3. (a) If \(\| x + y \| = \| x - y \| \), then
\[
(x + y, x + y) = (x - y, x - y)
\]
\[
\Rightarrow (x, x) + (x, y) + (y, x) + (y, y) = (x, x) - (x, y) - (y, x) + (y, y),
\]
\[
\Rightarrow (x, x) + 2(x, y) + (y, y) = (x, x) - 2(x, y) + (y, y), \quad \text{(By Axiom 1)}
\]
\[
\Rightarrow 4(x, y) = 0,
\]
\[
\Rightarrow (x, y) = 0.
\]

(b) If \((x, y) = 0 \), then
\[
\| x + y \| = (x + y, x + y)^{1/2}
\]
\[
= \{ (x, x) + 2(x, y) + (y, y) \}^{1/2}
\]
\[
= \{ (x, x) + (y, y) \}^{1/2}
\]
\[
= \{ (x, x) - 2(x, y) + (y, y) \}^{1/2}
\]
\[
= (x - y, x - y)^{1/2}
\]
\[
= \| x - y \|.
\]

8. (b)
\[
\| x + y \|^2 - \| x - y \|^2 = (x + y, x + y) - (x - y, x - y)
\]
\[
= (x, x) + (x, y) + (y, x) + (y, y) - \{ (x, x) - (x, y) - (y, x) + (y, y) \}
\]
\[
= 2(x, y) + 2(y, x).
\]

(c)
\[
\| x + y \|^2 + \| x - y \|^2 = (x + y, x + y) + (x - y, x - y)
\]
\[
= (x, x) + (x, y) + (y, x) + (y, y) + (x, x) - (x, y) - (y, x) + (y, y)
\]
\[
= 2(x, x) + 2(y, y)
\]
\[
= 2\| x \|^2 + 2\| y \|^2.
\]

11. (a) Given \((f, g) = \int_1^e (\log(x)) f(x) g(x) dx \). If \(f(x) = \sqrt{x} \), then
\[
\| f \| = (f, f)^{1/2}
\]
\[
= (\int_1^e (\log x) f(x) f(x) dx)^{1/2}
\]
\[
= (\int_1^e (\log x) x dx)^{1/2}.
\]
Let \(u = \log x \), then \(du = \frac{1}{x} \, dx \). Let \(v = \frac{x^2}{2} \), then \(dv = x \, dx \). Thus

\[
(\int (\log x) \, x \, dx)^{1/2} = (\int u \, dv)^{1/2} = (uv - \int v \, du)^{1/2}
= (\log x \frac{x^2}{2} - \int \frac{x^2}{2} \, dx)^{1/2}.
\]

So

\[
(\int_1^e (\log x) \, x \, dx)^{1/2} = (\log x \frac{x^2}{2} \bigg|_1^e - \int_1^e \frac{x^2}{2} \, dx)^{1/2}
= (\frac{e^2}{2} - \frac{x^2}{4} |_1^e)^{1/2}
= (\frac{e^2}{2} - \frac{e^2 - 1}{4})^{1/2}
= (\frac{e^2 + 1}{4})^{1/2}
= \frac{1}{2} \sqrt{e^2 + 1}.
\]

(b) First we evaluate \(\int_1^e \log x \, dx \). Let \(u = x^2 \log x \), then \(du = (2x \log x + x) \, dx \). Let \(v = -x^{-1} \), then \(dv = \frac{1}{x^2} \, dx \). Thus

\[
\int \log x \, dx = \int (\frac{1}{x^2}) x^2 \log x \, dx
= \int uv \, dx
= uv - \int v \, du
= -x \log x + \int \frac{1}{x} (2x \log x + x) \, dx.
\]

So

\[
\int_1^e \log x \, dx = -x \log x \bigg|_1^e + \int_1^e \frac{1}{x} (2x \log x + x) \, dx
= -e + \int_1^e 2 \log x \, dx + \int_1^e dx
= -e + \int_1^e 2 \log x \, dx + e - 1
= \int_1^e 2 \log x \, dx - 1.
\]
Thus, \(f_1^e \log x \, dx = 1 \). Now we want to find a linear polynomial \(g(x) = a + bx \) nonzero and orthogonal to \(f(x) = 1 \), i.e., \((f, g) = 0 \). Since

\[
(f, g) = \int_1^e \log x(a + bx) \, dx = a \int_1^e \log x \, dx + b \int_1^e x \log x \, dx = a + b \left(\frac{e^2 + 1}{4} \right) \quad \text{(by (a)),}
\]

we have \((f, g) = 0 \) when \(a = -b \left(\frac{e^2 + 1}{4} \right) \). So \(g(x) = b(x - \frac{e^2 + 1}{4}) \), \(b \) is an arbitrary real number.

12. \((f, g) = \int_{-1}^1 f(t)g(t) \, dt \).

Since \(u_1(t) = 1 \) and \(u_2(t) = t \), we have the following results:

\[
(u_1, u_1) = \int_{-1}^1 1 \cdot 1 \, dt = t \bigg|_{-1}^{1} = 2,
\]

\[
(u_2, u_2) = \int_{-1}^1 t \cdot t \, dt = \frac{t^3}{3} \bigg|_{-1}^{1} = \frac{2}{3}, \quad \text{and}
\]

\[
(u_1, u_2) = \int_{-1}^1 1 \cdot t \, dt = \frac{t^2}{2} \bigg|_{-1}^{1} = \frac{1}{2} - \frac{1}{2} = 0.
\]

Then \(\|u_1\| = (u_1, u_1)^{1/2} = \sqrt{2} \), \(\|u_2\| = (u_2, u_2)^{1/2} = \sqrt{\frac{2}{3}} \), and that \(u_1 \) and \(u_2 \) are orthogonal.

By the fact that \(u_3(t) = 1 + t = u_1(t) + u_2(t) \) and \((u_1, u_2) = 0 \), we have

\[
(u_1, u_3) = (u_1, u_1 + u_2) = (u_1, u_1) + (u_1, u_2) = (u_1, u_1) = \|u_1\|^2,
\]

\[
(u_2, u_3) = (u_2, u_1 + u_2) = (u_2, u_1) + (u_2, u_2) = (u_2, u_2) = \|u_2\|^2,
\]

and

\[
(u_3, u_3) = (u_1 + u_2, u_1 + u_2) = (u_1, u_1) + (u_2, u_1) + (u_2, u_2) = 2 + 0 + 0 + \frac{2}{3} = \frac{8}{3}.
\]

The last equation implies

\[
\|u_3\| = (u_3, u_3)^{1/2} = \sqrt{\frac{8}{3}}.
\]

Let \(\theta_{ij} \) be the angle between \(u_i \) and \(u_j \), for \(1 \leq i, j \leq 3 \) and \(i \neq j \). Then

\[
\cos \theta_{12} = \frac{(u_1, u_2)}{\|u_1\| \|u_2\|} = 0,
\]

\[
\cos \theta_{13} = \frac{(u_1, u_3)}{\|u_1\| \|u_3\|} = \frac{\|u_1\|^2}{\|u_1\| \|u_3\|} = \frac{\|u_1\|}{\|u_3\|} = \sqrt{\frac{2}{3}} \quad \text{and}
\]

\[
\cos \theta_{23} = \frac{(u_2, u_3)}{\|u_2\| \|u_3\|} = \frac{\|u_2\|^2}{\|u_2\| \|u_3\|} = \frac{\|u_2\|}{\|u_3\|} = \sqrt{\frac{2}{3}} = \frac{1}{2}.
\]
Thus
\[\theta_{12} = \cos^{-1} 0 = \frac{\pi}{2}, \quad \theta_{13} = \cos^{-1} \frac{\sqrt{3}}{2} = \frac{\pi}{6}, \quad \text{and} \quad \theta_{23} = \cos^{-1} \frac{1}{2} = \frac{\pi}{3}. \]

14. Let \(P \) be the linear space of all real polynomials and \(O \) be the zero element of \(P \), that is, \(O(t) = 0 \).

(a) \((f, g) = f(1)g(1) \).
 Let \(f(t) = t - 1 \), then \((f, f) = f(1)f(1) = 0 \cdot 0 = 0 \). Since \(f \not= O \), the nonnegativity property is violated.

(b) \((f, g) = |\int_0^1 f(t)g(t) \, dt| \).
 Let \(c < 0 \) and \(f(t) \neq O(t) \). Then \(c(f, f) = c|\int_0^1 f(t)f(t) \, dt| < 0 \), and \((cf, f) = |\int_0^1 cf(t)f(t) \, dt| > 0 \). Thus \(c(f, f) \neq (cf, f) \) and the linearity property is violated.

(c) \((f, g) = \int_0^1 f'(t)g'(t) \, dt \).
 Let \(f(t) \) be a nonzero polynomial of degree 0, say \(f(t) = 1 \). Then \((f, f) = \int_0^1 f'(t)g'(t) \, dt = \int_0^1 0 \cdot 0 \, dt = 0 \). Thus the nonnegativity property is violated.

(d) \((f, g) = (\int_0^1 f(t) \, dt)(\int_0^1 g(t) \, dt) \).
 Let \(f(t) = t - \frac{1}{2} \). Then \((f, f) = [\int_0^1 (t - \frac{1}{2}) \, dt|^2 = (\frac{t^2}{2} - \frac{t}{2})|_0^1 = 0 - 0 = 0 \). Thus the nonnegativity property is violated.

15. (a) Let \(f \) and \(g \) be two elements of set \(V \). Thus \(\int_0^\infty e^{-t}f(t)^2 \, dt \) and \(\int_0^\infty e^{-t}g(t)^2 \, dt \) converge. Since

\[\lim_{M \to \infty} \left(\int_0^M e^{-t}|f(t)g(t)| \, dt \right)^2 = \lim_{M \to \infty} \left| \int_0^M e^{-t}|f(t)||g(t)| \, dt \right|^2 \]
\[\leq \lim_{M \to \infty} \left(\int_0^M e^{-t}|f(t)||f(t)| \, dt \cdot \int_0^M e^{-t}|g(t)||g(t)| \, dt \right) \]
(b) Since the set of all functions continuous on a given interval is a linear space and \(V \) is a subset of it, we only need to check the closure axioms.

i Let \(f \) and \(g \) be two elements of set \(V \). For \(f + g \),

\[\int_0^\infty e^{-t}(f(t) + g(t))^2 \, dt = \int_0^\infty e^{-t}(f(t)^2 + g(t)^2 + 2f(t)g(t)) \, dt \]
\[= \int_0^\infty e^{-t}f(t)^2 \, dt + \int_0^\infty e^{-t}g(t)^2 \, dt + 2\int_0^\infty e^{-t}f(t)g(t) \, dt. \]
Since \(\int_0^\infty e^{-t}f(t)g(t)dt \) converges, and \(\int_0^\infty e^{-t}f(t)^2dt \) and \(\int_0^\infty e^{-t}g(t)^2dt \) converge, \(\int_0^\infty e^{-t}(f(t) + g(t))^2dt \) converges. Hence \(f + g \) is an element of \(V \) and Axiom for closure under addition holds.

ii Let \(f \) be the element of set \(V \) such that \(\int_0^\infty e^{-t}f(t)^2dt \) converges, and \(c \) be a real scalar. Since \(\int_0^\infty e^{-t}(af(t))^2dt = \int_0^\infty e^{-t}a^2f(t)^2dt = a^2 \int_0^\infty e^{-t}f(t)^2dt \) converges, \(af \) is an elements of \(V \). Hence Axiom for closure under scalar multiplication holds.

Hence \(V \) is a linear space. Then we need to check if \((f, g)\) is an inner product for \(V \). Let \(x, y, \) and \(z \) be elements of \(V \), and \(c \) be a real scalar.

i Since \((x, y) = \int_0^\infty e^{-t}x(t)y(t)dt = \int_0^\infty e^{-t}y(t)x(t)dt = (y, x) \), axiom for commutativity holds.

ii Since

\[
(ax + \beta y, z) = \int_0^\infty e^{-t}(ax + \beta y)(t)z(t)dt \\
= \int_0^\infty e^{-t}(ax(t)z(t) + \beta y(t)z(t))dt \\
= \alpha \int_0^\infty e^{-t}x(t)z(t)dt + \beta \int_0^\infty e^{-t}y(t)z(t)dt \\
= \alpha(x, z) + \beta(y, z),
\]

axiom for linearity holds.

iii We note that zero function \(0(t) \) is the zero element \(O \) in \(V \) since \(x(t) + 0(t) = x(t) \) for all \(x \). Then for all \(x \neq O \), \((x, x) = \int_0^\infty e^{-t}x(t)x(t)dt = \int_0^\infty e^{-t}x(t)^2dt > 0 \) since \(\int_0^\infty e^{-t}x(t)^2dt \) converges. Hence axiom for positivity holds.

(c) We prove \((f, g) = \frac{m!}{2^m} \) for \(f = e^{-t} \) and \(g = t^n \), where \(n = 0, 1, 2, \ldots \) by induction. When \(n = 0 \),

\[
(f, g) = \int_0^\infty e^{-t} \cdot e^{-t} \cdot 1dt \\
= \int_0^\infty e^{-2t}dt \\
= -\frac{1}{2} e^{-2t}|_0^\infty \\
= \frac{1}{2} = \frac{0!}{2^{(0+1)}}.
\]

Let \((f, g) = \frac{k!}{2^{k+1}} \) when \(n = k \).

When \(n = k + 1 \),

\[
(f, g) = \int_0^\infty e^{-t} \cdot e^{-t} \cdot t^{k+1}dt \\
= \int_0^\infty t^{k+1} \cdot e^{-2t}dt \\
= -\frac{1}{2} t^{k+1} e^{-2t}|_0^\infty + \frac{k + 1}{2} \int_0^\infty e^{-2t}t^k dt \\
= 0 + \frac{k + 1}{2} \cdot \frac{k!}{2^{k+1}} = \frac{(k + 1)!}{2^{k+2}}.
\]
Hence \((f, g) = \frac{n!}{2^{n+1}}\) where \(g(t) = t^n\) and \(f(t) = e^{-t}\) by induction.

16. (a) \(\sum_{n=1}^{\infty} x_n y_n\) converges absolutely \(\iff\) \(\sum_{n=1}^{\infty} |x_n y_n|\) converges.

Consider two new sequences \(x' = \{x_n\}\) and \(y' = \{|y_n|\}\) both in \(V\).

\[\sum_{n=1}^{\infty} |x_n y_n| = (x', y')\]

Since \(\sum_{n=1}^{\infty} |x_n y_n| = \sum_{n=1}^{\infty} |x_n||y_n|\),

Then using Cauchy-Schwarz inequality for the inner product space \(R^M\) with standard inner product,

\[\left(\sum_{n=1}^{M} |x_n y_n|\right)^2 \leq (\sum_{n=1}^{M} |x_n|^2)(\sum_{n=1}^{M} |y_n|^2) \leq (\sum_{n=1}^{\infty} x_n^2)(\sum_{n=1}^{\infty} y_n^2), \forall M.\]

By taking \(M \to \infty\), we have \(\left(\sum_{n=1}^{\infty} x_n y_n\right)^2 \leq (\sum_{n=1}^{\infty} x_n^2)(\sum_{n=1}^{\infty} y_n^2) < \infty.\)

Thus \(\sum_{n=1}^{\infty} |x_n y_n|\) converges and \(\sum_{n=1}^{\infty} x_n y_n\) converges absolutely.

(b) Since the set of all sequences of real numbers is a linear space and \(V\) is a subset of it, we only need to check the closure axioms.

i. Let \(x = \{x_n\}\) and \(y = \{y_n\}\) be two sequences in \(V\). Consider \(x+y = \{x_n+y_n\}\),

\[\sum_{n=1}^{M} (x_n + y_n)^2 = \sum_{n=1}^{M} (x_n^2 + 2x_n y_n + y_n^2) = \sum_{n=1}^{M} x_n^2 + 2 \sum_{n=1}^{M} x_n y_n + \sum_{n=1}^{M} y_n^2\]

From (a) we know that \(\sum_{n=1}^{M} x_n y_n\) converges absolutely as \(M \to \infty\) In addition, \(\sum_{n=1}^{\infty} x_n^2\) and \(\sum_{n=1}^{\infty} y_n^2\) converge. Thus \(\sum_{n=1}^{\infty} (x_n + y_n)^2\) converges and \(x+y\) is in \(V\).

ii. Let \(x = \{x_n\}\) in \(V\), and \(y = cx = \{cx_n\}\) where \(c\) is a real scalar.

Then \(\sum_{n=1}^{\infty} (cx_n)^2 = c^2 \sum_{n=1}^{\infty} x_n^2\) converges.

Thus \(cx\) is in \(V\).

Hence \(V\) is a linear space. Next, we test if \(V\) is a linear space with \((x, y)\) as an inner product. Consider all choices of \(x, y, z\) in \(V\) and all real scalars \(c\):

i. \((x, y) = \sum_{n=1}^{\infty} x_n y_n = \sum_{n=1}^{\infty} y_n x_n = (y, x)\).

ii. \((x, y+z) = \sum_{n=1}^{\infty} x_n (y_n + z_n) = \sum_{n=1}^{\infty} (x_n y_n + x_n z_n) = \sum_{n=1}^{\infty} x_n y_n + \sum_{n=1}^{\infty} x_n z_n = (x, y) + (x, z)\).

iii. \(c(x, y) = c \sum_{n=1}^{\infty} x_n y_n = \sum_{n=1}^{\infty} (cx_n) y_n = (cx, y)\).

iv. Since \((x, x) = \sum_{n=1}^{\infty} x_n^2, (x, x) \geq 0\) and \((x, x) = 0 \iff x = O.\)

Thus \((x, x) > 0\) if \(x \neq O\).

Hence the four axioms all hold, \(V\) is a linear space with \((x, y)\) as an inner product.

(c) \((x, y) = \sum_{n=1}^{\infty} \frac{1}{n+1} = \sum_{n=1}^{\infty} (\frac{1}{n} - \frac{1}{n+1}) = (1 - \frac{1}{2} + \frac{1}{2} - \frac{1}{3} + \frac{1}{3} - \cdots) = 1.\)

(d) Recall that \(e^x = 1 + \frac{x}{1!} + \frac{x^2}{2!} + \frac{x^3}{3!} + \cdots\)

Then \((x, y) = \sum_{n=1}^{\infty} (2^{-n})(\frac{1}{n!}) = \sum_{n=1}^{\infty} \frac{2^{-n}}{n!} = -1 + (1 + \frac{2-1}{1!} + \frac{2-2}{2!} + \cdots) = -1 + e^{2^{-1}} = e^{\frac{1}{2}} - 1.\)