Cell-Based IC Design Flow
Sequential Divider

Y.F Lee
S.Y Huang
Divider Algorithm

- Two integers A and B
- \(A = B \times Q + R \)
 - A: dividend
 - B: divisor
 - Q: quotient
 - R: remainder

```c
R <= A;
Q <= 0;
while (R >= B) {
    R = R - B;
    Q++;
}
```

Diagram:

- States: S0, S1, S2
- Transitions:
 - S0 \(\Rightarrow\) S1: In_valid
 - S1 \(\Rightarrow\) S2: R >= B
module divider(clk, reset, A, B, in_valid, Q, R, out_valid);
parameter BITWIDTH = 10;
parameter S0 = 2'b00;
parameter S1 = 2'b11;
parameter S2 = 2'b10;
input [BITWIDTH-1:0] A, B;
input in_valid, clk, reset;
output [BITWIDTH-1:0] Q, R;
output [2:0] c_state;
reg [BITWIDTH-1:0] Q, R;
reg [2:0] n_state;
reg [BITWIDTH-1:0] n_Q, n_R;
reg out_valid;
always@(posedge clk or posedge reset) begin
 if(reset) begin
 c_state <= 0;
 Q <= 0;
 R <= 0;
 end
 else begin
 c_state <= n_state;
 Q <= n_Q;
 R <= n_R;
 end
always@(R or Q or c_state or in_valid) begin
 case(c_state)
 S0: begin
 if(in_valid) begin
 n_state = S1;
 n_R = A;
 n_Q = 0;
 out_valid = 0;
 end
 else begin
 n_state = S0;
 n_R = 0;
 n_Q = 0;
 out_valid = 0;
 end
 end
 S1: begin
 if(R == B) begin
 n_state = S1;
 n_R = R - B;
 n_Q = Q + 1;
 out_valid = 0;
 end
 else begin
 n_state = S2;
 n_R = R;
 n_Q = Q;
 out_valid = 0;
 end
 end
 S2: begin
 n_state = S0;
 n_R = R;
 n_Q = Q;
 out_valid = 1;
 end
 endcase
end
endmodule
Logic Synthesis (Synopsys)

Gate Count = 1k
Critical Delay = 1.67ns
Power = 42nW
Output signal have gate delay
Auto Place & Route (Apollo)

Critical Delay = 2.55ns

Connect Wire
Output signal have gate delay and wire delay
DRC & LVS

DRC: Design rule check
LVS: Layout versus schematic

DRC Error Summary

<table>
<thead>
<tr>
<th>Error Type</th>
<th>Num</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Poly Width</td>
<td>0</td>
<td>poly minimum width = 0.24</td>
</tr>
<tr>
<td>Poly Spacing</td>
<td>0</td>
<td>poly minimum spacing = 0.4</td>
</tr>
<tr>
<td>Poly Overlap</td>
<td>0</td>
<td>poly & blockage overlap</td>
</tr>
<tr>
<td>Poly Notch</td>
<td>0</td>
<td>poly notch (0.4)</td>
</tr>
<tr>
<td>Cont Width</td>
<td>0</td>
<td>polyCont minimum width = 0.3</td>
</tr>
<tr>
<td>Cont Spacing</td>
<td>0</td>
<td>polyCont minimum spacing = 0.3</td>
</tr>
<tr>
<td>Met1 Width</td>
<td>0</td>
<td>metall minimum width = 0.32</td>
</tr>
<tr>
<td>Met1 Spacing</td>
<td>0</td>
<td>metall minimum spacing = 0.32</td>
</tr>
<tr>
<td>Met1 Thir&Fat</td>
<td>0</td>
<td>metall minimum spacing [0.32 and 10] = 0.6</td>
</tr>
<tr>
<td>Met1 Fat&Fat</td>
<td>0</td>
<td>metall minimum spacing [10 and 10] = 0.6</td>
</tr>
<tr>
<td>Met1 Overlap</td>
<td>0</td>
<td>metall & blockage overlap</td>
</tr>
<tr>
<td>Met1 Notch</td>
<td>0</td>
<td>metall notch (0.32)</td>
</tr>
<tr>
<td>Met1 PatNotch</td>
<td>0</td>
<td>metall Pat[10] notch (0.5)</td>
</tr>
<tr>
<td>Via1 Width</td>
<td>0</td>
<td>via1 minimum width = 0.35</td>
</tr>
<tr>
<td>Via1 Spacing</td>
<td>0</td>
<td>via1 minimum spacing = 0.35</td>
</tr>
<tr>
<td>Via1&Via1BLk Sp</td>
<td>0</td>
<td>via1 & via1Blockage minimum spacing = 0.35</td>
</tr>
</tbody>
</table>

LVS Error Summary

<table>
<thead>
<tr>
<th>Error Type</th>
<th>Num</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Floating Port</td>
<td>0</td>
<td>Floating ports have been detected by LVS.</td>
</tr>
<tr>
<td>Floating Net</td>
<td>0</td>
<td>Floating Nets have been detected by LVS.</td>
</tr>
<tr>
<td>SHORT</td>
<td>0</td>
<td>SHORTS have been detected by LVS.</td>
</tr>
<tr>
<td>OPEN</td>
<td>0</td>
<td>OPENS have been detected by LVS.</td>
</tr>
<tr>
<td>Electric Equivalent</td>
<td>0</td>
<td>Electrical-Equivalent Errors have been detected by LVS.</td>
</tr>
<tr>
<td>MustJoin</td>
<td>0</td>
<td>MustJoin Errors have been detected by LVS.</td>
</tr>
<tr>
<td>Min Area</td>
<td>0</td>
<td>Minimum Area Errors have been detected by LVS.</td>
</tr>
</tbody>
</table>