_{m} \rho P_{m}) = \text{tr}(P_{m}^{2} \rho) = \text{tr}(P_{m} \rho) \): the probability that outcome \(m \) occurs

• \(\langle M \rangle \): the average measurement value

\[
\langle M \rangle = \sum_{m} m \mathcal{P}(m) = \sum_{m} m \text{tr}(P_{m} \rho) = \text{tr}(M \rho).
\]
What Class of Ensembles Gives Rise to a Particular ρ?

- $\rho = \frac{3}{4} |0\rangle\langle 0| + \frac{1}{4} |1\rangle\langle 1| $ (spectral decomposition).
- $|a\rangle = \sqrt{\frac{3}{4}} |0\rangle + \sqrt{\frac{1}{4}} |1\rangle$, $|b\rangle = \sqrt{\frac{3}{4}} |0\rangle - \sqrt{\frac{1}{4}} |1\rangle$.

$$\frac{1}{2} |a\rangle\langle a| + \frac{1}{2} |b\rangle\langle b| = \frac{3}{4} |0\rangle\langle 0| + \frac{1}{4} |1\rangle\langle 1| = \rho.$$

- A lesson: the collection of eigenstates of a density operator is not an especially privileged ensemble.
Unitary Freedom in the Ensemble for Density Operators

Two ensembles \(\{p_i, |\psi_i\rangle\} \) and \(\{q_i, |\varphi_j\rangle\} \) give rise to the same density operator \(\rho \), i.e.,

\[
\rho = \sum_i p_i |\psi_i\rangle \langle \psi_i|, \quad \rho = \sum_j q_j |\varphi_j\rangle \langle \varphi_j|
\]

if and only if

\[
\sqrt{p_i} |\psi_i\rangle = \sum_j z_{ij} \sqrt{q_j} |\varphi_j\rangle
\]

where \(z_{ij} \) is a unitary matrix of complex numbers and pure states with zero probability are padded to the smaller ensemble to have the same size as the larger one.
\textbf{Proof} \leftarrow

- \ket{v_i} = \sqrt{p_i} \ket{\psi_i}, \ket{w_j} = \sqrt{q_j} \ket{\varphi_j}.

Since

\[|v_i\rangle = \sum_j z_{ij} |w_j\rangle, \]

we have

\[
\sum_i p_i |\psi_i\rangle \langle \psi_i| = \sum_i |v_i\rangle \langle v_i| = \sum_i \sum_{jk} z_{ij} z^*_{ik} |w_j\rangle \langle w_k|
\]

\[= \sum_{jk} \left(\sum_i z_{ij} z^*_{ik} \right) |w_j\rangle \langle w_k|
\]

\[= \sum_j |w_j\rangle \langle w_j|
\]

\[= \sum_j q_j |\varphi_j\rangle \langle \varphi_j|. \]
Proof

By spectral decomposition of ρ, we have

$$\rho = \sum_{k} \lambda_k |k\rangle \langle k| = \sum_{k} |k'\rangle \langle k'|,$$

where λ_k are positive, $|k\rangle$ are orthonormal and $|k'\rangle = \sqrt{\lambda_k} |k\rangle$.

- $|u\rangle$: a vector in the orthogonal complement $\text{Span}\{|k'\rangle\}^\perp$ of $\text{Span}\{|k'\rangle\}$.

Then

$$0 = \sum_{k} \langle u|k'\rangle \langle k'|u\rangle = \langle u|\rho|u\rangle = \sum_{i} \langle u|v_i\rangle \langle v_i|u\rangle = \sum_{i} |\langle u|v_i\rangle|^2$$

which implies that

$$|u\rangle \in \text{Span}\{|v_i\rangle\}^\perp.$$
Thus

\[\text{Span}\{|k'\rangle\}^\perp \subseteq \text{Span}\{|v_i\rangle\}^\perp \text{ and then Span}\{|v_i\rangle\} \subseteq \text{Span}\{|k'\rangle\}. \]

For each \(|v_i\rangle\), we have

\[|v_i\rangle = \sum_k c_{ik} |k'\rangle \]

Then

\[\rho = \sum_k |k'\rangle \langle k'| = \sum_i |v_i\rangle \langle v_i| = \sum_{kl} \left(\sum_i c_{ik} c_{il}^* \right) |k'\rangle \langle l'| \]

Since the operators \(|k'\rangle \langle l'|\) are linearly independent, we have

\[\sum_i c_{ik} c_{il}^* = \delta_{kl} \]

By appending more columns to the matrix \(C = [c_{ik}]\), we obtain a
unitary matrix $T = [t_{ik}]$ such that

$$|v_i\rangle = \sum_k t_{ik} |k'\rangle$$

where some zero vectors are padded into the list of $|k'\rangle$. Similarly, there is a unitary matrix $S = [j_k]$ such that

$$|w_j\rangle = \sum_k s_{jk} |k'\rangle$$

Then with $Z = TS^\dagger$ a unitary matrix and $Z = [z_{ij}]$, we have

$$|v_i\rangle = \sum_j z_{ij} |w_j\rangle$$

since
\[\sum_j z_{ij} |w_j\rangle = \sum_j \sum_k t_{ik} s_{jk}^* \sum_l s_{jl} |l'\rangle \]
\[= \sum_{kl} t_{ik} |l'\rangle \sum_j s_{jk}^* s_{jl} \]
\[= \sum_k t_{ik} |k'\rangle \]
\[= |v_i\rangle \]
Postulates of Quantum Mechanics

- Density Operator Version
Postulate 1 – States

Associated to an *isolated* physical system is a Hilbert space \mathcal{H} (e.g., a finite-dimensional complex inner product space). The state of the system is completely described by its *density operator*, which is a positive operator with trace one acting on the Hilbert space \mathcal{H}. If the quantum system is in the state ρ_i with probability p_i, then the density operator for this system is

$$\rho = \sum_i p_i \rho_i.$$
Postulate 2 - Time Evolution

The evolution of a *closed* quantum system is described by a *unitary operator*. That is, the state ρ of the system at time t_1 is related to the state ρ' of the system at time t_2 by a unitary operator U which depends only on the times t_1 and t_2,

$$\rho' = U \rho U^\dagger.$$
Postulate 3 – Quantum Measurements

• \(\{M_m\} \) : a collection of measurement operators, acting on the Hilbert space associated to the system being measured and satisfying the completeness equation

\[
\sum_m M_m^\dagger M_m = I.
\]

• \(m \) : measurement outcomes that may occur in the experiment.
If the pre-measurement state of the quantum system is ρ, then the probability that result m occurs is given by

$$P(m) = \text{tr}(M_m \rho M_m^\dagger),$$

and the post-measurement state of the system is

$$\frac{M_m \rho M_m^\dagger}{\text{tr}(M_m \rho M_m^\dagger)}.$$

The completeness equation expresses the fact that probabilities sum to one

$$\sum_m \mathcal{P}(m) = \sum_m \text{tr}(M_m \rho M_m^\dagger) = \sum_m \text{tr}(M_m^\dagger M_m \rho)$$

$$= \text{tr} \left(\left(\sum_m M_m^\dagger M_m \right) \rho \right) = \text{tr}(\rho) = 1.$$
Postulate 4 – Composite Systems

- Q_i: ith quantum system.
- H_i: the Hilbert space associated to the quantum system Q_i.
- $\mathcal{H} = \bigotimes_i H_i$: the Hilbert space associated to the composite system of Q_i’s.
- ρ_i: the state in which the quantum system Q_i is prepared.
- $\rho = \bigotimes_i \rho_i$: the joint state of the composite system.
Reduced Density Operator
Definition

\[\rho^A \triangleq \text{tr}_B(\rho^{AB}). \]

- \(\rho^{AB} \): density operators for composite quantum system \(AB \).
- \(\rho^A \triangleq \text{tr}_B(\rho^{AB}) \): reduced density operator for subsystem \(A \).
 - A description for the state of subsystem \(A \): justification needed.
A Simple Justification

- $\rho^{AB} = \rho \otimes \sigma$: a direct product density operator for composite quantum system AB.
- $\rho^A = \text{tr}_B(\rho^{AB}) = \rho \text{ tr}(\sigma) = \rho$: correct description of system A.
- $\rho^B = \text{tr}_A(\rho^{AB}) = \text{tr}(\rho)\sigma = \sigma$: correct description of system B.
A Further Justification
Local and Global Observables

- M: the observable on subsystem A for a measurement carrying out on subsystem A, a Hermitian operator with spectral decomposition

$$M = \sum_m mP_m.$$

- $M \otimes I$: the corresponding observable on the composite system AB for the same measurement carrying out on subsystem A, a Hermitian operator with spectral decomposition

$$M \otimes I = \sum_m m(P_m \otimes I).$$

- $|m\rangle$ is an eigenstate of the observable M and $|\psi\rangle$ is any state of subsystem $B \leftrightarrow |m\rangle \otimes |\psi\rangle$ is an eigenstate of $M \otimes I$.

When System AB Is Prepared With State $|m\rangle \otimes |\psi\rangle$

- m: the outcome which occurs with probability one by the observable M on subsystem A.
- m: the outcome which occurs with probability one by the observable $M \otimes I$ on the composite system AB.
- Consistency.
When System AB Is in a Mixed State ρ^{AB}

- $f(\rho^{AB})$: a density operator on subsystem A as a function of the density operator on system AB, serving as an appropriate description of the state of subsystem A.

- Measurement statistics must be consistent between the local observable M on subsystem A and the global observable $M \otimes I$ on system AB

$$\text{tr}(M f(\rho^{AB})) = \langle M \rangle = \langle M \otimes I \rangle = \text{tr}((M \otimes I)\rho^{AB}).$$
Existence: \(f(\rho^{AB}) = \text{tr}_B(\rho^{AB}) \)

- \(\rho^{AB} = \sum_i \alpha_i T^A_i \otimes T^B_i \): a linear operator on the state space of the composite system \(AB \).

\[
\begin{align*}
\text{tr}((M \otimes I)\rho^{AB}) &= \text{tr}((M \otimes I)(\sum_i \alpha_i T^A_i \otimes T^B_i)) = \text{tr}(\sum_i \alpha_i (MT^A_i) \otimes T^B_i) \\
&= \text{tr}(\text{tr}_B(\sum_i \alpha_i (MT^A_i) \otimes T^B_i)) = \text{tr}(\sum_i \alpha_i (MT^A_i) \text{tr}(T^B_i)) \\
&= \text{tr}(M(\sum_i \alpha_i T^A_i \text{tr}(T^B_i))) = \text{tr}(M \text{tr}_B(\sum_i \alpha_i T^A_i \otimes T^B_i)) \\
&= \text{tr}(M \text{tr}_B(\rho^{AB})).
\end{align*}
\]
Uniqueness

- \mathcal{H}: the Hilbert space associated to the quantum system A.
- $L^H(\mathcal{H})$: the real inner product space of all Hermitian operators on \mathcal{H} with trace inner product.
- $\{M_i\}$: an orthonormal basis of $L^H(\mathcal{H})$.
- $f(\rho^{AB}) = \sum_i M_i \text{tr}(M_i f(\rho^{AB}))$: the expansion of $f(\rho^{AB})$ by the orthonormal basis $\{M_i\}$.

Since

$$\text{tr}(M_i f(\rho^{AB})) = \text{tr}((M_i \otimes I)\rho^{AB}) \forall i,$$

we have

$$f(\rho^{AB}) = \sum_i M_i \text{tr}((M_i \otimes I)\rho^{AB})$$

which uniquely specifies the function f.
An Example

- Suppose a two-qubit system is in a pure Bell state \(\frac{|00\rangle + |11\rangle}{\sqrt{2}} \) with density operator

\[
\rho^{12} = \left(\frac{|00\rangle + |11\rangle}{\sqrt{2}} \right) \left(\frac{\langle 00| + \langle 11|}{\sqrt{2}} \right) = \frac{|00\rangle\langle 00| + |11\rangle\langle 00| + |00\rangle\langle 11| + |11\rangle\langle 11|}{2}.
\]
\[\rho_1 : \text{the reduced density operator of the first qubit} \]

\[
\rho_1 = \text{tr}_2 (\rho^{12}) \\
= \frac{\text{tr}_2 (|00\rangle\langle 00|) + \text{tr}_2 (|11\rangle\langle 00|) + \text{tr}_2 (|00\rangle\langle 11|) + \text{tr}_2 (|11\rangle\langle 11|)}{2} \\
= \frac{|0\rangle\langle 0| + |0\rangle\langle 1| + |1\rangle\langle 0| + |1\rangle\langle 1|}{2} \\
= \frac{|0\rangle\langle 0| + |1\rangle\langle 1|}{2} = \frac{I}{2}.
\]

- Reduced density operator \(\rho_1 \) for the first qubit is in a \emph{mixed} state while the two-qubit system is in a \emph{pure} state.
Schmidt Decomposition and Purification
Schmidt Decomposition

For each pure state $|\psi\rangle$ in a composite quantum system AB, there exist a set $\{|i_A\rangle\}$ of orthonormal states for subsystem A and a set $\{|i_B\rangle\}$ of orthonormal states for subsystem B of the same size such that

$$|\psi\rangle = \sum_i \lambda_i |i_A\rangle|i_B\rangle$$

where λ_i are non-negative real numbers with

$$\sum_i \lambda_i^2 = 1.$$

- λ_i : Schmidt coefficients.
- $\{|i_A\rangle\}$ and $\{|i_B\rangle\}$: Schmidt “bases” for A and B respectively.
 - Dependent on $|\psi\rangle$.
- # of non-zero values λ_i : Schmidt number for $|\psi\rangle$.
Proof

• \{ |j\rangle \}, \{ |k\rangle \} : given orthonormal bases of the Hilbert spaces of subsystems \(A \) and \(B \) respectively

\[|\psi\rangle = \sum_{jk} c_{jk} |j\rangle |k\rangle. \]

• \(C = UDV \) : singular value decomposition

\[C = [c_{jk}], U = [u_{ji}], D = \text{diag}(d_{ii}), V = [v_{ik}], \]

\[c_{jk} = \sum_i u_{ji} d_{ii} v_{ik}. \]

– \(U \) and \(V \) : unitary matrices.
– \(D \) : a diagonal matrix, not necessarily square.
\[
|\psi\rangle = \sum_{j} \sum_{k} \sum_{i} u_{ji} d_{ii} v_{ik} |j\rangle |k\rangle
\]

\[
= \sum_{i} d_{ii} \left(\sum_{j} u_{ji} |j\rangle \right) \left(\sum_{k} v_{ik} |k\rangle \right) = \sum_{i} \lambda_i |i_A\rangle |i_B\rangle.
\]

- \(|i_A\rangle = \sum_{j} u_{ji} |j\rangle\): orthonormal states of subsystem A

\[
\langle i_A | i_A' \rangle = \sum_{jj'} u_{ji}^* u_{j'i'} \langle j | j' \rangle = \sum_{j} u_{ji}^* u_{j'i'} = \delta_{ii'}.
\]

- \(|i_B\rangle = \sum_{k} v_{ik} |k\rangle\): orthonormal states of subsystem B

\[
\langle i_B | i_B' \rangle = \sum_{kk'} v_{ik}^* v_{i'k'} \langle k | k' \rangle = \sum_{k} v_{ik}^* v_{i'k} = \delta_{ii'}.
\]

- \(\lambda_i = d_{ii}\): non-negative real numbers

\[
1 = \langle \psi | \psi \rangle = \sum_{ii'} \lambda_i \lambda_{i'} \langle i_A | i_A' \rangle \langle i_B | i_B' \rangle = \sum_{i} \lambda_i^2.
\]
Schmidt Number for State \(|\psi\rangle = \sum_i \lambda_i |i_A\rangle |i_B\rangle \)

- "Amount" of entanglement between systems A and B when the composite system \(AB \) is in state \(|\psi\rangle \).
- Invariance under unitary transformations on subsystem A or subsystem B alone.
 - \(U \): a unitary operator on subsystem A.
 - \(U|i_A\rangle \): orthonormal states of subsystem A.

\[
(U \otimes I)|\psi\rangle = \sum_i \lambda_i (U \otimes I)(|i_A\rangle \otimes |i_B\rangle) = \sum_i \lambda_i U|i_A\rangle |i_B\rangle.
\]
• ρ_A : a density operator for system A with ensemble $\{p_i, |i_A\rangle\}$

$$\rho_A = \sum_{i} p_i |i_A\rangle\langle i_A|.$$

• R : a reference system.

• $\{|i_R\rangle\}$: an orthonormal basis of the Hilbert space associated to system R, having the same cardinality as that of $\{|i_A\rangle\}$.

• $|AR\rangle$: a pure state of the composite system AR with

$$|AR\rangle \triangleq \sum_{i} \sqrt{p_i} |i_A\rangle |i_R\rangle.$$

• Purification
\begin{align*}
\text{tr}_R(|AR\rangle\langle AR|) &= \sum_{ij} \sqrt{p_ip_j} \text{tr}_R(|i_A\rangle\langle j_A| \otimes |i_R\rangle\langle j_R|) \\
&= \sum_{ij} \sqrt{p_ip_j} |i_A\rangle\langle j_A| \text{tr}(|i_R\rangle\langle j_R|) \\
&= \sum_i p_i |i_A\rangle\langle i_A| = \rho_A.
\end{align*}

- A mixed state of a local system is a local view of a pure state in a global composite system.