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單元 1: Overview of Design Automation

․Course contents:
 Introduction to VLSI design flow

 Introduction to VLSI design automation tools

Semiconductor technology roadmap Semiconductor technology roadmap

 Design styles

 CMOS technology 

․Readings
 Chapters 1-2

 Appendix A

Chang, Huang, Li, Lin, Liu ch1-3

Outline

Start VLSI Design Flow

Design Automation Tools

Semiconductor Technology Roadmap

Chang, Huang, Li, Lin, Liu ch1-4

End

Design Style

CMOS Technology Review
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Milestones for IC Industry

․1947: Bardeen, Brattain & Shockley invented the transistor, the 
foundation of the IC industry.

․1952: SONY introduced the first transistor-based radio1952: SONY introduced the first transistor based radio.

․1958: Kilby invented integrated circuits (ICs).

․1965: Moore’s law.

․1968: Noyce and Moore founded Intel.

․1970: Intel introduced 1 K DRAM.

Chang, Huang, Li, Lin, Liu ch1-5

First transistor First IC by Noyce
First IC by Kilby

Milestones for IC Industry

․1971: Intel announced 4-bit 4004 microprocessors (2250 
transistors).

․1976/81: Apple II/IBM PC.

1985 I t l b f i i d t․1985: Intel began focusing on microprocessor products.

․1987: TSMC was founded (to support fabless IC design).

․1991: ARM introduced its first embeddable RISC IP core 
(chipless IC design).

Chang, Huang, Li, Lin, Liu ch1-6

4004

Intel 
founders

IBM PC
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Complexity Is Skyrocketing …

․1996: Samsung introduced IG DRAM.
․1998: IBM announced 1GHz microprocessor. 
․1999/earlier:

 System-on-Chip (SOC) methodology gains popularity.
 Intel P4 processor: 42 million transistors

․Productivity: 
 30 million transistors per person today for ASIC chips
 1 billion/person by 2008

Chang, Huang, Li, Lin, Liu ch1-7

Pentium 4 Scanner-on-chip4GB DRAM (2001)
Blue tooth 
technology

IC Design & Manufacturing Process

Idea
IC Fabrication

Wafer
(h d d f di )

Architecture Design

Block
diagram

(hundreds of dies)

Sawing & Packaging

Final chips

Chang, Huang, Li, Lin, Liu ch1-8

Circuit & Layout Design

Layout

Final Testing

Bad chips Good chips
customers
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From Wafer to Chip

Silicon Ingot
Lithography

Packaging

Chang, Huang, Li, Lin, Liu ch1-9

Final Chips

Traditional VLSI Design Cycle

1. System specification

2. Functional design

3. Logic synthesisg y

4. Circuit design

5. Physical design and verification

6. Fabrication 

7. Packaging 

․ Other tasks involved: simulation, testing, etc.

․ Design metrics: area speed power dissipation noise

Chang, Huang, Li, Lin, Liu ch1-10

․ Design metrics: area, speed, power dissipation, noise, 
design time, testability, etc.
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Traditional VLSI Design Cycle

Chang, Huang, Li, Lin, Liu ch1-11

Traditional VLSI Design Flow (Cont'd)

Chang, Huang, Li, Lin, Liu ch1-12
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Design Actions

․Synthesis:
 increasing information about the design by providing more 

details (e.g., logic synthesis, physical synthesis)

․Optimization:
i i th lit f th d i b t t i i increasing the quality of the design by restructuring a given 
description (e.g., logic optimizer, timing optimizer).

․Analysis:
 collecting information on the quality of the design (e.g., timing 

analysis, power analysis, etc).

․Verification:
 checking whether an implementation conforms to the desired 

specification

Chang, Huang, Li, Lin, Liu ch1-13

 Is what I get really what I want?

․Design Management:
 storage of design data, cooperation between tools, design flow, 

etc. (e.g., database). 

Gajski’s Y-Chart

Chang, Huang, Li, Lin, Liu ch1-14
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Top-Down Structural Design

Chang, Huang, Li, Lin, Liu ch1-15

Outline

Start VLSI Design Flow

Design Automation Tools

Semiconductor Technology Roadmap

Chang, Huang, Li, Lin, Liu ch1-16

End

Design Style

CMOS Technology Review
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Design Issues and Tools

․ System-level design (taking a C code as the input)
 Hardware/software partitioning, co-verification
 System-Verilog, System-C for co-simulation
 Silicon compilation (from C to layout)  rarely used…

․ Architecture-level design․ Architecture-level design
 RTL simulation
 RTL synthesis (From RTL code to Gate-Level circuit)

․ Logic-level design
 Logic optimization
 Gate-level simulation (functionality, timing, power, etc)
 Static timing analysis (STA), or statistical static timing analysis (SSTA)
 Formal verification

․ Transistor-Level Design

Chang, Huang, Li, Lin, Liu ch1-17

g
 Schematic editor, circuit simulation (SPICE)

․ Physical-level design
 Floorplanning, Placement, Routing, Compaction
 DRC for Design Rule Checking
 LVS for Layout vs. Schematic Check
 Parasitic RC extraction

Logic Synthesis

․Logic synthesis programs
 transform Boolean expressions into logic gate networks in a 

particular library.

․Optimization goals: 
 minimize area, delay, power, etc

․Technology-independent optimization: logic optimization

Chang, Huang, Li, Lin, Liu ch1-18

․Technology-independent optimization: logic optimization
 Optimizes Boolean expression.

․Technology-dependent optimization: technology 
mapping/library binding

 Maps Boolean expressions into a particular cell library.
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Logic Optimization Examples

․Two-level: minimize the # of product terms.


․Multi level: minimize the #'s of literals variables․Multi-level: minimize the #'s of literals, variables.
 E.g., equations are optimized using a smaller number of literals.

Chang, Huang, Li, Lin, Liu ch1-19

Circuit Simulation of a CMOS Inverter (0.6 m)

vL vH td tr tf Pulse Width Period

period

Pulse width

td

Chang, Huang, Li, Lin, Liu ch1-20
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Physical Design

․ Physical design
 converts a circuit description into a geometric description.
 The description is used to manufacture a chip. 

․ Physical design cycle:

Chang, Huang, Li, Lin, Liu ch1-21

․ Physical design cycle:
1. Logic partitioning
2. Floorplanning and placement
3. Routing
4. Compaction

• Others: 
• circuit extraction, timing verification and design rule checking

Physical Design Flow

Chang, Huang, Li, Lin, Liu ch1-22



12

Logic Circuit (or Logic Netlist)

․Multi-level logic:
 A set of logic equations with no cyclic dependencies

․Example: Z = (AB + C)(D + E + FG) + H
4 l l 6 t 13 t i t 4-level, 6 gates, 13 gate inputs

A B

C D E

F G

Level 2

Level 1

Chang, Huang, Li, Lin, Liu ch3-23

H

Z

Level 4

Level 3

Boolean Network
(Data Structure for A Logic Netist)

․A Boolean Network
 Is a Directed Acyclic Graph (DAG)
 Each source node is a primary input
 Each sink node is a primary outputEach sink node is a primary output
 Each internal node represents an equation
 Arcs represent variable dependencies

y1 y4

x1

x2
x3

z1

Chang, Huang, Li, Lin, Liu ch3-24

y2

y3

y5

x3

x4

x5

x6

z2
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Floorplan Examples

Pentium 4
PowerPC 

Pentium 4
604

Chang, Huang, Li, Lin, Liu ch1-25

A floorplan 
with 9800 

blocks

Routing Example

• 0.18um technology

Chang, Huang, Li, Lin, Liu ch1-26
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IC Design Considerations

․Several conflicting considerations:
 Design Complexity: large number of devices/transistors

 Performance: optimization requirements for high 
performance

Chang, Huang, Li, Lin, Liu ch1-27

 Time-to-market: about a 15% gain for early birds

 Cost: die area, packaging, testing, etc.

 Others: power, signal integrity (noise, etc), testability, 
reliability, manufacturability, etc.

Outline

Start VLSI Design Flow

Design Automation Tools

Semiconductor Technology Roadmap

Chang, Huang, Li, Lin, Liu ch1-28

End

Design Style

CMOS Technology Review
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․Logic capacity doubles per IC at a regular interval.
․Moore: 

 Logic capacity doubles every two years (1975).

․D. House:

“Moore’s” Law: Driving Force of Technology

 Computer performance doubles every 18 months (1975)

Intel uP

Chang, Huang, Li, Lin, Liu ch1-29

4004 80386 PentiumPro8086 Pentium 4

Intel uP

Technology Roadmap for Semiconductors

S

Chang, Huang, Li, Lin, Liu ch1-30

․Source: 
 International Technology Roadmap for Semiconductors, Nov, 2002.

․Deep submicron technology: node (feature size) < 0.25 m.

․Nanometer Technology: node < 0.1 m. 
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Nanometer Design Challenges
․ In 2005, feature size  0.1 m,  P frequency  3.5 GHz, die size  520 

mm2,  P transistor count per chip  200M, wiring level  8 layers, 
supply voltage  1 V, power consumption  160 W.

 Feature size  sub-wavelength lithography (impacts of process 
variation)? noise? wire coupling? reliability?variation)? noise? wire coupling? reliability?

 Frequency  interconnect delay? electromagnetic field effects? 
timing closure?

 Chip complexity  large-scale system design methodology? 

 Supply voltage  signal integrity (noise, IR drop, etc)?

 Wiring level  manufacturability? 3D layout?

 Power consumption  power & thermal issues?

Chang, Huang, Li, Lin, Liu ch1-31

Design for Manufacturability (DfM)
- Optical Proximity Correction (OPC)

OPC: An technique that modifies that layout in a way that

the distortion of the lithography can be compensated

Severely Distorted!

Chang, Huang, Li, Lin, Liu ch1-32

Better!
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3D Transistor

FinFET Transistor

Chang, Huang, Li, Lin, Liu ch1-33

Worsening Manufacturing Variability

Chang, Huang, Li, Lin, Liu ch1-34

http://www.future-fab.com/documents.asp?d_ID=3996
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More Moore + More Than Moore

Chang, Huang, Li, Lin, Liu ch1-35

Source” http://pcdandf.com/cms/magazine/212/4495-sips-give-more-to-moore

From Multi-Core to Many-Core Era

New Elements:

(1) (HW) Network on Chip (NoC) + Global-Local Memory Architecture

(2) (SW) Multi-thread programming

Chang, Huang, Li, Lin, Liu ch1-36

100 million transistors 
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SiP: Stacked Dies with Wire Bonding

Chang, Huang, Li, Lin, Liu

Ref: E. Beyne, “3D System Integration Technologies”

Evolution of System Interconnect 
Technologies

MCM: multi-chip modulep

Chang, Huang, Li, Lin, Liu

Ref: R. E. Jones, R. Chatterjee, and S. Pozder, 
“Technology and Application of 3D Interconnect”
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True 3D IC
(with TSV - Through Silicon Via)

Chang, Huang, Li, Lin, Liu

http://www.process-evolution.com/3d-ics_doe.html

Illustration of a 3D IC

Chang, Huang, Li, Lin, Liu ch1-40

http://lsi.epfl.ch/page-13136-en.html
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Benefits of 3D IC’s

․Smaller form-factor

․Shorter Interconnect

․Lower Power․Lower Power

․Higher Yield?

․Heterogeneous Integration

․Fast and High-Bandwidth between logic and memory

Chang, Huang, Li, Lin, Liu

Design-and-Test Challenges

․3D IC Process / Manufacturing
 Aligning, stacking, thinning, TSV’s

․New Process / Memory Architecturey

․Power Delivery

․3D Design Flow

․Floor-plan & Layout

․Thermal Modeling

․Yield Enhancement

Chang, Huang, Li, Lin, Liu

 Design for Yield & Resiliency

․Testing
 Electrical Characterization of TSV, Boundary Scan, Known-Good-Die 

(KGD)
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Xilinx Virtex-8 FPGAs
(4-Die Integrated on Interposer)

Chang, Huang, Li, Lin, Liu ch1-43

http://www.semiwiki.com/forum/showwiki.php?title=Semi+Wiki:Three-

Dimensional+Integrated+Circuit+3D+IC+Wiki

Design Productivity Crisis
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Chang, Huang, Li, Lin, Liu ch1-44

 may limit design more than technology.

․Keys to solve the productivity crisis: 
 hierarchical design, abstraction, CAD (tool & 

methodology), IP reuse, etc.
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Hierarchical Design

․Hierarchy: something is composed of simpler things. 
․Design cannot be done in one step  partition the design 

hierarchically.

hierarchical

Chang, Huang, Li, Lin, Liu ch1-45

flat

Abstraction

․Abstraction: when looking at a certain level, you 
don’t need to know all details of the lower levels.

system

D i d i

module

circuit

gate

device

Chang, Huang, Li, Lin, Liu ch1-46

․Design domains:
 Behavioral: black box view
 Structural: interconnection of subblocks
 Physical: layout properties 

․Each design domain has its own hierarchy.
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Three Design Views

Chang, Huang, Li, Lin, Liu ch1-47

Outline

Start VLSI Design Flow

Design Automation Tools

Semiconductor Technology Roadmap

Chang, Huang, Li, Lin, Liu ch1-48

End

Design Style

CMOS Technology Review
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Design Styles

․Specific design styles shall require specific CAD tools

Chang, Huang, Li, Lin, Liu ch1-49

SSI/SPLD Design Style

Chang, Huang, Li, Lin, Liu ch1-50
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Full Custom Design Style
• Designers can control the shape of all mask patterns.
• Designers can specify the design up to the level of individual   

transistors.  

Chang, Huang, Li, Lin, Liu ch1-51

Standard Cell Design Style

• Selects pre-designed cells (of same height) to implement
logic

Chang, Huang, Li, Lin, Liu ch1-52
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Example: Standard Cells

VDD

VDD

VDD

GND
GND

Chang, Huang, Li, Lin, Liu ch1-53

Cell row

GND

Interconnections are routed over the cells.

Gate Array Design Style

• Prefabricates a transistor array
• Needs wiring customization to implement logic

Prefabricated
Transistor

Array

Customized
Wiring

IO
pads

pins

Chang, Huang, Li, Lin, Liu ch1-54

Array
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FPGA Design Style

․Logic and interconnects are both prefabricated.

․Illustrated by a symmetric array-based FPGA

Chang, Huang, Li, Lin, Liu ch1-55

Array-Based FPGA Example

• Lucent Technologies 15K ORCA FPGA

• 0.5 um 3LM CMOS
• 2.45 M Transistors
• 1600 Flip-flops
• 25K bit user RAM
• 320 I/Os

Chang, Huang, Li, Lin, Liu ch1-56
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FPGA Design Process

․Illustrated by a symmetric array-based FPGA

․No fabrication is needed

System Design Partitioning Placement Routing Customization

Chang, Huang, Li, Lin, Liu ch1-57

Logic + Layout Synthesis

System Design
+

Mapping

Placement Routing Customization

Design Style Trade-offs

Turnaround
Time

(Days)

Chang, Huang, Li, Lin, Liu ch1-58

Logic Capacity (Gates)
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Outline

Start VLSI Design Flow

Design Automation Tools

Semiconductor Technology Roadmap

Chang, Huang, Li, Lin, Liu ch1-59

End

Design Style

CMOS Technology Review

A CMOS Inverter

Chang, Huang, Li, Lin, Liu ch1-60
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A CMOS NAND Gate

Chang, Huang, Li, Lin, Liu ch1-61

A CMOS NOR Gate

Chang, Huang, Li, Lin, Liu ch1-62
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Basic CMOS Logic Library

Chang, Huang, Li, Lin, Liu ch1-63

Stick Diagram

․ Intermediate representation
 between the transistor level and the mask (layout) level. 

․ Gives topological information
(id tifi diff t l d th i l ti hi ) (identifies different layers and their relationship)

․ Assumes that wires have no width.

․ It is possible
 to translate stick diagram automatically to layout with 

correct design rules.

Chang, Huang, Li, Lin, Liu ch1-64
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Stick Diagram (cont'd)
․When the same material (on the same layer) touch or cross, they 

are connected and belong to the same electrical node.

․When polysilicon crosses N or P diffusion, an N or P transistor 
is formed. 
 Polysilicon is drawn on top of diffusion.
 Diffusion must be drawn connecting the source and the drain.
 Gate is automatically self-aligned during fabrication.

Chang, Huang, Li, Lin, Liu ch1-65

․When a metal line needs to be connected to one of the other three 
conductors, a contact cut (via) is required.

CMOS Inverter Stick Diagrams

․Basic layout

․More area efficient layout

Chang, Huang, Li, Lin, Liu ch1-66
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CMOS NAND/NOR Stick Diagrams

Chang, Huang, Li, Lin, Liu ch1-67

Design Rules
․Layout rules are used for preparing the masks for fabrication.

․Fabrication processes have inherent limitations in accuracy.

․Design rules specify geometry of masks to optimize yield and 
reliability (trade-offs: area, yield, reliability).y ( y y)

․Three major rules:
 Wire width: Minimum dimension associated with a given feature.

 Wire separation: Allowable separation.

 Contact: overlap rules.

․Two major approaches:
 “Micron” rules: stated at micron resolution.

 rules: simplified micron rules with limited scaling attributes

Chang, Huang, Li, Lin, Liu ch1-68

  rules: simplified micron rules with limited scaling attributes.

․ may be viewed as the size of minimum feature.

․Design rules represents a tolerance which insures very high 
probability of correct fabrication (not a hard boundary between 
correct and incorrect fabrication).  

․Design rules are determined by experience.
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SCMOS Design Rules

Chang, Huang, Li, Lin, Liu ch1-69

MOSIS Layout Design Rules

․MOSIS design rules (SCMOS rules) are available at 
http://www.mosis.org.

․3 basic design rules: 
 Wire width
 Wire separation
 Contact rule

․MOSIS design rule examples

Chang, Huang, Li, Lin, Liu ch1-70
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Concluding Remarks

․Milestones technology in silicon era
 Transistor  Integrated Circuits  CMOS Technology

․Key weapons in SOC era
 Design Automation

 Design Reuse

․Breakthrough techniques in design automation
 Simulation (e.g., SPICE, Verilog-XL, etc.)

 Automatic Placement and Routing (APR)

 Logic Synthesis (e.g., Design Compiler)

Chang, Huang, Li, Lin, Liu ch1-71

 Formal Verification

 Test Pattern Generation

It is EDA that

pushes the IC design technology forward !

Latest Design Automation – by Synopsys

․10M Gate Routing in Under ½ Hour
․Complete Physical Verification Solution Through 45nm
․Design Compiler® Graphical: Congestion Prediction and Removal 

During Synthesis
․Get to Market Early with SystemC™ TLM Virtual Platforms
․Hot Topics in Test: Power- and Timing-Aware DFT
․Low Power Verification
․Matching Moore's Law, PrimeTime® Performance, Capacity and 

QoR
․Mixed-Signal Circuit Design and Verification with Discovery™-AMS 

and Synopsys' Custom Environment

Chang, Huang, Li, Lin, Liu ch1-72

․Synopsys Eclypse™ Low Power Solution
․SystemVerilog Verification Solution with VCS®
․Transistor-Level Design Analysis and Sign-Off Using Star-RCXT®, 

HSIM™ and HSPICE®
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CAD Related Conferences/Journals
․ Important Conferences:

 ACM/IEEE Design Automation Conference (DAC)
 IEEE/ACM Int'l Conference on Computer-Aided Design (ICCAD)
 ACM/IEEE Asia and South Pacific Design Automation Conf. (ASP-

DAC)
 ACM/IEEE Design, Automation, and Test in Europe (DATE)
 IEEE Int'l Conference on Computer Design (ICCD)
 IEEE Custom Integrated Circuits Conference (CICC)
 IEEE Int'l Symposium on Circuits and Systems (ISCAS)
 ACM Int'l Symposium on Physical Design (ISPD)
 IEEE Int’l Test Conference (ITC)
 Others: VLSI Design/CAD Symposium/Taiwan

․ Important Journals:
IEEE Transactions on Computer Aided Design (TCAD)

Chang, Huang, Li, Lin, Liu ch1-73

 IEEE Transactions on Computer-Aided Design (TCAD)
 ACM Transactions on Design Automation of Electronic Systems 

(TODAES)
 IEEE Transactions on VLSI Systems (TVLSI)
 IEEE Transactions on Computers (TC)
 IEE Proceedings – Circuits, Devices and Systems
 IEE Proceedings – Digital Systems
 INTEGRATION: The VLSI Journal
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Outline

․Complexity

․Common Problems in EDA

 Optimization Problem

 Decision Problem

 Satisfiability Problem

․General-Purpose Algorithms

 Exhaustive v.s. Branch-and-Bound

 Greedy v.s. Dynamic Programming

 Divide-and-Conquer v.s. Hierarchical

Chang, Huang, Li, Lin, Liu ch2-3

 Mathematical Programming

 Simulated Annealing

 Tabu Search

 Genetic Algorithm

O: Upper Bounding Function

․Def: f(n)= O(g(n)) if  c >0 and n0 > 0 such that 0  f(n) 
 cg(n) for all n  n0.

 Examples: 2n2 + 3n = O(n2), 2n2 = O(n3), 3n log n = O(n2)

․Intuition: f(n) “ ” g(n) when we ignore constant 
multiples and small values of n.

Chang, Huang, Li, Lin, Liu ch2-4
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Big-O Notation

․How to show O (Big-Oh) relationships?

 f(n) = O(g(n)) iff limn   = c for some c  0.

․“An algorithm has worst-case running time O(f(n))”: 

( )

( )

f n

g n

there is a constant c such that (s.t.) for big enough 
value n, the execution on an input of size n takes at 
most cf(n) time.

Chang, Huang, Li, Lin, Liu ch2-5

Computational Complexity

․Computational complexity: 
 an abstract measure of the time and space necessary to 

execute an algorithm as a function of its “input size”.

․Input size examples:

 (1) sort n words of bounded length  n

 (2) the input is a graph G(V, E)  |V| and |E|

․Time complexity
 is expressed in elementary computational steps (e.g., an 

dditi lti li ti i t i di ti )

Chang, Huang, Li, Lin, Liu ch2-6

addition, multiplication, pointer indirection).

․Space Complexity
 is expressed in memory locations (e.g. bits, bytes, words). 
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Asymptotic Functions

․Polynomial-time complexity:
 O(nk), where n is the input size and k is a constant.

․Example polynomial functions: 
999 999: constant

 log n: logarithmic (sub-linear)

 n: linear

 n log n: log-linear

 n2: quadratic

n3: cubic

Chang, Huang, Li, Lin, Liu ch2-7

 n3: cubic

․Example non-polynomial functions
 2n, 3n: exponential

 n!: factorial

Optimization Problems

․Optimization problems:
 Those finding a legal configuration such that its 

cost is minimum (or maximum).

․An instance  = (F, c) where
 (1) Feasible solution space: F

 F is also referred to as search space

 (2) Cost function: c: F  R
 Assigning a cost value to each feasible solution

E l

Chang, Huang, Li, Lin, Liu ch2-8

․Example
 Minimum Spanning Tree (MST)

 Given a graph G=(V, E), find the cost of a 
minimum spanning tree of G.
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The Traveling Salesman Problem (TSP)

․Problem Definition of TSP:

 Given a set of cities and the distance between each pair of cities.

 Find the distance of a “minimum tour” both starting and ending 

at a given city and visiting every city exactly onceat a given city and visiting every city exactly once.

Euclidean

Space

Chang, Huang, Li, Lin, Liu ch2-9

Graph

Space

Decision Problem
․Decision problems:

 problem with “yes” or “no” answer

․Examples:
 (1) MST: Given a graph G=(V, E) and a bound K, is there a 

i t ith t t t K?spanning tree with a cost at most K?
 (2) TSP: Given a set of cities, distance between each pair of 

cities, and a bound B, is there a route that starts and ends 
at a given city, visits every city exactly once, and has total
distance at most B?

․ A decision problem  = (F, c, k)
 Solution Space Y :

 The input sub-space for which the answer is “yes”
S l ti Ch ki (d idi if i t i t i i Y )

yes
no

Y

Chang, Huang, Li, Lin, Liu ch2-10

 Solution Checking: (deciding if an input point is in Y)
 Checking whether the cost of a solution point, f  F, is less 

than k.

․Could apply binary search on decision problems to 
obtain solutions for optimization problems.

․NP-completeness is associated with decision 
problems.
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Boolean Satisfiability Problem (SAT)

․Given
 n binary variables {x1, x2, …, xn}

 A Boolean expression in Product-of-Sum (POS) form

․Boolean Satisfiability Problem
 Is a decision problem

 Decides if there is a variable assignment such that every 

term evaluates to true?

․Example: (x1 + x3 + x4)(x1 + x2 + x5)(x3 + x4 + x5)
A T Cl

Chang, Huang, Li, Lin, Liu ch2-11

A Term or Clause

The Circuit-Satisfiability Problem (Circuit-SAT)

․The Circuit-Satisfiability Problem (Circuit-SAT):
 Instance: A combinational circuit C composed of AND, OR, and 

NOT gates.

 Question: Is there a set of input values (called input pattern or 
input vector) that makes the output of C to 1?

․A circuit is satisfiable
 if there exists an input pattern that makes the output of the 

circuit to be 1.

 Circuit (a) is satisfiable since <x1, x2, x3> = <1, 1, 0> makes the 
output to be 1, while circuit (b) is not satisfiable.

Chang, Huang, Li, Lin, Liu ch2-12
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Discussion Flow On Problem Complexity

Concept

Of

NP-Complete

Class P

Problems

Class NP

Problems
P & NP

NP: Non-deterministic Polynomial

NP-Complete

Concept

Of

Reduction

Proof

Of

NP-Complete

TSP vs. HCReduction

Chang, Huang, Li, Lin, Liu ch2-13

Class NP-Hard

Problems

Algorithms for

NP-Hard

Problems

MST vs.

Steiner Tree
NP-hard

Complexity of Class-P Problems

․The Class-P problems

 Are problems that can be solved in polynomial time in 
terms of input size

Problems in Class-P are considered tractable Problems in Class-P are considered tractable.

․Computational Model: deterministic Turing machine

 (1) A Turing machine is a mathematical model of a 
generic computer (any computation that needs 
polynomial time on a Turing machine can also be 
performed in polynomial time on any other machine).

 (2) “Deterministic” means that each computational step is 

Chang, Huang, Li, Lin, Liu ch2-14

predictable.

․Example:
 Minimum Spanning Tree Problem is a class-P problem.
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Complexity Class-NP
․Suppose that solution checking for a given problem can 

be done in polynomial time on a deterministic machine 
 Then, the problem can be solved in polynomial time 
on a nondeterministic Turing machine.

Nondeterministic: in some sense the machine is able to Nondeterministic: in some sense the machine is able to 
evaluate all possibilities in parallel.

․The class-NP (Nondeterministic Polynomial):
 (1) Is a class of problems that can be verified in polynomial 

time in the size of input.
 (2) NP is also a class of problems that can be solved in 

polynomial time on a nondeterministic machine.
․Is TSP  NP?

Need to check a solution in polynomial time

Chang, Huang, Li, Lin, Liu ch2-15

 Need to check a solution in polynomial time.
 Guess a tour.
 Check if the tour visits every city exactly once.
 Check if the tour returns to the start.
 Check if the total distance  B.

 All can be done in O(n) time, so TSP  NP.

NP-Completeness

․An issue which is still unsettled:

P  NP or P = NP?

․There is a strong belief that P  NP, due to the 
existence of NP-complete problems.

․The class NP-complete (NPC): 
 Developed by S. Cook and R. Karp in early 1970. 

 All problems in NPC have the same degree of difficulty: 

Any NPC problem can be solved in polynomial time  all

problems in NP can be solved in polynomial time.

Chang, Huang, Li, Lin, Liu ch2-16

problems in NP can be solved in polynomial time. 
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Reduction

․Given
 Two decision problems, L1 and L2

․Reduction
 (1) Is a mapping function between the input spaces of L1 and L2

 (2) The final yes/no answers are retained

Chang, Huang, Li, Lin, Liu ch2-17

Polynomial-Time Reduction
․Motivation:

 Let L1 and L2 be two decision problems. Suppose algorithm A2

can solve L2. Can we use A2 to solve L1?

․Polynomial-time reduction f
f L t L L L from L1 to L2: L1 P L2

 f reduces an input for L1 into an input for L2 s.t. the reduced input is a 
“yes” input for L2 iff the original input is a “yes” input for L1.

 L1  P L2 if  polynomial-time computable function f: {0, 1}* {0, 1}*

s.t. x  L1 iff f(x)  L2,  x  {0, 1}*.

 L2 is at least as hard as L1.

 f is computable in polynomial time.

Chang, Huang, Li, Lin, Liu ch2-18
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Example: Polynomial-time Reduction
․ The Hamiltonian Circuit Problem (HC)

 Instance: an undirected graph G = (V, E).

 Question: is there a cycle in G that includes every vertex exactly 

once?

․ TSP (The Decision-version Traveling Salesman Problem)

․ How to show HC P TSP?

1. Define a function f mapping any HC instance into a TSP instance, 

and show that f can be computed in polynomial time.

2. Prove that G has an HC iff the reduced instance has a TSP tour 

with distance  B (x  HC  f(x)  TSP)

Chang, Huang, Li, Lin, Liu ch2-19

HC P TSP: Step 1

1. Define a reduction function f for HC P TSP.
— Given an arbitrary HC instance G = (V, E) with n vertices

․ Create a set of n cities labeled with names in V.

․ Assign distance between u and v

․ Set bound B = n.

— f can be computed in O(V2) time.

Chang, Huang, Li, Lin, Liu ch2-20
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HC P TSP: Step 2

2. G has an HC iff the reduced instance has a TSP with distance  B.

— x  HC  f(x)  TSP.

— Suppose the HC is h = <v1, v2, …, vn, v1>. Then, h is also a tour 

in the transformed TSP instancein the transformed TSP instance.

— The distance of the tour h is n = B since there are n consecutive 

edges in E, each having distance 1 in f(x).

— Thus, f(x)  TSP (f(x) has a TSP tour with distance  B.

Chang, Huang, Li, Lin, Liu ch2-21

HC P TSP: Step 2 (cont’d)

2. G has an HC iff the reduced instance has a TSP with 
distance  B.

— f(x)  TSP  x  HC.
— Suppose there is a TSP tour with distance  n = B. Let it 

be <v1, v2, …, vn, v1>..

— Since distance of the tour  n and there are n edges in the 
TSP tour, the tour contains only edges in E.

— Thus, <v1, v2, …, vn, v1> is a Hamiltonian cycle (x  HC).

Chang, Huang, Li, Lin, Liu ch2-22
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Summary of Proving NP-Completeness

․ Five steps for proving that L is NP-complete:
1. Prove L  NP.

2. Select a known NP-complete problem L'.

C d i f h f3. Construct a reduction f that can transform any 

arbitrary instance of L' to an instance of L.

4. Prove that f is a polynomial-time transformation

5. Prove that x  L' iff f(x)  L for all x  {0, 1}*.

․ We have shown that TSP is NP-complete, since HC is 
a proven NP-complete problem

Chang, Huang, Li, Lin, Liu ch2-23

A known 
NP-complete 

problem L’

A problem L 
to be proved 
NP-completereduce

f

TSP problemHamiltonian Circuit problem

NP-Completeness and NP-Hardness

․L is NP-complete if
 NP-Hard: L‘  P L for every L'  NPC.

L NP L  NP

․NP-hard: If L satisfies the 1st property, but not 
necessarily the 2nd property, we say that L is NP-hard.

Chang, Huang, Li, Lin, Liu ch2-24
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NP-Hard Problems

NP-hard is at least as hard as NPC

(1) For some problem that we don’t know if it is NP

(2) Optimization version of certain NPC-class

Upper-Bound of NP

Upper-Bound of P

NP-complete

Space

NP-hard

Space

Beyond NP

Chang, Huang, Li, Lin, Liu ch2-25

Upper Bound of P

P Space

Coping with NP-hard problems

․Approximate algorithms
 The solution found is guaranteed to be a fixed percentage 

away from the optimum.
 E.g., MST for the minimum Steiner tree problem.g , p

․Pseudo-polynomial time algorithms
 Has the form of a polynomial function for the complexity, 

but not in terms of the problem size.
․Restriction

 Work on some subset of the original problem.
 E.g., the longest path problem in Directed Acyclic Graphs 

(DAG)

Chang, Huang, Li, Lin, Liu ch2-26

(DAG).
․Exhaustive search/Branch and bound

 Is feasible only when the problem size is small.
․Local search:

 Simulated annealing (hill climbing), genetic algorithms, etc.
․Heuristics: No guarantee of performance.
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Spanning Tree v.s. Steiner Tree

․Manhattan distance:
 If two points (nodes) are located at coordinates (x1, y1) and (x2, y2), 

the Manhattan distance between them is given by d12 = |x1-x2| + |y1-y2|. 

․Rectilinear spanning tree:․Rectilinear spanning tree:
 a spanning tree connected with Manhattan paths (Fig. (b) below).

․Steiner tree:
 a tree that connects its nodes, and additional points (Steiner points) 

are permitted to be used for the connections. 

Steiner 
points

Chang, Huang, Li, Lin, Liu ch2-27

Complexities of Spanning and Steiner Trees

․The minimum rectilinear spanning tree problem is in P

․The minimum rectilinear Steiner tree (Fig. (c)) problem is NP-
complete. 

 The spanning tree algorithm can be an approximation for the 

Steiner tree problem (at most 50% away from the optimum).

Steiner 
points

Chang, Huang, Li, Lin, Liu ch2-28
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Outline

․Complexity

․Common Problems in EDA

 Optimization Problem

 Decision Problem

 Satisfiability Problem

․General-Purpose Algorithms

 Exhaustive v.s. Branch-and-Bound

 Greedy v.s. Dynamic Programming

 Divide-and-Conquer (Hierarchical)

Chang, Huang, Li, Lin, Liu ch2-29

 Mathematical Programming

 Simulated Annealing

 Tabu Search

 Genetic Algorithm

Search Paradigms
․Exhaustive search: Search the entire input space.
․Branch and bound: A search technique with pruning.
․Greedy method: Pick a locally optimal solution at each step.
․Dynamic programming: Partition a problem into a collection of sub-

bl th b bl l d fi t d th th i i lproblems, the sub-problems are solved first, and then the original 
problem is solved by combining the solutions. (Applicable when the 
sub-problems are NOT independent).

․Hierarchical approach: Divide-and-conquer.
․Mathematical programming: A system of optimizing an objective 

function under constraints.
․Simulated annealing: An adaptive, iterative, non-deterministic 

algorithm that allows “uphill” moves to escape from local optima.

Chang, Huang, Li, Lin, Liu ch2-30

g p p p
․Tabu search: Similar to simulated annealing, but does not decrease 

the chance of “uphill” moves throughout the search.
․Genetic algorithm: A population of solutions is stored and allowed 

to evolve through successive generations via mutation, crossover, 
etc. 突變 交配
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Exhaustive Search v.s. Branch and Bound

Graph for TSP Problem

Backtracking / Exhaustive search

Chang, Huang, Li, Lin, Liu ch2-31

Branch-and-Bound Search

Graph for TSP Problem

Branch-And-Bound Search

3

1

2

5

Chang, Huang, Li, Lin, Liu ch2-32

Early

Termination

Tour length Estimate =

(length-so-far + MST of remaining nodes)Best-so-far result as

the bounding condition

5

4

5

MST: minimum spanning tree
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Dynamic Programming (DP) v.s. Divide-and-Conquer
․ Both solve problems by combining the solutions of sub-problems.
․ Divide-and-conquer algorithms

 (1) Partition a problem into independent sub-problems

 (2) Solve the sub-problems recursively

 (3) Combine their solutions to derive the final answer

․ Dynamic programming (DP)

 Defines optimal solutions in terms of optimal partial solutions 

 Applicable when the sub-problems are mutually dependent

․Principle of Optimality
 Parts of the search space can be discarded without losing optimality 

if DP is exact

Chang, Huang, Li, Lin, Liu ch2-33

globally optimal

solutionA number of
locally optimal solutions

Construction

Rule

DP-Example 1: Shortest-Path Problem

void  ShortestPath( const int n, const int v)  // Dijkstra’s Algorithm
// dist[j], 0≦j<n, is set to the length of the shortest path from vertex v to vertex j
// in a graph G with n vertex and edge lengths given by length[i][j]
{

f ( i i 0 i i ) { [i] FALSE di [i] l h[ ][i] } // i i i lifor ( int  i=0; i<n; i++ ) {  s[i] = FALSE;  dist[i] = length[v][i]; }  // initialize
s[v] = TRUE;
dist[v] = 0;

for ( i=0; i<n-2; i++) {    // problem increases incrementally
int  u = choose(n); // routine ‘choose’ returns a value u such that

// dist[u] = minimum dist[w], where s[w] = FALSE
s[u] = TRUE;
for ( int w=0; w<n; w++) { u

Chang, Huang, Li, Lin, Liu ch2-34

for ( int  w=0; w<n; w++) {
if ( ! s[w] ) 

if ( dist[u] + length[u][w] < dist[w] )
dist[w] = dist[u] + length[u][w];

}
}

}

驛站區

u

wv

起點

驛站區從 0 個擴大成 n-1 個
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DP-Example 2: TSP Problem via DP
․Given

 A graph G(V, E) with edge weights w

․Sub-Problem Formulation

 v : the starting vertex of the tour vs: the starting vertex of the tour

 C(S, v): the shortest tour length (vsv) passing through 

intermediate vertex set S

․Construction Rule (problem size from k to k+1)

 ),()},{(min),( vmwmmSCvSC
Sm




Chang, Huang, Li, Lin, Liu ch2-35

vs
v

m

S Every vertex in S

Can be the last vertex m

DP-Example 2: TSP Problem Via DP (Details)

 ),()},{(min),( vmwmmSCvSC
Sm




․Problem size |S| = 0
 C(, B) = 9, C(, C) = ∞, C(, D) = ∞ , C(, E) = 3, C(, F) = 5

․Problem Size |S| = 1, there are 20 computation, e.g., 
 C({B}, C) = C(, B) + w(B, C) = 9 + 5 = 14

 C({B}, F) = C(, B) + w(B, F) = 9 + 4 = 13

Chang, Huang, Li, Lin, Liu ch2-36

 C({F}, B) = C(, F) + w(F, B) = 5 + 4 = 9

․Problem Size = 2, there are 30 computations, e.g., 
 C({B, F}, C) = min [ C({B}, F) + w(F, C), C({F}, B) + w(B, C) 

= min [ 13+8, 9+5] = 14

․Final solution: C( { B, C, D, E, F}, A) = 18
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Linear Programming (LP)

․Given : 

 matrix A and vectors b, c

 An unknown vector xAn unknown vector x

Canonical form:

Minimize or maximize: cTx

Subject to: Ax ≦ b and x ≧ 0

Standard form:

Minimize or maximize: cTx

Subject to: Ax = b and x ≧ 0

1 Th t f i t h bl

Chang, Huang, Li, Lin, Liu ch2-37

1. The two forms are interchangeably

* (interception and/or adding dummy variables)

2. Algorithms for solving LP

* Polynomial, ellipsoid

* Exponential in worst-case, simplex

* In most cases, simplex is better than ellipsoid

Integer Linear Programming

․ INTEGER LINEAR PROGRAMMING (ILP)
 ILP is a special form of linear programming

 Each variable takes on an integer value

 ILP is very common for solving combinatorial optimizationILP is very common for solving combinatorial optimization

 ILP is NP-complete

 ILP-solvers are available at public domain

․Applications in VLSI Design Automation
 Often takes a special form: zero-one ILP

 (1) Exact solutions for problems with small input sizes

 (2) To know how good the other heuristics are

Chang, Huang, Li, Lin, Liu ch2-38

 (3) As a source of inspiration for developing new heuristics

Any

Given

Problem

ILP

Formulation

Interpretation
ILP

solver
answers
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Example: Bin Packing

․The Bin-Packing Problem :

 Items U = {u1, u2, …, un}, where ui has a size denoted as si

 A set of bins, each with a capacity denoted as b

․Goal:․Goal:

 Pack all items, minimizing # of bins used. (NP-hard!)

An edge means assignment

Chang, Huang, Li, Lin, Liu ch2-39

S = (1, 4, 2, 1, 2, 3, 5)

A bipartite graph

Algorithms for Bin Packing

S (1 4 2 1 2 3 5)

․Greedy approximation algorithm
 First-Fit Decreasing (FFD)

D i P i ? Hi hi l A h?

S = (1, 4, 2, 1, 2, 3, 5)

Chang, Huang, Li, Lin, Liu ch2-40

․Dynamic Programming? Hierarchical Approach? 
Genetic Algorithm? …

․Mathematical Programming: Use integer linear 
programming (ILP) to find a solution using |B| bins, 
then search for the smallest feasible |B|.



21

ILP Formulation

․Variables
 0-1 variable xij=1 if item ui is placed in bin bj, 0 otherwise

 There are n items, {u1, u2, …, un}, and the size of ui is wi

 There are |B| bins, {B1, B2, …, Bk}, each having capacity of bThere are |B| bins, {B1, B2, …, Bk}, each having capacity of b

․ ILP Formulation
 Three types of constraints for feasible solutions


B

1

}1,0{ijx(1) 0-1 variables

B1

1

4

2

Chang, Huang, Li, Lin, Liu ch2-41





n

i
iji bxw

1





j

ijx
1

1
(2) Exactly once assignment

(3) Bin capacity constraint

B2

B3

2

1

2

3

5

ui

Bj

Flow of Solving Bin Packing By ILP

start Set initial value of |B|

Create ILP program

Call ILP solver

Does there exist a solution?
yes no

531 20

|B|

Binary search for minimal |B|

No more

Chang, Huang, Li, Lin, Liu ch2-42

End

Set new |B| based on
Binary Search

Set new |B| based on
Binary Search

No more

possibility
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Simulated Annealing

․Inspiration
 The material’s slow cooling-down process

 (1) Initially, molecules are free to move like liquid

( ) G f (2) Gradually, they lose their energy and take a fixed position

 Also called statistical cooling

․Analogy
 Energy  cost function

 Molecule movement  movement in search space

 Temperature  Control parameter T

大T

小T

Prob.


 : cost increase of a move

Chang, Huang, Li, Lin, Liu ch2-43

Moving Strategy:

(1) Cost Down: Always Accept

(2) Cost Up: Accept with probability e T
-

2

1 3

5
4

Cost Function

Input space

 : cost increase of a move

Tabu Search

․Principles:
 Moves to the cheapest neighbor, even when cost increases

․Side Effect
 There will be risk of cycling

․Cycle Prevention
 Store the last k feasible solutions in a tabu list

 Any attempts getting into the tabu list is rejected

Chang, Huang, Li, Lin, Liu ch2-44
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Genetic Algorithms

․Principles:
 Based on analogy with evolution process in nature

 Optimization based on survival-of-the-fittest principle

M j l t․Major elements
 (1) A population of feasible solutions

 (2) Encoding of each solution, called chromosome

 (3) Crossover: to  produce children (or offsprings)

 (4) Mutation (突變): to escape from local minimum

Chang, Huang, Li, Lin, Liu ch2-45

Illustration of

Crossover

Concluding Remarks

․NP-Hard problems are everywhere in EDA
 Cannot be exactly solved

 However, many good heuristics still lead to good results

․When it comes to search problems …
 Numerous paradigms exist

 Each has its own proper application domain

 A tug-of-war between space and time

P bl  F l ti  Al ith

Chang, Huang, Li, Lin, Liu ch2-46

Problem  Formulation  Algorithms

A problem is half solved when it is clearly formulated.
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清華大學 EE 5265

積體電路設計自動化

單元 3

Logic Synthesis
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Outline

․RTL Synthesis

․Logic Optimization

․Technology Mapping

Original
Circuit

Logic
Optimization

Technology
Mapping

Optimized
Circuit

C ll b d tli t

Chang, Huang, Li, Lin, Liu
ch3-3

Technology
Independent

Circuit

Cell-based netlist

RTL Synthesis Flow

Translation to
3-address code

HDL Code
(Verilog or VHDL)

e.g., z = x op y

Special Element
Inference

Combinational Circuit
Generation

Functional unit allocation
Interconnect binding

Chang, Huang, Li, Lin, Liu
ch3-4

Initial Structure
Netlist Generation

Gate-Level
Netlist
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Example of RTL Synthesis

c

RTL code
segment

3-address
code

Circuit Component

x=c+d+e;
if(a==b) x= e-f;
y=x;

t=c+d;
x=t+e;
s = (a==b);
if(s) x= e-f;
y=x;

==
a

b
s

+
c

d
t

+
t

e
x

s

Chang, Huang, Li, Lin, Liu
ch3-5

0

1
x

M
U
X

-
e

f

y

Control Data Flow Graph
․CDFG (Control/Data Flow Graph)

 A representation for the cycle behavior of an RTL code
 Nodes: operation, decision, or merge point
 Edges: signal flow

Used to resolve the data and control dependency Used to resolve the data and control dependency

/*d1*/  x = a;
          if(s) begin
/*d2*/   x = b;
/*d3*/   y = x + a;

end

start

x2=b

y1=x+a

s

x1 =a

1 0

一個變數可能出現多次需加以編號

Chang, Huang, Li, Lin, Liu
ch3-6

          end
/*d4*/  y = x;

CDFG is used to decide where the
input operands should come from. y=b or a,

depending on the value of s

y2=x End

merge
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Component Binding

/*d1*/  x = a;
          if(s) begin
/*d2*/   x = b;
/*d3*/

start

x =b

s

x1 =a

1 0

/*d3*/   y = x + a;
          end
/*d4*/  y = x;

a
x1

d1

wire

y2=x End

x2=b

y1=x+a

merge

Chang, Huang, Li, Lin, Liu
ch3-7

a

b
x2

x
y2

a

0

1

s

M
U
X

y1

d2

d3 d4
+

wire

wire

Special Element Inferences

․Three special elements to be inferred
 Latch (D-type) inference

 Flip-Flop (D-type) inference

 Tri-state buffer inference

reg Q;
always@(D or en)

if(en) Q = D;

reg Q;
always@(posedge clk)

Q = D;

reg Q;
always@(D or en)

if(en) Q = D;
else    Q = 1’bz;

Chang, Huang, Li, Lin, Liu
ch3-8

Latch inferred!! Flip-flop inferred!! Tri-state buffer 
inferred!!
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Sequential Section vs. Combinational Section

․Sequential section
 “Always statement” triggered by clock edges

․Combinational section
 All signals whose values are used in the “always statement” 

are included in the sensitivity list

reg Q;

always@(in or en)

if(en) Q=in;

reg Q;

always@(posedge clk)

Q = D;

Chang, Huang, Li, Lin, Liu
ch3-9

Sequential section
Conduct flip-flop inference

Combinational section
Conduct latch inference

(in dangling if-the-else)

Outline

․RTL Synthesis

․Logic Optimization
T L l L i Mi i i ti Two-Level Logic Minimization

 Multi-Level Logic Minimization

․Technology Mapping

What can we do beyond Karnaugh Map [1953]

Chang, Huang, Li, Lin, Liu
ch3-10

y g p [ ]
and Quine-McCluskey [1956] ?
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Prime Implicant

ab
cd

Review: implicant and prime implicant

cd 00 01 11 10

00

01

11

1 1

1

1

1

1

a'b'c'd'

a'b'c

ac'

ab'c'

abc'

prime
implicant

(prime implicant)

Chang, Huang, Li, Lin, Liu
ch3-11

10 1 1

F
a'cd'

a'b'c

(prime implicant)

Essential Prime Implicant

․Essential Minterm

 Is a minterm covered by only one prime implicant

․Essential Prime Implicant

Is a prime implicant that contains at least one essential minterms Is a prime implicant that contains at least one essential minterms

1 1

1 1

Essential minterm

Chang, Huang, Li, Lin, Liu
ch3-12

1 1 1

1

Essential minterm Essential minterm
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Classical Logic Minimization

․Theorem:[Quine, McCluskey]

 There exists a minimum cover for F that is prime

 We only need to look at just primes (to reduce the search space)

․Cl i l th d i t t․Classical methods: using a two-step process
1. Generate all prime implicants

2. Find a minimum cover (covering problem)

- A cover is a set of primes that covers every on-set minterm

Prime implicant generation

Chang, Huang, Li, Lin, Liu
ch3-13

Covering problem

Primary Implicant Generation (1/4)

Implication Table

Column I

0000zero “1”

cd

0

0100

1000

0101

0110

1001

1010

one “1”

two “1”

x 0 0 0

1 1 x 1

0 1 0x

cd
ab 00 1001 11

00

01

11

4
8

9

5
6

10

Chang, Huang, Li, Lin, Liu
ch3-14

0111

1101

1111

three “1”

four “1”

1 1 x 110

7 on-set minterms
4 don’t-care minterms

7

13

15
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Primary Implicant Generation (2/4)

Implication Table

Column I

0000  |

Column II

0-00

-000

0100  |

1000  |

0101  |

0110  |

1001  |

1010  |

010-

01-0

100-

10-0

01-1

Chang, Huang, Li, Lin, Liu
ch3-15

0111  |

1101  |

1111  |

-101

011-

1-01

-111

11-1

Primary Implicant Generation (3/4)

Implication Table

Column I

0000  |

Column II

0-00  *

-000  *

Column III

01--  *

0100  |

1000  |

0101  |

0110  |

1001  |

1010  |

010-  |

01-0  |

100-  *

10-0  *

01-1  |

-1-1  *

A * means prime implicants
(since it was not further
merged with any others)

Chang, Huang, Li, Lin, Liu
ch3-16

0111  |

1101  |

1111  |

-101  |

011-  |

1-01  *

-111  |

11-1  |
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Primary Implicant Generation (4/4)

ab
cd 00 01 11 10

a

There are seven prime implicants in this case

00 01 11 10

00

01

11

0

1

0

1

10

X 0

1

1

X

X

d

Prime Implicants:
 0-00 = a'c'd'
100- = ab'c'
1-01 = ac'd
-1-1  =   bd

   -000 =  b'c'd'
10 0 b'd'

Chang, Huang, Li, Lin, Liu
ch3-17

10 0 10 1

b

c  10-0 =  ab'd'
 01--  =    a'b

Column Covering (1/4)

4         5         6         8         9        10     13

0,4 (0-00)

Prime implicants

Seven on-set elements
4 5 6 8 9 10 13

0,8 (-000)

8,9 (100-)

8,10 (10-0)

9,13 (1-01)

4,5,6,7 (01- -)

Chang, Huang, Li, Lin, Liu
ch3-18

5,7,13,15 (-1-1)

rows = prime implicants

columns = ON-set elements

place an "X" if ON-set element
is covered by the prime implicant

Note: minterms 0, 7, 11, 15
are don’t-care terms

are thus not shown in the table.
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Column Covering – Row Reduction (2/4)

4         5         6         8         9        10     13

0,4 (0-00)

Prime implicants

Seven on-set elements

4 5 6 8 9 10 13

0,8 (-000)

8,9 (100-)

8,10 (10-0)

9,13 (1-01)

4,5,6,7 (01- -)

Chang, Huang, Li, Lin, Liu
ch3-19

5,7,13,15 (-1-1)

If column has a single X, then the

implicant associated with the row

is essential. It must appear in
minimum cover

Column Covering – Column Reduction (3/4)

4         5         6         8         9        10     13

0,4 (0-00)

Prime implicants

On-set elements essential

4 5 6 8 109 13

, ( )

0,8 (-000)

8,9 (100-)

8,10 (10-0)

9,13 (1-01)

essential

Chang, Huang, Li, Lin, Liu
ch3-20

4,5,6,7 (01- -)

5,7,13,15 (-1-1)

Eliminate all columns covered by

essential primes

essential
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Column Covering – Min. Cover (4/4)

  4          5        6        8        9         10       13

0,4 (0-00)

Prime implicants

On-set elements

4 5 6 8 109 13

0,8 (-000)

8,9 (100-)

8,10 (10-0)

9,13 (1-01)

4 5 6 7 (01 ) a’b

ab’d’

ac’d

Chang, Huang, Li, Lin, Liu
ch3-21

4,5,6,7 (01- -)

5,7,13,15 (-1-1)

Find minimum set of rows that
cover the remaining columns

f = ab'd' + ac'd + a'b

a b

Petrick’s Method

• Solve the Satisfiability problem of the following function

P = (P1+P6)(P6+P7)P6(P2+P3+P4)(P3+P5)P4(P5+P7)=1
• Each clause represents a corresponding column
• Each column must be chosen at least once
• All columns must be covered

4         5         6         8         9        10     13

0,4 (0-00)

0,8 (-000)

8,9 (100-)

8 10 (10 0)

P1

P2

P3

P4( i i li t )

4 5 6 8 109 13

Chang, Huang, Li, Lin, Liu
ch3-22

8,10 (10-0)

9,13 (1-01)

4,5,6,7 (01- -)

5,7,13,15 (-1-1) 

P4

P5

P6

P7

(prime implicants)



12

Brute Force Technique

․Brute force technique: Consider all possible elements
P1

in out

P2

․Complete tree has 2|P| leaves!!
 Need to prune it

P2 P2

in out in out

P3 P3 P3 P3

in out in out

Chang, Huang, Li, Lin, Liu
ch3-23

․Complexity reduction
 Essential primes can be included right away

 If there is a row with a singleton “1” for the column

 Keep track of best solution seen so far

 Classical branch and bound

Heuristic Optimization

․Generation of all prime implicants is impractical

․Finding an exact minimum cover is NP-hard
 Cannot be finished in polynomial time

․Expansion-Based Heuristic:
 Avoid generation of all prime implicants

․Procedure
 (Step 1): An on-set minterm is selected, and expanded until it 

becomes a prime implicant

 (Step 2): The prime implicant is included in the final cover, 

Chang, Huang, Li, Lin, Liu
ch3-24

( p ) p p ,
and all minterms covered by this prime implicant are 
removed

 (Step 3): Iterate until all minterms of the ON(f) are covered

․“ESPRESSO” developed by UC Berkeley
 The kernel of synthesis tools
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Outline

․RTL Synthesis

․Logic Optimization
T L l L i Mi i i ti Two-Level Logic Minimization

 Multi-Level Logic Minimization

․Technology Mapping

Chang, Huang, Li, Lin, Liu
ch3-25

Multi-Level v.s. Two-Level

․Two-level:
 Often used in control

f1 = x1x2 + x1x3 + x1x4

․Multi-level:
 Datapath or control

 Can share x2 + x3 between the 
t if2 = x1’x2 + x1’x3 + x1x4

 Only x1x4 shared

 Sharing restricted to 
common cube

two expressions

 Can use complex gates

g1 = x2 + x3

g2 = x1x4

f1 = x1g1 + g2

f2 = x1’g1 + g2

Common
sub-functions

Chang, Huang, Li, Lin, Liu
ch3-26

如何發現 common sub-functions 需要某種型式的【因式分解】



14

Minimization via Division

․Goal:
 Reduce the no. of literals in a given Boolean formula

․Two problems:
 (1) Find good common sub-functions !( ) g
 (2) How to perform division ?

(Minimization Via Division)
F: a Boolean function in SOP form
P: a good sub-function (kernel)

F = PQ + r
Example:
F = ac + ad + bc + bd + e

Chang, Huang, Li, Lin, Liu
ch3-27

F  PQ  r

Quotient
function

Remainder
function

F = ac + ad + bc + bd + e
F = (a+b)(c+d) + e
Literal count: 9  5

Terminology: Primary Divisors

․Cube-Free Expression
 An expression is cube-free if no cube divides the 

expression

 E.g., ab + c is cube-free

 E.g., ab + ac = a (b + c)  is not cube-free

 A cube-free expression must have more than one cube

 E.g., abc is not cube-free

․Primary Divisors
The set of primary divisors of an expression f is defined as:

Chang, Huang, Li, Lin, Liu
ch3-28

 The set of primary divisors of an expression f is defined as: 
D(f) = {f/c | c is a cube}

 We are more interested in finding cube-free divisors



15

Terminology: Kernels and Co-Kernels

․Kernel
 The set of kernels of an expression f is defined as cube-free 

primary divisors, I.e., 

K(f) = {g | g D(f) and g is cube-free} 

․Co-kernel
 The cubes used to obtain the kernels are co-kernels, C(f)

f = K(f)‧C(f) + r

Chang, Huang, Li, Lin, Liu
ch3-29

Kernel:
Cube-free primary divisor f/c

Co-Kernels:
Cube c

Example: Factorization by Kernels

․Example:

f = x1x2x3 + x1x2x4 + x3’x2  8 literals

K { ’ }K = {x1x3 + x1x4 + x3’, x3 + x4}
 x2 is the co-kernel for kernel (x1x3 + x1x4 + x3’)

 x1x2 is the co-kernel for kernel x3 + x4

․Kernels can be used to factorize an expression

f = (x3 + x4)(x1x2) + x3’x2 = x2(x1(x3 + x4) + x3’)

 5 literals

Chang, Huang, Li, Lin, Liu
ch3-30

 5 literals

․For multiple-function minimization
 It is key to find common divisors between expressions
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Find Out All Kernels (1/2)

abcd + abce + adfg + aefg + adbe + acdef + beg

(27 literals)

gc d e d e e f

e f

f

b c d c d e
(a)

(a) ac+d+g(a)

a b

Chang, Huang, Li, Lin, Liu
ch3-31

d+e

c+e
c+d b+ef b+df b+cf ce+g cd+g d+e

abc (d+e) + afg(d+e) + (adbe + acdef + beg)
 (abc+afg)(d+e) + (adbe + acdef + beg)
 a(bc+fg)(d+e) + [ade(b + cf) + beg] (16 literals)

Find Out All Kernels (2/2)

co-kernel kernel 

1 a((bc + fg)(d + e) + de(b + cf))) + beg 

a (bc + fg)(d + e) + de(b + cf)a (bc + fg)(d + e) + de(b + cf)

ab c(d + e) + de 

abc d + e 

. . 

ac b(d + e) + def 

acd b + ef 

. . 

Chang, Huang, Li, Lin, Liu
ch3-32

bc ad + ae 

They can be obtained in n2 time
where n is number of cubes in this expression.



17

Common Divisor

․Theorem (Brayton & McMullen):

f and g have a multiple-cube common divisor if and only if the 
intersection of a kernel of f and a kernel of g has more than 
one cubeone cube

f1 = x1(x2x3 + x2’x4) + x5

f2 = x1(x2x3 + x2’x5) + x4

K(f1) = {x2x3 + x2’x4,

x1(x2x3 + x2’x4) + x5}

K(f2) = {x2x3 + x2’x5,

f1 = x1x2 + x3x4 + x5

f2 = x1x2 + x3’x4 + x5

K(f1) = { x1x2 + x3x4 + x5}

K(f2) = { x1x2 + x3’x4 + x5}

K1 K2 = { x1x2 + x5}

Chang, Huang, Li, Lin, Liu
ch3-33

x1(x2x3 + x2’x5) + x4}

K1  K2 = {x2x3, x1x2x3}

 f1 and f2 have no multiple-
cube common divisor

 f1 and f2 have multiple-
cube common divisor

Cube-Literal Matrix

․Cube-literal matrix

f = x1x2x3x4x7 + x1x2x3x4x8 + x1x2x3x5 + x1x2x3x6 + x1x2x9

 x1 x2 x3 x4 x5 x6 x7 x8 x9 

x1x2x3x4x7 1 1 1 1 0 0 1 0 0 

x1x2x3x4x8 1 1 1 1 0 0 0 1 0 

x1x2x3x5 1 1 1 0 1 0 0 0 0 

x1x2x3x6 1 1 1 0 0 1 0 0 0

Literals

Cubes

Chang, Huang, Li, Lin, Liu
ch3-34

x1x2x3x6 1 1 1 0 0 1 0 0 0 

x1x2x9 1 1 0 0 0 0 0 0 1 
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Cube-Literal Matrix & Rectangles

․A Rectangle (R, C) of a matrix A

 R is a subset of rows, and C is a subset of columns, such that

Aij = 1, for all iR, jC

 Rows and columns need not be continuous

․A Prime Rectangle

 Is a rectangle not contained in any other rectangle

 A prime rectangle indicates a co-kernel kernel pair

Rectangle = {R, C} = {{1, 2, 3, 4},{1, 2, 3}}
 co-kernel: x1x2x3 , kernel: x4x7 + x4x8 + x5 + x6

Chang, Huang, Li, Lin, Liu
ch3-35

 x1 x2 x3 x4 x5 x6 x7 x8 x9 

x1x2x3x4x7 1 1 1 1 0 0 1 0 0 

x1x2x3x4x8 1 1 1 1 0 0 0 1 0 

x1x2x3x5 1 1 1 0 1 0 0 0 0 

x1x2x3x6 1 1 1 0 0 1 0 0 0 

x1x2x9 1 1 0 0 0 0 0 0 1 

Cubes

Prime Rectangles and Logic Synthesis

․Given functions

F = abc + abd + eg
G = abfg
H = bd + ef

(Co-kernels)

X = ab, Y = bd

(Minimized Functions)
H = bd + ef

․Prime Rectangles
({1,2,4},{1,2})  c1 = ab
({2,5},{2,4})  c2 = bd

F = Xc + XY + eg

G = Xfg

H = Y + ef

a b c d e f g 

1 2 3 4 5 6 7

abc 1 1 1 1 0 0 0 0

Chang, Huang, Li, Lin, Liu
ch3-36

abc    1 1 1 1 0 0 0 0

abd    2 1 1 0 1 0 0 0

eg     3 0 0 0 0 1 0 1

abfg   4 1 1 0 0 0 1 1

bd    5 0 1 0 1 0 0 0

ef     6 0 0 0 0 1 1 0
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Outline

․RTL Synthesis

․Logic Optimization

․Technology Mapping

Chang, Huang, Li, Lin, Liu
ch3-37

Technology Mapping

․General approach:
 Choose a set of base functions for canonical representation

 Ex: 2-input NAND and Inverter

 Represent optimized Boolean network using base functions

 Subject graph (for entire Boolean network)

 Represent each library cell using base functions

 One Pattern graph for one library cell

 Each pattern is associated with a cost which is dependent 
on the optimization criteria

Chang, Huang, Li, Lin, Liu
ch3-38

․Goal:
 Finding a minimum-cost cover for a subject graph (I.e., a 

Boolean network) using pattern graphs (I.e., cells)



20

Example Pattern Graph (1/3)

inv (1)

nand2 (1)
nor2 (2)

nand3 (3) nor3 (3)

nand4 (4) nor4 (4)

Chang, Huang, Li, Lin, Liu
ch3-39

nand4 (4) nor4 (4)

Example Pattern Graph (2/3)

nand4 (4) nor4 (4)

aoi21 (3) oai21 (3)

oai22 (4)

Chang, Huang, Li, Lin, Liu
ch3-40

aoi22 (4) oai22 (4)
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Example Pattern Graph (3/3)

and2 (3) or2 (3)( ) ( )

xor (5) xnor (5)

Chang, Huang, Li, Lin, Liu
ch3-41

Example Subject Graph

t1 = d + e;
t2 = b + h;
t3 = a t2 + c;t3  a t2 + c;
t4 = t1 t3 + f g h;
F = t4’;

f
g
d
e F

Chang, Huang, Li, Lin, Liu
ch3-42

e
h
b
a
c

F
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Sample Covers (1/2)

f

AND2

g

d

e

h

b

F
OR2

OR2 AOI22

NAND2

Chang, Huang, Li, Lin, Liu
ch3-43

a

c
NAND2

INV

Area = 18

Sample Covers (2/2)

f

NAND3

g

d

e

h

b

F
OR2

NAND2
OAI21

AND2

Chang, Huang, Li, Lin, Liu
ch3-44

a

c
NAND2

INV

Area = 15

OAI21
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DAGON Approach

․Partition a subject graph into trees
 Cut the graph at all multiple fanout points

Chang, Huang, Li, Lin, Liu
ch3-45

․Optimally cover each tree using dynamic programming approach

․Piece the tree-covers into a cover for the subject graph

Dynamic Programming for Minimum Area

․Principle of optimality:
 Optimal cover for the tree consists of a match at the root

plus the optimal cover for the sub-tree starting at each 
i t f th t hinput of the match

I1

I3

I2

Match: area = m

Chang, Huang, Li, Lin, Liu
ch3-46

I4
root

A(root) = m + A(I1) + A(I2) + A(I3) + A(I4) 
cost of a leaf = 0
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A Library Example

INV 2 a’

NAND2 3 (ab)’

NAND3 4 ( b )’NAND3 4 (abc)’

NAND4 5 (abcd)’

AOI21 4 (ab+c)’

Chang, Huang, Li, Lin, Liu
ch3-47

AOI22 5 (ab+cd)’

Library Element Canonical Form

DAGON in Action – Forward Pass (1)
NAND2(3)

NAND2(8)

(1 )
NAND2(21)

3

1. Forward pass: find locally optimal solutions at each node
2. Backward pass: choose the globally optimal solution

8
INV(2)

INV(2)

NAND2(3) INV(5) NAND2(8)
NAND3(4)

NAND2(13)

INV(15)
AOI21(9)

NAND2(16)
NAND3(18)

AOI21(22)
INV(18)

NAND2(21)
NAND3(17)
NAND4(19)

15
2

2

13

Chang, Huang, Li, Lin, Liu
ch3-48
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DAGON in Action – Forward Pass (2)

NAND2(3)

(1 )
NAND2(21)

3 1. Forward pass: find locally optimal solutions at each node
2. Backward pass: choose the globally optimal solution

INV(2)

NAND2(8)

INV(2)

NAND2(3) INV(5) NAND2(8)
NAND3(4)

NAND2(13)

INV(15)
AOI21(9)

NAND2(16)
NAND3(18)

AOI21(22)
INV(18)

NAND2(21)
NAND3(17)
NAND4(19)

2

9

AOI21 (cost=4)

Chang, Huang, Li, Lin, Liu
ch3-49

DAGON in Action – Forward Pass (3)

NAND2(3)

(1 )
NAND2(21)

1. Forward pass: find locally optimal solutions at each node
2. Backward pass: choose the globally optimal solution

INV(2)

NAND2(8)

INV(2)

NAND2(3) INV(5) NAND2(8)
NAND3(4)

NAND2(13)

INV(15)
AOI21(9)

NAND2(16)
NAND3(18)

AOI21(22)
INV(18)

NAND2(21)
NAND3(17)
NAND4(19)

17

Chang, Huang, Li, Lin, Liu
ch3-50
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DAGON in Action – Backward Pass (1)

NAND2(3)

(1 )
NAND2(21)

1. Forward pass: find locally optimal solutions at each node
2. Backward pass: choose the globally optimal solution

INV(2)

NAND2(8)

INV(2)

NAND2(3) INV(5) NAND2(8)
NAND3(4)

NAND2(13)

INV(15)
AOI21(9)

NAND2(16)
NAND3(18)

AOI21(22)
INV(18)

NAND2(21)
NAND3(17)
NAND4(19)

17

Chang, Huang, Li, Lin, Liu
ch3-51

DAGON in Action – Backward Pass (1)
NAND2(3)

(1 )
NAND2(21)

3 1. Forward pass: find locally optimal solutions at each node
2. Backward pass: choose the globally optimal solution

Not used
INV(2)

NAND2(8)

INV(2)

NAND2(3) INV(5) NAND2(8)
NAND3(4)

NAND2(13)

INV(15)
AOI21(9)

NAND2(16)
NAND3(18)

AOI21(22)
INV(18)

NAND2(21)
NAND3(17)
NAND4(19)

2
179

Chang, Huang, Li, Lin, Liu
ch3-52

4

Not used
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Concluding Remarks

․A Milestone Design Technology
 RTL coding  Translation & Optimization  Done !

․RTL Synthesis
C t l D t Fl G h f t bi di Control Data Flow Graph for component binding

 Storage Element Inference

․Logic Synthesis
 Division-Based Factorization
 Kernel-Based Factorization
 Common Sub-Expression Extraction

․Technology Mapping

Chang, Huang, Li, Lin, Liu
ch3-53

Technology Mapping
 A pattern matching problem

Being A Million-Dollar Concept,

Synthesis Quantum-Jumps The Productivity.



1

清華大學 EE 5265

積體電路設計自動化

單元 4

Simulation

教育部顧問室
「超大型積體電路與系統設計」教育改進計畫

EDA聯盟 – 推廣課程

致謝
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ch4-2
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․交通大學資科系 李毅郎

․中央大學電機系 劉建男
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Outline

․Introduction

․Gate-level simulation
Compiled Code Simulation Compiled-Code Simulation

 Event-Driven Simulation

․Switch-Level Simulation

Chang, Huang, Li, Lin, Liu
ch4-3

Simulation

․ Simulation
 is a design validation process for checking a circuit’s functionality, power 

dissipation and/or timing

․ Inputs
(1) A d i d l ( RTL d t l l tli t) (1) A design model (e.g., RTL code or gate-level netlist)

 (2) A set of input signals (stimuli, patterns, or vectors)

 (3) A pre-characterized cell models when necessary

․ Outputs
 The waveforms of output signals

Chang, Huang, Li, Lin, Liu
ch4-4
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Comparison of Simulation

HW/SW Co-Simulation

Instruction Set Simulation

Efficiency System-C or System-Verilog

Particularly for CPU design

RTL Simulation

Gate-Level Simulation

Switch-Level Simulation

Cycle-based simulation
No delay

Treat transistor as a switch

With cell-based delay models

Chang, Huang, Li, Lin, Liu
ch4-5

Transistor-Level Simulation

Circuit Simulation

Process SimulationAccuracy

Quick SPICE simulation

SPICE simulation

For device or interconnect modeling

Circuit Simulation
․Circuit simulators (e.g., SPICE)

 Determine time-domain or frequency domain behaviors

 Based on Kirchoff’s voltage and current law (KVL and KCL)

 Numerical methods are needed for nonlinear transistorsNumerical methods are needed for nonlinear transistors

 Need SPICE model (either functional or table) for devices

․DC Analysis

 Finds the operating point of a circuit.

․AC (Small-Signal) Analysis

 Finds the frequency response of a circuit. 

 A transistor is linearized at its DC point.

Chang, Huang, Li, Lin, Liu
ch4-6

․Transient Analysis

 Finds the time domain response for a circuit when it is 
excited by certain input stimuli.

․SPICE Home Page
 http://bwrc.eecs.berkeley.edu/Classes/IcBook/SPICE/
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Circuit Simulation of a CMOS Inverter (0.6 m)

Chang, Huang, Li, Lin, Liu
ch4-7

Cell Delay and Interconnect Delay

Stage Delay: Cell delay + Interconnect delay
Path: (PI  PO, FFPO, FFFF)
Path delay: sum of stage delays along a path

Chang, Huang, Li, Lin, Liu
ch4-8
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Setup & Hold Time

FFs
Comb.
logic

Comb.
logic

A
B
C out1

out2

D Q
FFs

D Q

clk

out2

Setup time is due to D-to-Q delay: violated by long-paths
Hold time is due to Clock-to-Q delay: violated by short-paths

Chang, Huang, Li, Lin, Liu
ch4-9

Valid data

Delay Modeling

Cell Delay

Zero-Delay

Unit-Delay

Variable-Delay

Inertial-Delay

Path Delay

Interconnect Delay

y

Cell Delay

Single-RC

T-Model

Distributed-RC

Chang, Huang, Li, Lin, Liu
ch4-10

‘1’ ‘0’

Without inertial delay

With inertial delay

Short-duration glitches will get filtered out by the inertial delay model
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Propagation Delay 

voltage

voltage
0.5 Vdd

Chang, Huang, Li, Lin, Liu
ch4-11

0.5 Vdd

Rise Time and Fall Time

Rise Time rise: output to rise from V10% to V90%
Fall Time fall: output to fall from V90% to V10%

Chang, Huang, Li, Lin, Liu
ch4-12
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Timing Model for A Logic Cell

․Three Factors Affecting Cell Delays
 (1) Gate size (fixed for a given cell)

 (2) Loading capacitance

(3) I l (3) Input slope

․Three PVT Corners (Process + Operation)
 (1) Worst case delay

 Using T(emperature) = 125 C, supply voltage= 90% Vdd, 
and worst case SPICE model for delay characterization.

 (2) Best case delay

Using T = 0 C supply voltage= 110% Vdd and best case

Chang, Huang, Li, Lin, Liu
ch4-13

 Using T = 0 C, supply voltage= 110% Vdd, and best case 
SPICE model for delay characterization.

 (3) Typical case delay

 Using T = 27 C, supply voltage= 100% Vdd, and typical 
case SPICE model for delay characterization.

Pre-characterized Timing Table

․A timing table for each cell is provided by library vendor
 To look up propagation delay, rise time, fall time
 Based on load capacitance and input slope

․For unspecified input conditions․For unspecified input conditions
 Interpolation or extrapolation is used

Delay table for 
some cell in

Chang, Huang, Li, Lin, Liu
ch4-14

some cell in 
Cadence TLF 

format
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Delay Model Example

Signal propagation delays = 2
No rise or fall delay

Chang, Huang, Li, Lin, Liu
ch4-15

Signal propagation delays = 2
Fall delay = 1
Rise delay = 0

Interconnect Delay Models

• Single RC Model
• T Model
• Distributed RC Model

T Model

Distributed RC Model (ladder network)

RC Model

PLH ～ 0.69 RC

Chang, Huang, Li, Lin, Liu
ch4-16

Distributed RC Model (ladder network)
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Elmore Delay Calculation

Notation: Let TCi be the total loading capacitance seen at resistor Ri

Time constant of
the delay from Di = Σ (Ri．TCi)

N

RC tree network with multiple branches

y
source to node i :

Di   Σ (Ri TCi)
i=0

Chang, Huang, Li, Lin, Liu
ch4-17

Outline

․Introduction

․Gate-level simulation
 Compiled-Code Simulation

 Event-Driven Simulation

․Switch-Level Simulation

Chang, Huang, Li, Lin, Liu
ch4-18
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Compiled-Code Simulation

․Strategy of Compiled-Code Simulation
 Convert the circuit into a sub-routine for repeated evaluation

․Advantages
 Could be computationally efficient because there is no need to 

l d t t t i i itprocess complex data structure in circuit
 Especially suitable for zero-delay or unit-delay model

․Drawback
 Cannot process complex delay model easily

Chang, Huang, Li, Lin, Liu
ch4-19

Code Generation

Unit-Delay Simulation

․Assumes that all gate 
delays equal 1.

․Provides some 
i f i binformation about 
signal evolution in time, 
especially to detect 
glitches.

Chang, Huang, Li, Lin, Liu
ch4-20
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Compiled Code for Unit-Delay Simulation

Chang, Huang, Li, Lin, Liu
ch4-21

Event-Driven Simulation

․Event-driven simulation
 is a widely-used mechanism in gate-level and switch-level 

simulators.

․An event․An event
 is a change of a signal value that may trigger new changes.

․A queue of events
 Is needed

․Basic steps:
 (1) Initialize the input stimuli

initialization

Chang, Huang, Li, Lin, Liu
ch4-22

 (2) Process one event from the queue

 (3) Put newly born events into the queue

 (4) Go back to step 2 until queue is empty

Process one event

Update the queue
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Data Structures For Event Queue

․Potential Data Structures for Event Queue
 (1) Timing wheel

 (2) Array of linked list

(3) P i it ( H ) (3) Priority queue (e.g., Heap)

tj
tj+…

tj+L

Array of linked listTiming Wheel

1
2
3
4

Chang, Huang, Li, Lin, Liu
ch4-23

tj+2

……

…

tj is current time
 is the time step

5
6
7
8

Signal Modeling for Gate-Level Simulation

․Binary Value Simulation
 Each gate’s output can take on a value of either ‘0’ or ‘1’.

․Three-Valued Simulation
 Signal value set is {‘0’, ‘1’ and ‘X’}.

 ‘X’ means ‘‘unknown’’.
․Nine-Valued Simulation

 IEEE std_logic data type with 9 values.
 mixture of level and strength.

 ‘U’ (uninitialized)
 ‘X’ (forcing unknown)
 ‘0’ (forcing 0); ‘1’ (forcing 1)

Chang, Huang, Li, Lin, Liu
ch4-24

 ‘Z’ (high impedance)
 ‘W’(weak unknown)
 ‘L’ (weak 0), ‘H’, (weak 1)
 ‘–’ (don’t care). 
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Example (1/10)

․Assumptions
 Propagation delay for two-input OR gate is 2 ns

 Propagation delay for two-input AND gate is 3ns

Chang, Huang, Li, Lin, Liu
ch4-25

 Time resolution for simulation is 1 ns (i.e.,  = 1ns).

․Input stimuli at time 0:

 A: 1 0, B:00, C: 01, D: 00, E: 00

Example (2/10)

․ Set up the timing-wheel 
for the changes of input 
A and C.

n1(10)

0

1…

n3(01)

…
Current time t=0

ni(xy) : A scheduled 
event which 
will make 
x y 
transition.

10
10

2
3…

…
n1=1, n2=0, n3=0, 
n4=0, n5=0, n6=1, 
n7=0, n8=0, n9=0

n3(01)

0

Chang, Huang, Li, Lin, Liu
ch4-26

0

1

2
3…

…

…
…

Process event n1(10) at t= 0

n1=10, n2=0, n3=0, n4=0, 
n5=0, n6=1, n7=0, n8=0, n9=0

Schedule the triggered 
event n6(10)

3( )

n6(10)
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Example (3/10)

Process event n3(01) at t=0 

n1=0, n2=0, n3=01, n4=0, 
n5=0, n6=1, n7=0, n8=0, n9=0

0

1

2

3…

…

…
…

n6(10)
3

Schedule the triggered 
event n8 (01)

0

1

…Advance current time 
by one resolution unit

n8(01)

01

1

01

Chang, Huang, Li, Lin, Liu
ch4-27

1

2

3…

…

…by one resolution unit 
to t = 1

n1=0, n2=0, n3=1, n4=0, 
n5=0, n6=1, n7=0, n8=0, 
n9=0

n6(10)

n8(01)

Example (4/10)

0

1

2
3

…

…
…Advance current 

time by one 
resolution unit to 
t=2 n6(10)

3…
n1=0, n2=0, n3=1, 
n4=0, n5=0, n6=1, 
n7=0, n8=0, n9=0

n8(01)

Chang, Huang, Li, Lin, Liu
ch4-28
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Example (5/10)

0

1

25

…
…

Process event n6(10) at t=2

n1=0, n2=0, n3=1, n4=0, n5=0,
n =10 n =0 n =0 n =0 (10) 2

34

5n6=10, n7=0, n8=0, n9=0

Schedule triggered event n8(10) n8(01)

n8(10)

10

1
10

Chang, Huang, Li, Lin, Liu
ch4-29

1

Example (6/10)

0

1

25

…
…Advance time to t=3

n1=0, n2=0, n3=1, n4=0, 
n =0 n =0 n =0 n =0 n (10) 2

34

5n5=0, n6=0, n7=0, n8=0, 
n9=0

n8(01)

n8(10)

Chang, Huang, Li, Lin, Liu
ch4-30
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Example (7/10)

0

16
7

Process event n8(01) at t=3

n1=0, n2=0, n3=1, n4=0, n5=0, 
n6=0, n7=0, n8=01, n9=0 1

2
34

5
n8(10)

Schedule event n9(01)

n9(01)

01
01

Chang, Huang, Li, Lin, Liu
ch4-31

0

01

Example (8/10)

0

16
7

Advance time to t=4 and then 
to t=5

n1=0, n2=0, n3=1, n4=0, n5=0, 
n =0 n =0 n =1 n =0 1

2
34

5
n6=0, n7=0, n8=1, n9=0

n8(10)n9(01)

Chang, Huang, Li, Lin, Liu
ch4-32
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Example (8/10)

0

16
7

Process event n8(10) at t=5

n1=0, n2=0, n3=1, n4=0, n5=0, 
n6=0, n7=0, n8=10, n9=0

n9(10) Schedule event n9(10)

1

2
34

5

n6 0, n7 0, n8 10, n9 0

n9(01)

10

10

Chang, Huang, Li, Lin, Liu
ch4-33

0

Example (9/10)

0

16
7

Process event n9(01) at t=5

n1=0, n2=0, n3=1, n4=0, n5=0, 
n6=0, n7=0, n8=0, n9=01

n9(10)

1

2
34

5

n6 0, n7 0, n8 0, n9 01

Not scheduling any 
triggered event 
because n9 is an 
output.

Chang, Huang, Li, Lin, Liu
ch4-34

01
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Example (10/10)

0

16
7

Advance time to t=6, t=7 and then 
process event n9(10) at t=7

n1=0, n2=0, n3=1, n4=0, n5=0, n6=0, 1

2
34

5

n1 0, n2 0, n3 1, n4 0, n5 0, n6 0, 
n7=0, n8=0, n9=1->0

Not scheduling any 
triggered event 
because n9 is an 
output.

10

Chang, Huang, Li, Lin, Liu
ch4-35

p

• There are hazards on n8(010) and n9 (010).

• It takes 7ns to propagate the input change to the output.

Outline

․Introduction

․Gate-level simulation
 Compiled-Code Simulation

 Event-Driven Simulation

․Switch-Level Simulation
 Circuit Partitioning

 Evaluate each channel-connected component

Chang, Huang, Li, Lin, Liu
ch4-36
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Basics of Switch-Level Simulation
․ Input

 A transistor schematic

․Simulation Strategy
 (1) Treating transistors as bi-directional switches

 (2) Label each transistor by its on-resistance

 (3) Label each node by (strength, value) pair

 (4) Parasitic RC can be included

․Two types of nodes
 (1) input node and (2) charged node (or storage node)

․ Input node
Could be Vdd GND strong ‘0’ or ‘1’

Chang, Huang, Li, Lin, Liu
ch4-37

 Could be Vdd, GND, strong 0  or 1

 The strength of an input node is the maximum one

․Charged node
 Is associated with a capacitance

 The strength is proportional to its capacitance

Strength Model Example

Input node with 
strength 5

Strength of 
a transistor

Strength of a 
storage node

Chang, Huang, Li, Lin, Liu
ch4-38
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Switch-Level Simulation Techniques

․Partitioning the circuit into subcircuits that can be treated as 
unidirectional components.

 Static partitioning: Connections to the gate of a transistor
determine subcircuit boundaries irrespective of the signals p g
carried by the nets.

 Dynamic partitioning: Known signal values in the network 
are taken into account  such that further partitioning of 
subcircuits is possible.

․Each subcircuit is then modeled as a channel-connected 
component or a switch graph (multigraph) G=(V, E), where

 V is a set of vertices representing input or storage nodes

Chang, Huang, Li, Lin, Liu
ch4-39

V is a set of vertices representing input or storage nodes
labeled with node (net) names and strengths.

 E is a set of edges representing transistors labeled with a 
transistor name and strength.

Static Versus Dynamic Partitioning

VddVdd VddVdd

V V

T‘0’

Chang, Huang, Li, Lin, Liu
ch4-40

Vss

Vss

Vss

Vss

Static partitioning Dynamic partitioning
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Multi-Graph

․A convenient 
representation for switch-
level circuits is alevel circuits is a 
multigraph.

․Vertices represent nets
and are labeled with the 
net name and strength.

․Edges represent 
transistors and are

Chang, Huang, Li, Lin, Liu
ch4-41

transistors and are 
labeled with a transistor 
ID and strength. 

Ex:Evaluate a Channel-Connected Component

• The table below 
shows how input 
signal changes are

Propagate (from  to) State of n2 State of n3

“Initial state” (‘X’, 1) (‘X’, 1)

signal changes are 
propagated to the 
output.

Chang, Huang, Li, Lin, Liu
ch4-42

no  n2 (‘1’, 3) (‘X’, 1)

n1  n2 (‘0’, 4) (‘X’, 1)

n2  n3 (‘0’, 4) (‘0’, 3)

Logic value StrengthWinner takes all
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Switch-Level Timing Simulation

․Need delay models to account for 
 Transistor on-resistance and capacitance

 Interconnect resistance and capacitance

D l M d l․Delay Models
 Lumped RC model (overestimating delay)

 Lumped RC model + input slope (slew rate)

 Distributed RC model + input slope

Chang, Huang, Li, Lin, Liu
ch4-43

Concluding Remarks

․Trade-off in simulation
 Behavior-level  Cycle-accurate  Timing-accurate

․Two major types of gate-level simulationTwo major types of gate level simulation
 Compiled-code simulation

 Event-driven simulation

․Switch-Level Simulation
 Partitioning of circuits into channel-connected components

 A fight-breaking scheme in terms of strength of signals

Chang, Huang, Li, Lin, Liu
ch4-44

Simulation Is Not Real, It Is Just Almost Real.
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清華大學 EE 5265

積體電路設計自動化

清華大學電機系 黃錫瑜

單元 5：Formal Verification

教育部顧問室
「超大型積體電路與系統設計」教育改進計畫

EDA聯盟 – 推廣課程

清華大學電機系 黃錫瑜

Overview

Equivalence
Checking

Property
Checking

Many Other
Applications

Formal Verification

清華大學電機系 黃錫瑜 ch5-2

Ordered Reduced Binary Decision Diagram
(1) State Space Traversal
(2) Boolean Reasoning
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Outline

• Fundamentals
– The roles of formal verification
– Binary Decision Diagram (BDD)

• Equivalence Checking
– Product Machine
– State Space Traversal

清華大學電機系 黃錫瑜 ch5-3

– Implicit State Enumeration

The Roles of Functional 
Verification

Design Creation Design Verification

abstract design specification =
Design Validation

(Is what I specified

Register-Transfer Level Model

Schematic
(gate level or transistor level)

abstract design specification = (Is what I specified 
really what I want?)

Property Checking
(Does the RTL model

has desired properties?)

Equivalence Checking
(implementation verification)=

清華大學電機系 黃錫瑜 ch5-4

(gate-level or transistor-level)

Layout

(implementation verification)
(Is what I implemented

really what I specified?)

Physical verification
(LVS & DRC)

=

LVS: layout vs. schematic check, DRC: design rule check
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Functional Verification Paradigms

• Simulation
– not complete (i.e., may fail to catch bugs)
– very time-consuming, especially when at lower abstraction 

levels such as the gate or transistor level
– still the most popular way for design validation

• Emulation
– (1) based on an FPGA-based emulation system, or
– (2) based on a massively parallel machine (e.g., with 8 

boards, each having 128 processors)
– 2 to 3 orders of magnitude faster than software simulation

清華大學電機系 黃錫瑜 ch5-5

– costly and might not be very easy-to-use

• Formal verification
– a relatively new paradigm for property checking and 

equivalence checking
– requires no input stimuli
– perform exhaustive proof through rigorous logical reasoning

Binary Decision Diagram (BDD)

• Basic Features
– BDD was proposed by [R.E. Bryant] in 1986

• “Graph-Based Algorithms for Boolean Function Manipulation”, 
IEEE Trans  on Computers  vol  C-35  Aug  1986  pp  677-691IEEE Trans. on Computers, vol. C-35, Aug. 1986, pp. 677-691.

– BDD is a Directed Acyclic Graph (DAG) used to 
represent a Boolean function f: BnB

– each non-terminal node is a decision node associated 
with an input variable with two branches – 0-branch
and 1-branch

– There are two terminal nodes – 0-terminal and 1-
terminal

清華大學電機系 黃錫瑜 ch5-6

terminal

• Example:

x1
x2

f

x1

x2

0 1

0
1

1
0

BDD



4

Canonicity

• Canonicity Requirements
– The BDD representation is not canonical for a p

given Boolean function unless the following 
constraints are satisfied:

– (1) Simple BDD – each variable can appear only 
once along each path from the root to a leaf

– (2) Ordered BDD – Boolean variables are ordered 
in such a way that if the node labeled xi has a 

清華大學電機系 黃錫瑜 ch5-7

y i

child labeled xk, then order(xi) < order(xk)
– (3) Reduced BDD – no two nodes represent the 

same function, I.e., redundancies are removed 
by sharing isomorphic sub-graphs

Reduced Ordered BDD (ROBDD)

• Rules for ROBDD
– Rule 1: merge two children with the same terminal nodes

Rule 2: merge two isomorphic sub graphs– Rule 2: merge two isomorphic sub-graphs

x

11

1

• Reduction Procedure

x

x=0 cofactor x=1 cofactor

清華大學電機系 黃錫瑜 ch5-8

Reduction Procedure
– Input: An arbitrary BDD
– Output: A canonical reduced ordered BDD
– Traverse the graph from the terminal nodes towards to 

root node (I.e., in a bottom-up manner) and apply the 
above reduction rules whenever possible
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Example: BDD Reduction (1)

• f = x’yz’ + xz
• variable order: x  y  z

f

Truth table

xyz f

000 0

001 0

010 1

011 0

100 0

not yet reduced BDD

x

10

y
10

y

10
Rule 1

清華大學電機系 黃錫瑜 ch5-9

100 0

101 1

110 0

111 1

z

1

z z

10

z

0 0 1 0 0 10 1

0 0001 111

Example: BDD Reduction (2)

x

10

y

10

y

10

Rule 1

x
10

y

1
y

10

zz z

10

z

0 0 1 0 0 10 1

0 0001 111

Rule 2
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z

1

0
z

10

z

0 1 0 0 10 1

000 111
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Example: BDD Reduction (3)

x
10

y

1

y

10

Rule 2

No more rules can be applied
 A ROBDD ith t i hi

x

1
0

y

1

z

1

0 z

10

z

0 1 0 0 10 1

000 111

 An ROBDD without isomorphic
sub-graphs is achieved
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z
0

0 1 0

0

z

0 1

0 11
f

Rule

The Influence of Variable Ordering

• Size of BDD
– can vary from linear to exponential in the number of 

the variables  depending on the variable orderingthe variables, depending on the variable ordering

• Hard-to-Build BDD
– Data path components (e.g., multipliers) cannot be 

represented in polynomial space, regardless of the 
variable ordering

• Heuristics of Ordering
(1) Put variables that influence most on the top of BDD

清華大學電機系 黃錫瑜 ch5-12

– (1) Put variables that influence most on the top of BDD
– (2) Minimize the distance between strongly related 

variables
– (e.g., x1x2 + x2x3 + x3x4) 

x1x2x3x4 is better than x1x4x2x3
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Example on Variable Ordering

z = (a⊕b) · (c⊕d) · (e⊕f) 

good order bad order

a

c

b

d

b

d

cc

a

b bb b b bb b

e ee e
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e

f f

1 0

others

d dd d

f f

1 0

others

Recursive BDD Operations

• Notations
– f and g are two BDDs representing two functions
– op is a Boolean operator (I.e., AND, OR, NOT, …)

• BDD operation
– Problem: Construct the BDD of h = f op g
– A recursive procedure on each variable

• h = x · hx=1 + x’ · hx=0, where x is a variable
= x · (f op g)x=1 + x’ · (f op g)x=0

• For most operations, (f op g)x=1 = (fx=1 op gx=1)

清華大學電機系 黃錫瑜 ch5-14

• Hence h = x · (fx=1 op gx=1) + x’ (fx=0 op gx=0) 

x

fx=0 fx=1

op

x

gx=0 gx=1

x

fx=0 op gx=0 fx=1 op gx=1

0 1
0 1 0 1
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Existential Quantification

• Definition
� x1 [f(x1,y1 ,…,yn)] = g(y1 ,…,yn)

such that  g(y1 ,…,y ) = 1

x3

0 1such that  g(y1 ,…,yn)  1
iff f(0,y1 ,…,yn)=1 or f(1,y1 ,…,yn)=1

• Example

0 0 1

0 1

reduction
f = (x1+x2) · x3 x1 f = fx1=0 + fx1=1

x1 x2
x3

x2

清華大學電機系 黃錫瑜 ch5-15

0 1

0 1

0 1

0 1

0 1

0 1

0 1

OR =
0 1

x3

0 1

0 1
x3

0 1

0 1

x2

x3

x3

x3

0 1

0 1

Universal Quantification

• Definition
� x1 [f(x1,y1 ,…,yn)] = g(y1 ,…,yn)

such that  g(y1 ,…,y ) = 1such that  g(y1 ,…,yn)  1
iff f(0,y1 ,…,yn)=1 and f(1,y1 ,…,yn)=1

• Example

0 1

f = (x1+x2) · x3 x1 f = fx1=0 + fx1=1

x1 x2
x3

x2
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0 1

0 1

0 1

0 1

0 1

0 1

0 1

and =
0

1

x3

0 1

0 1

x2

x3

x3

x3

0 1

0 1
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Translations Among Boolean 
Function Representations

Truth Table

BDD

enumerate each root-to-1
path, (each representing 
a product term)

a translation
using MUXes

recursive
Shannon
expansion
(RSE)

enumerate each root-to-1
path, (each representing 
a product term)

清華大學電機系 黃錫瑜 ch5-17

Boolean

Formula
Logic Netlist

g

RSE

incremental
construction
from PI’s to PO’s

From Netlist to OBDD

Decide a good variable order

Topologically sort the signals

x1
x2

z1

2Topologically sort the signals
(from PI’s towards PO’s)

more signal’s
BDD to build ?

each PO’s BDD
yes

no

x3 z2

Boolean network C

清華大學電機系 黃錫瑜 ch5-18

select the next signal based
on the topological order

construct the selected signal’s BDD
using its direct fanins’ BDD’s

each PO s BDD
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Example: Constructing BDD

x1
x2

z1

BDD(z2) = BDD(x3) · BDD(z1)
x3 z2

Boolean network C

A topological order: {x1,x2,x3,z1,z2}
variable order: x1x2x3

x1 x2 x3

x1

0 1

x1

0

1
x2

0 1

BDD(z2) = BDD(x3) · BDD(z1)
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x1

0 1

0 1

x2

0 1

0 1

x3

0 1

0 1 1x2

0 1

0 1
x3

0 1

0 1

BDD of z1 BDD of z2

BDD(x1) BDD(x2) BDD(x3)

Summary of BDD

• Good Properties
f– BDD is a compact representation for Boolean 

functions
– Canonical, given a fixed variable ordering
– Polynomial time in BDD size for many Boolean 

operations

• Bad Properties

清華大學電機系 黃錫瑜 ch5-20

Bad Properties
– In the worst case, the size of a BDD is O(2n) for n-

input Boolean functions
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Outline

• Fundamentals
– The roles of formal verification
– Binary Decision Diagram (BDD)

• Equivalence Checking
– Product Machine
– State Space Traversal

清華大學電機系 黃錫瑜 ch5-21

– Implicit State Enumeration

The Problem of Equivalence 
Checking

specification
(golden reference)

x1
x2
xm

S1

I1

C1

C2

implementation

Sn

清華大學電機系 黃錫瑜 ch5-22

(Question): Is every primary output pair equivalent
(i.e., Sk = Ik, 1≦k≦n) for all possible input sequences?

C2

In
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Product Machine

Assumption:
the no. of states in the specification machine: n1
the no. of states in the implementation machine: n2

Then the product machine has (n1 x n2) states

Two machines are equivalent if and only if  the product machine’s 
outputs are tautology ‘0’ for all possible input sequences

⊕

S1

specification
machine

primary inputs

清華大學電機系 黃錫瑜 ch5-23

⊕

tautology ‘0’ ?

implementation
machine

I1

product machine or miter

Overall Procedure for Symbolic 
Equivalence Checking

• Sequential Equivalence Checking
– (Step1): enumerate all possible reachable states of the 

product machine  a process requires FSM traversalproduct machine  a process requires FSM traversal
– (Step 2): prove every output of the product machine for any 

combination of primary inputs and reachable states is 
tautology ‘0’  a combinational checking problem

tautology
‘0’ ?

S1

specification
machine

primary present
t t li

清華大學電機系 黃錫瑜 ch5-24

⊕
0  ?1

implementation
machine

inputs

I1

state lines

present
state lines

Let  = (v1,v2,…,vk)
be an input sequence
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Reachable State Computation

S0

S0
assume the initial state is s0

S5

S6

S7

S3

S2

S4

S1 S1

S3

S4
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S0 S2

S0 S2
{S0, S1, S2, S3, S4} are 

reachable states

the tree stops at
ever-visited state

Finite State Machine Traversal 
(FSM Traversal)

• FSM Traversal
– a process to compute the set of reachable states

 b   b dth fi t  d th fi t t l– can be a breadth-first or depth-first traversal
– Breadth-first traversal

1. Initial R0 = {s0}
2. Rj+1 = Rj ∪ {next states of Rj}
3. Repeat step (2) until a fixed-point is found, i.e.,two 

consecutive reachable state sets Rk, Rk+1 are the same

A breadth-first traversal process

清華大學電機系 黃錫瑜 ch5-26

Rj represents the set of states reachable 
in j steps from the initial state in the STG

R1 R2 Rk Rk+1…
initial
state

fixed-point if Rk=Rk+1

A breadth first traversal process
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Example: FSM-traversal

S0

S1 S2 S3

S0

S5 S4

iteration j reachable states Rj

0 {s0}
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1 {s0, s1, s5}
2 {s0, s1, s2, s5}
3 {s0, s1, s2, s3, s5}
4 {s0, s1, s2, s3, s4, s5}
5 {s0, s1, s2, s3, s4, s5} (fixed point)

Implicit State Enumeration

• Implicit state enumeration
Th  h bl  t t   t d ith t – The reachable states are computed without 
constructing the state transition graph explicitly

– The state space is implicitly traversed
– BDD is used to 

• represent a set of states
• represent the state transition relation of a machine

More efficient than explicit state enumeration 
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– More efficient than explicit state enumeration 
based on the state transition graph

– Capable of handling larger designs (e.g., one 
with 1020 states)
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BDD for Set Representation

x1x1x2x3
characteristic function fv

where v = {(000), (111)}

v is now represent a set of input vectors

x2 x2

x3x3

0

0

0

01

1

1

1

01

000 1

001 0

010 0

011 0

100 0
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1 0 0 1

0 101
101 0

110 0

111 1

Truth table BDD-representation

Input/Output Relation

• Definition
– Let C be a Boolean network from Bm to Bn

L t b   i t t  b   t t t– Let v be an input vector, w be an output vector
– The I/O relation of C is a relation RC: BmxBn, and (v,w) 

RC if C(v) = w
– A network’s I/O relation consists of every valid 

input/output combinations

• Characteristic formula

清華大學電機系 黃錫瑜 ch5-30

i is the Boolean function of output zi
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Example: I/O Relation

x1
x2

x3

z1

z2x3

Boolean network C BDD representing the I/O relation
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Finite State Machine

• Six-tuple Notation for a FSM
– M = (I, O, S, s0, , )0

– I is the input space defined by input variables {x1, x2, …, xm}

– O is the output space defined by output variables {z1, z2, …, zn}

– S is the state space defined by state variables {y1, y1, …, yk}

– s0 is the known initial state

–  is a set of transition functions

–  is a set of output functions

清華大學電機系 黃錫瑜 ch5-32

 is a set of output functions
specification

machine

y1

y2

y3

t1

t2

t3

next state line function
ti = i(x1,…, xm,y1,…,yk)
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Transition Relation

• Definition
– Let M=(I,O,S,s0,,) be a FSM
– The transition relation T: Bmx Bkx Bk, m and k are 

the dimensions of the input and state space
– (v,p,q) T if machine M will transition from state 

p to state q under the input vector v

• Characteristic formula
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Example: Transition Relation

S1 S2

0
0

–

–
Example FSM

S0

S31 1

primary
inputs

current
state

next
state

characteristic function of
transition relation T

0 S0 S1 1

1 S0 S3 1
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- S1 S2 1

- S2 S3 1

0 S3 S1 1

1 S3 S3 1

other combinations 0
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Existential Transition Relation

• Definition
– Let M=(I,O,S,s0,,) be a FSM
– The existential transition relation Texist: Bkx Bk, where exist ,

k is the dimension of the state space
– (p,q) Texist if there exists an input vector that brings 

the machine M from state p to state q
– Note that existential transition relation only concerns 

about the connectivity of the FSM’s transition graph

• Characteristic formula
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Texist

Example: Texist

S1 S2

0
0

–

–
Example FSM

S0

S31 1

current
state

next
state

characteristic function of
existential transition relation Texist

S0 S1 1

S0 S3 1
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S1 S2 1

S2 S3 1

S3 S1 1

S3 S3 1

others combinations 0
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Reachable State Computation

• Existential Transition Relation
– defines a projection from present state space to the next 

state space
– A state could reach multiple states
– Multiple states can reach the same next state
– Hence, Texist is a many-to-many mapping

• Reachable states Ri+1 in the breadth-first traversal
– Ri+1 = Ri ∪ Ni , where Ni is image of Ri

t t tt t t
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Ri
current reachable

set of states
Ni

image of Ri

next state spacepresent state space

Symbolic Image Computation

• Definition
– Let T be a projection, T:BmxBn

wv

Bm Bn

– Let A be a set of vectors in Bm

– The image of A is a set in Bn

image(T, A) = { w Bn | (v, w) T and v A}

• Characteristic Function
– in the application of reachable next state computation

T

清華大學電機系 黃錫瑜 ch5-38

Texist

Texist
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Ex: Next-State Computation

S1 S2

0
0

–

–
Example FSM

S0

S31 1

T = { (0, S0, S1), (1, S0, S3), (-, S1, S2), (-, S2, S3), (1, S3, S3), (0, S3, S1)}
Texist = { (S0, S1), (S0, S3), (S1, S2), (S2, S3), (S3, S3), (S3, S1)}

Transition Relation:
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What is the set of the next states of R = {S1, S3}?

R ∩ Texist = {(S1, S2), (S3, S3), (S3, S1)}
 It implies that there are three transitions outgoing from {S1, S3}
And the destination states (i.e. the next states) include {S2, S3, S1}
So, final set of reachable next states from {S1, S3} is {S1, S2, S3}

Overall Flow of Sequential 
Equivalence Checking

derive reachable next states
N = image(Texist, R)

specification implementation

check fixed-point ?
(if N is a subset of R)

construct the product machine

derive the BDD of each
next state line function i

R = R ∪ N
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derive the BDD of each PO function i

PO is tautology ‘0’ for all 
input vectors and reachable states ?

derive existential transition 
relation exist

set initial reachable states R = {s0}
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Tautology Checking

• Notation
– Let R be the reachable states derived from the FSM 

traversaltraversal

• Theorem
– Two machines are equivalent if and only if  

(12 +…+n) · R is tautology ‘0’

spec.

i
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⊕ tautology ‘0’ ?
S1

impl.

primary
inputs

I1

1 

reachable
states R

Why Incremental Verification ?

• Limitations of Symbolic Approaches
– Could be time-consuming
– Cannot handle larger design due to memory explosion

• In Practice
– The two circuits under equivalence checking have a 

lot of structural similarity

• Idea of Incremental Verification
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– Exploring the structural similarity between the two 
circuits to speed up the verification process and to 
handle real large designs (e.g., multi-million gate-
count design)   [D. Brand 1993]
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A Naïve ATPG-based Verification

the miter’s output
g stuck-at-0 fault

is redundant
C1 is equivalent to C2

specification
C1

Computational model called miter

can be checked by ATPG
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⊕

S1

implementation
C2

primary inputs

I1

x

g stuck-at-0

structural
similarity

Terminology

• Signal pair
– (a1, a2) is called a signal pair if a1 is from C1 and a2 is 

f  C   i  from C2, or vice versa

• Equivalent signal pair
– (a1, a2) is called an equivalent (signal) pair if the binary 

value of a1 and a2 in response to any input vector are 
identical

• Permissible signal pair
(a  a ) is called a permissible (signal) pair if replacing a
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– (a1, a2) is called a permissible (signal) pair if replacing a1
by a2 in the miter does not alter the output’s 
functionality

– Note that (a1, a2) is a permissible pair does not 
necessarily imply that (a2, a1) is also a permissible pair
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Pruning Miter

• Given a candidate permissible pair (a1,a2)
– (1) check the permissibility by the model in Fig (a)
– (2) If it sustains, replace a1 by a2

• The strategy is
– merging internal permissible pairs first before checking the 

equivalence of an output pair (to improve efficiency)

merge

清華大學電機系 黃錫瑜 ch5-45

merge
point

Example: Incremental Verification

⊕
0

o1

a
bx1

x2

original miter

⊕
0

o1bx1

x2

after the merge of (a,a’)

⊕ x
g s-a-0

a’
b’

c’
o2

c
x3

⊕ x
g s-a-0

a’
b’

c’
o2

c
x3

after the merge of (c,c’)after the merge of (b,b’)
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⊕

⊕ x
g s-a-0

a’
b’

c’
o2

o1x1

x2

x3

⊕

⊕ x
g s-a-0

a’
b’

c’
o2

o1

c

x1

x2

x3
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Enhancement by Using Local BDD

• Local BDD
– is a BDD taking certain internal signals, instead of the 

primary inputs, as the supporting variables

• The concept of dynamic support

清華大學電機系 黃錫瑜 ch5-47

The dynamic support expands towards the PI’s
on demand as verifying the equivalence of (o1,o2)

Example: Incremental Verification 
Using Local BDD

• First support 1={b’,c’}
 The local BDDs of o1 and o2 in terms of 1 is NOT equivalent
 expand the support towards PI’s

S { ’ }• Second support 2={x1,a’,x3}
 The local BDDs of o1 and o2 in terms of 2 is equivalent
 Conclude that (o1,o2) is equivalent

清華大學電機系 黃錫瑜 ch5-48
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Routine of Equivalence Checking 
Using Local BDD

Notation: discrepancy function
Disc(a1,a2) = F (a1)⊕F (a1)
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False negative problem:
the target pair is indeed equivalent
while claimed as in-equivalent
 harmless if the target pair is not PO

Conclusions

Formal Method is fantastic when it works.

But it could fail badly when it does not.

It is all about Boolean reasoning

清華大學電機系 黃錫瑜 ch5-50

Good luck on finding your own applications …
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Outline of Floorplanning

․Contents
 (1) Basics of Floorplanning

 (2) Slicing Floorplanning

(3) Non-Slicing Floorplanning (3) Non-Slicing Floorplanning

Chang, Huang, Li, Lin, Liu
ch6-3

Pentium 4
PowerPC 604

Floorplanning

․Floorplanning leads to 
 Well-defined blocks in terms of the physical structures

․Block Types
 Hard or rigid blocks: with defined areas and shapes

 Soft or flexible blocks: with approximate areas, undefined shapes

․Objectives
 Find  locations for all blocks

 Report shapes of soft block and pin locations of all the blocks

Chang, Huang, Li, Lin, Liu
ch6-4
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Why Floorplanning?

․Main Purpose of Floorplanning
 (1) To implement the top-down design strategy

 (2) To decide the shape and terminals of each soft block

 (3) For rough estimation of the wiring delays

Chang, Huang, Li, Lin, Liu
ch6-5

Floorplanning Problem

․Inputs to the floorplanning problem:
 A set of blocks, hard or soft.
 Pin locations of hard blocks.

A netlist A netlist.

․Objectives:
 minimize area, reduce wire length for (critical) nets, 

maximize routability (minimize congestion), determine 
shapes of soft blocks, etc.

Chang, Huang, Li, Lin, Liu
ch6-6
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Floorplan Design

Chang, Huang, Li, Lin, Liu
ch6-7

Representing Floorplan As a Tree

(1) H-node: horizontal cut
• Left sub-tree is the bottom half
• Right sub-tree is the top half

(2) V-node: vertical cut
• Left sub tree is the left half

Three Types
of Nodes

H

V

• Left sub-tree is the left half
• Right sub-tree is the right half

(3) Leaf node: a basic block

of Nodes

Chang, Huang, Li, Lin, Liu
ch6-8

H
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Slicing Floorplan

․Slicing structure:
 A rectangular dissection that can be obtained by repetitively 

subdividing rectangles horizontally or vertically.

․Slicing tree:Slicing tree:
 A binary tree, where each internal node represents a vertical 

cut line or horizontal cut line, and each leaf a basic rectangle.








 

V

H H

H2 1 3

wheel
structure

Chang, Huang, Li, Lin, Liu
ch6-9


 

  

non-slicing
floorplan

 

  

H

V V

2 1

6 7 4 5

3

slicing
floorplan slicing tree

Skewed Slicing Tree

․Problem: There might be multiple trees for a floorplan !
․Skewed slicing tree: (Desired)

 One in which no node and its right child are the same.

V

H H

H

V V

2 1 3

V

H H

V

V

2 1

6 7

H

3
OR




 

  

Chang, Huang, Li, Lin, Liu
ch6-10

6 7 4 5slicing
floorplan A slicing tree

4 5

Another slicing tree

(Skewed) (Non-Skewed)
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Outline

․Basics of Floorplanning

․Slicing Floorplanning
 Normalized Polish Expression

 Simulated Annealing Formulation

 Block Shaping Problem

․Non-Slicing Floorplanning
 Simulated Annealing Formulation

Chang, Huang, Li, Lin, Liu
ch6-11

Slicing Floorplan Design by Simulated Annealing

․Related work
 (1) Wong & Liu, “A new algorithm for floorplan design,” DAC-86.

 Considers slicing floorplans.

 (2) Wong & Liu, “Floorplan design for rectangular and L-shaped(2) Wong & Liu, Floorplan design for rectangular and L shaped 
modules,” ICCAD'87.
 Also considers L-shaped modules.

 (3) Wong, Leong, Liu, Simulated Annealing for VLSI Design, pp. 31--
71, Kluwer Academic Publishers, 1988.

․Ingredients to simulated annealing

 solution space?

i hb h d t t ?

Chang, Huang, Li, Lin, Liu
ch6-12

 neighborhood structure?

 cost function?

 annealing schedule?
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Overall Strategy

Derive Representations
Slicing Tree 

 Polish Expression

Define Perturbations

Cost calculation

Search Procedure

Perturb The Expression

Chang, Huang, Li, Lin, Liu
ch6-13

Final
Floorplan

Search Procedure
By Simulated Annealing

Polish Expression

․Definition of Polish Expression
 An expression E = e1 e2… e2n-1, where ei  {1, 2, …, n, H, V}, 1  i

 2n-1
 (1) Every operand j, 1  j  n, appears exactly once in E;
 (2) (The Balloting Property) For every sub-expression Ei = e1 … 

ei, 1  i  2n-1, no. of operands > no. of operators

Chang, Huang, Li, Lin, Liu
ch6-14

7

6

1

5

2

4

3

H

3 4

H

V V

2 7 5

V

H

1 6

Post-order
Traversal

E=16H2V75VH34HV
Or

E=16+2*75*+34+*

ijH: rectangle i on bottom of j
ijV: rectangle i on the left of j.
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Why Balloting Property?

․Balloting property
 Operands should outnumber operators

 To guarantee a valid post-order traversal of a slicing tree

H

S has two sub-trees, S1 and S2,
Both S1 and S2 satisfy the balloting property
 Then, the entire tree satisfies the balloting property as well

The total number of operands: (k1 + k2)
The total number of operators: (o1 + o2 + 1)

Chang, Huang, Li, Lin, Liu
ch6-15

S1 S2

k1 operands
o1 operators

k2 operands
o2 operators

--------------------------------------------------------
Since (k1 >= o1+1) and (k2 >= o2+1)
So, (k1 + k2) >= (o1 + o2 + 2)
 I.e., (k1 + k2) > (o1 + o2 + 1)
 Operands outnumber operators

Redundant Representations

․Problem:
 One floorplan could correspond to multiple slicing tree representations !

․Solution: Give specific orders to consecutive cuts 
 (1) Consecutive H-cuts: ordered from right to left
 (2) Consecutive V-cuts: ordered from top to bottom

2nd cut 1st cut

Chang, Huang, Li, Lin, Liu
ch6-16
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Normalized Polish Expression

․Definition of Normalized Polish Expression
 A Polish expression E = e1 e2 … e2n-1 is called normalized iff 

E has no consecutive operators of the same type (H or V)

․A Normalized Polish Expression․A Normalized Polish Expression
 Corresponds to an unique rectangular slicing structure

Chang, Huang, Li, Lin, Liu
ch6-17

Neighborhood Structure and Perturbation

․Chain: HVHVH … or VHVHV …

․Adjacency Relations
 1 and 6 are adjacent operands; 2 and 7 are adjacent 

operands; 5 and V are adjacent operand and operator

․Three Types of Perturbations
 M1 (Operand Swap):

 Swap two adjacent operands

Chang, Huang, Li, Lin, Liu
ch6-18

S ap t o adjace t ope a ds

 M2 (Chain Invert):
 Complement some chain (V = H, H = V)

 M3 (Operator/Operand Swap):
 Swap two adjacent operand and operator
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Effects of Perturbation

4

(3 4) (VH) (H 4)

․Keep The balloting property during the moves
(1) M1 and M2 moves are OK

1 2
3

(3,4) (VH) (H,4)

Chang, Huang, Li, Lin, Liu
ch6-19

 (1) M1 and M2 moves are OK

 (2) Look out for the M3 moves!
 Reject illegal M3 moves if necessary

Validation of Operand-Operator Swap (M3)

․Validation check of M3 moves:
 Assume the swapping of operand ei with the operator ei+1, 1  i  k-1

 Nk is no. of operators in Polish expression E = e1 e2 … ek, 1  k  2n-1

Th th ill t i l t th b ll ti t iff 2N < i Then, the swap will not violate the balloting property iff 2Ni+1 < i

(Polish Expression) 12H3H4V 12H34HV

(swap e5 and e6)  i = 5  N5+1 = 2  2N5+1 = 2*2 = 4 < i  legal move !

Can we swap 2 & H? 
 NO

Chang, Huang, Li, Lin, Liu
ch6-20

V

H

3H

1 2

4

V

H

21

H

43Swapping
(4, H)

(Slicing Tree)
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․ = A +  W
 A: area of the smallest rectangle

 W: overall wiring length

 : user-specified parameter

Cost Function

  : user specified parameter

․Wire Length Estimation: W= ijcij dij

c : # of connections between blocks i and j

Chang, Huang, Li, Lin, Liu
ch6-21

 cij: # of connections between blocks i and j.

 dij: center-to-center distance between basic rectangles i and j.

Area Computation for Hard Blocks

• Take rotation into consideration
Note (6, 5) and (8, 5)
have been dropped!

Block ID

Chang, Huang, Li, Lin, Liu
ch6-22
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Incremental Computation of Cost Function

․The cost change due to a move
 Can be estimated incrementally

 By updating at most two paths of the slicing tree

Chang, Huang, Li, Lin, Liu
ch6-23

Shape function of a soft block under area constraint

Incremental Computation of Cost Function (cont'd)

Chang, Huang, Li, Lin, Liu
ch6-24
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Annealing Schedule

․Initial solution: 12V3V … nV.

․Temperature Cooling:
 Ti = ri T0, i = 1, 2, 3, …; r =0.85.

․Perturbations
 At each temperature, try kn moves (k = 5-10).

․Terminating Conditions

Chang, Huang, Li, Lin, Liu
ch6-25

․Terminating Conditions
 (1) Number of accepted moves < 5%, or

 (2) Temperature is low enough, or

 (3) Run out of time

1 E  12V3V4V … nV; /* initial solution */
2 Best  E; T0  ; M  MT  uphill  0; N = kn; 
3 repeat 
4    MT  uphill  reject  0; 
5    repeat 
6 SelectMove(M);

Algorithm: Wong-Liu (P, , r, k)

6       SelectMove(M); 
7       Case M of 
8       M1:  Select two adjacent operands ei and ej; NE  Swap(E, ei, ej);
9       M2:  Select a nonzero length chain C; NE  Complement(E, C);
10     M3:  done  FALSE;
11         while not (done) do
12              Select two adjacent operand ei and operator ei+1;
13              if (ei-1  ei+1)  and (2 Ni+1 < i) then done  TRUE; 
14              Select two adjacent operator ei and operand ei+1;
15              if (ei ei+2) then done  TRUE; 
16         NE  Swap(E, ei, ei+1);
17 MT  MT+1; cost  cost(NE) - cost(E);

Chang, Huang, Li, Lin, Liu
ch6-26

17     MT  MT 1; cost  cost(NE) cost(E);
18     if (cost  0) or (Random <                    )
19      then
20           if (cost > 0) then uphill  uphill + 1;
21           E  NE;
22           if cost(E) < cost(best) then best  E;
23       else reject  reject + 1; 
24    until (uphill > N) or (MT > 2N); 
25    T  rT; /* reduce temperature */
26 until (reject/MT > 0.95) or (T < ) or OutOfTime; 
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Outline

․Basics of Floorplanning

․Slicing Floorplanning
 Normalized Polish Expression

 Simulated Annealing Formulation

 Block Shaping Problem

․Non-Slicing Floorplanning
 Simulated Annealing Formulation

Chang, Huang, Li, Lin, Liu
ch6-27

Shape Curve
․Soft blocks could have different aspect ratios.

․The shape function is a hyperbola:
 xy=A, with the width x and the height y

․In practiceIn practice,
 Very thin blocks are often not feasible to design.

 The shape function is a hyperbola constrained by two lines

 Aspect ratio: r <= y/x <= s.

y = sx

legal

Chang, Huang, Li, Lin, Liu
ch6-28

y = rx

legal 
shapesy

xx

y
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Discrete Shape Curve

․Leaf cells are built from discrete transistors:
 it is not realistic to assume that the shape function follows 

the hyperbola continuously.

․In an extreme case a cell is rigid:․In an extreme case, a cell is rigid:
 it can only be rotated and mirrored during floorplanning or 

placement. 

y

Chang, Huang, Li, Lin, Liu
ch6-29

The shape function of a 2  4 inset cell.

x

Piecewise Linear Shape Curve

․In general, a piecewise linear function can be used 
to approximate any shape function.

․The points where the function changes its direction, 
ll d h (b k) i f h i iare called the corner (break) points of the piecewise 

linear function.

Chang, Huang, Li, Lin, Liu
ch6-30
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Composition Rules for Vertical Abutment

․Composition by vertical abutment  the addition of 
shape functions.

Chang, Huang, Li, Lin, Liu
ch6-31

Deriving Shapes of Children

․A choice for the minimal shape of composite cell 
fixes the shapes of its children cells.

Chang, Huang, Li, Lin, Liu
ch6-32
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Shaping Procedure of Slicing Floorplans

Represent shape functions of each basic block
As piecewise linear functionsstart

Shaping procedure is performed on a slicing tree
 To decide the shape of each basic block.

As piecewise linear functions

To derive the shape function of each composite block
(Bottom-up traversal)

Decide the shape of the top block
(only break points of shape function need to be evaluated)

Chang, Huang, Li, Lin, Liu
ch6-33

Propagate the consequences down to the leaf blocks
(Top-down propagation)

Derive the final shape of each block

Outline

․Basics of Floorplanning

․Slicing Floorplanning
N li d P li h E i Normalized Polish Expression

 Simulated Annealing Formulation

 Block Shaping Problem

․Non-Slicing Floorplanning
 Simulated Annealing Formulation

Chang, Huang, Li, Lin, Liu
ch6-34
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Order-of-5 Floorplan Examples

Wheel (or spiral) floorplan include a wheel structure as a basic block
 Could lead to an even better result than a pure slicing floorplan
 an order-of-5 floorplan, I.e., a node could have five children in the tree

Chang, Huang, Li, Lin, Liu
ch6-35

V

V

H

General Floorplan Representation: Polar Graphs

․vertex: channel segment (or boundary)

․edge (weight): cell/block/module (dimension)

vertical 
polar 
graph

Chang, Huang, Li, Lin, Liu
ch6-36

horizontal polar graph
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Concluding Remarks

․Floorplanning Strategy
 Representation  Cost Calculation  Perturbation Scheme

․Slicing Tree․Slicing Tree
 Normalized Polish Expression

․Non-Slicing Tree
 Polar Graph

Chang, Huang, Li, Lin, Liu
ch6-37

It Is The Floorplan That

Shapes The Landscape of Your IC.
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清華大學 EE 5265

積體電路設計自動化

單元 7

Placement and Partitioning

教育部顧問室
「超大型積體電路與系統設計」教育改進計畫

EDA聯盟 – 推廣課程

致謝

本單元之教材主要取自於本單元之教材主要取自於
教育部

超大型積體電路與系統設計教育改進計畫
EDA聯盟之課程發展成果

․(教材編纂小組成員)
․台灣大學電機系 張耀文

Chang, Huang, Li, Lin, Liu
ch4-2

․清華大學電機系 黃錫瑜

․交通大學資科系 李毅郎

․中央大學電機系 劉建男

․元智大學資工系 林榮彬
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Outline of Placement

․Course contents:
 Placement metrics
 Placement

Cl t i B d P titi i B d F Di t d Clustering-Based, Partitioning-Based, Force-Directed, 
Simulated-Annealing, Genetic Algorithm

 Partitioning
 Kernighang-Lin Partitioning Algorithm
 Simulated-Annealing Based Partitioning

Chang, Huang, Li, Lin, Liu
ch7-3

Placement

․Placement
 is to automatically assign pre-designed cells to correct 

positions on the chip, so as to minimize certain criteria

․Inputs: A set of fixed cells/modules a netlist․Inputs: A set of fixed cells/modules, a netlist.

․Quality metrics:
 Routability, Channel Density, Wire-Length, cut size, 

performance, thermal issues, I/O pads.

Chang, Huang, Li, Lin, Liu
ch7-4
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Placement Objectives and Constraints

․What does a placement algorithm try to optimize? 
 the total area
 the total wire length
 the number of horizontal/vertical wire segments crossing a g g

line

․Constraints:
 the placement should be routable (no cell overlaps; no 

density overflow).
 timing constraints are met (some wires should always be 

shorter than a given length).

Chang, Huang, Li, Lin, Liu
ch7-5

Placement Styles

․Building-Block Placement
 The cells to be placed have arbitrary shapes

․Standard-Cell Placement
C ll t b l d i Cells are to be placed in rows

․Gate-Level Placement
 Cells are mapped into pre-fabricated logic blocks

Building block placement

Chang, Huang, Li, Lin, Liu
ch7-6

Building-block placement



4

Standard-Cell Placement

․Standard cells are designed in such a way that
 power and clock connections run horizontally through the cell 

and other I/O leaves the cell from the top or bottom sides.

․Sometimes feedthrough cells are added to ease wiring․Sometimes feedthrough cells are added to ease wiring.

feedthrough

Routing of logistic signals

Chang, Huang, Li, Lin, Liu
ch7-7

Consequences of Fabrication Method

․Full-custom fabrication (building block):
 Free selection of aspect ratio (quotient of height and width).
 Height of wiring channels can be adapted if necessary.

․Semi-custom fabrication (gate array, standard cell):Semi custom fabrication (gate array, standard cell):
 Placement has to deal with fixed carrier dimensions.
 Placement should be able to deal with fixed channel 

capacities.

gate 
array

I/O Pads

Chang, Huang, Li, Lin, Liu
ch7-8

Prefabricated
Transistor array

Customized
Wiring
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Relation with Routing
․ Ideally, 

 placement and routing should be performed simultaneously as 
they depend on each other’s results. This is, however, too 
complicated.

P&R l t d ti P&R: placement and routing 

․ In practice,
 placement is done prior to routing. The placement algorithm 

estimates the wire length of a net using some metric.

( )

Chang, Huang, Li, Lin, Liu
ch7-9

(Wire Length Estimation)
Input: the multiple pins of a net
Output: estimation of the length

Estimation of Wirelength

․Semi-perimeter method:
 Half the perimeter of the bounding rectangle that encloses all the 

pins of the net to be connected. Most widely used approximation!

․Squared Euclidean distance:q
 Squares of all pairwise terminal distances in a net using a 

quadratic cost function

․Steiner tree approximation:

Chang, Huang, Li, Lin, Liu
ch7-10

․Steiner-tree approximation:
 Computationally expensive.

․Minimum spanning tree: 
 Good approximation to Steiner trees.
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Estimation of Wirelength (cont'd)

Chang, Huang, Li, Lin, Liu
ch7-11

Placement Algorithms

․The placement problem is NP-complete

․Popular placement algorithms:
 Constructive algorithms: once the position of a cell is fixed, it is not 

modified anymore.

 Clustering-based, Partition-based

 Iterative algorithms: intermediate placements are modified in an 
attempt to improve the cost function.

 Force-directed method, etc

 Non-deterministic approaches:

 Simulated annealing, genetic algorithm, etc.

․Most approaches combine multiple elements:

Chang, Huang, Li, Lin, Liu
ch7-12

 (1) Constructive algorithms are used to obtain an initial placement.

 (2) The initial placement is refined by an iterative improvement phase.

 (3) The results can further be improved by simulated annealing.
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Outline

․Placement metrics

․Placement
Clustering Based Clustering-Based

 Partitioning-Based

 Force-Directed

 Simulated-Annealing

 Genetic Algorithm

․Partitioning
Kernighang Lin Partitioning Algorithm

Chang, Huang, Li, Lin, Liu
ch7-13

 Kernighang-Lin Partitioning Algorithm

 Simulated-Annealing Based Partitioning

Bottom-Up Placement: Clustering

․Starts with a single cell and finds more cells that 
share nets with it.

Chang, Huang, Li, Lin, Liu
ch7-14
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Clustering-Based Placement
․Greedy method: Selects unplaced components and places 

them in available slots.

 (1) SELECT: Choose the unplaced component that is most 
strongly connected to all of the placed components (or 
most strongly connected to any single placed component).

 (2) PLACE: Place the selected component at a slot such 
that a certain “cost” of the partial placement is minimized.

Chang, Huang, Li, Lin, Liu
ch7-15

Example: Clustering-Based Placement

․Connectivity degree of each cell
 ca=3, cb=1, cc=1, cd =1, ce=4, cf=3, and cg=3
  e has the most connectivity.

․Place e in the center, slot 4. a, b, g are connected to e
 Pl t t ( l t 3) C ti ith th ll Place a next to e (say, slot 3). Continue with other cells

․Further improve the placement by swapping the gates.

connectivity

Chang, Huang, Li, Lin, Liu ch7-16
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Top-down Placement: Partitioning-Based

․Starts with the whole circuit and ends with small circuits.

․Recursive Bi-partitioning of a circuit leads to a min-cut 
placement.

Chang, Huang, Li, Lin, Liu
ch7-17

Partitioning-Based (or Min-Cut) Placement

․Breuer
 “A class of min-cut placement algorithms,” DAC-77.

․Partition-Based Placement
Quadrature Quadrature

 Bisection

 Slice / Bisection

Chang, Huang, Li, Lin, Liu
ch7-18
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Algorithm for Min-Cut Placement

Algorithm: Min_Cut_Placement(N, n, C)
/* N: the layout surface */
/* n : no. of cells to be placed */
/* n : no of cells in a slot *//* n0: no. of cells in a slot */ 
/* C: the connectivity matrix */ 

1 begin
2 if (n  n0) then PlaceCells(N, n, C)
3 else
4 (N1 N2)  CutSurface(N);

Chang, Huang, Li, Lin, Liu
ch7-19

4     (N1, N2)  CutSurface(N);
5     (n1, C1), (n2, C2)  Partition(n, C); 
6  Call Min_Cut_Placement(N1, n1, C1); 
7  Call Min_Cut_Placement(N2, n2, C2); 
8 end

Quadrature Placement Example

․K-L heuristic to partition + Quadrature Placement: 
Cost C1 = 4, C2L= C2R = 2, etc.

Chang, Huang, Li, Lin, Liu
ch7-20
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Outline

․Placement metrics

․Placement
Clustering Based Clustering-Based

 Partitioning-Based

 Force-Directed

 Simulated-Annealing

 Genetic Algorithm

․Partitioning
Kernighang Lin Partitioning Algorithm

Chang, Huang, Li, Lin, Liu
ch7-21

 Kernighang-Lin Partitioning Algorithm

 Simulated-Annealing Based Partitioning

General Procedure for Iterative Improvement

Algorithm: Iterative_Improvement()
1  begin
2  s  initial_configuration();
3  c  cost(s);
4  while (not stop()) do
5      s’  perturb(s);
6      c’  cost(s’); 
7      if (accept(c, c’))
8 then s  s’;
9 d

A mechanism that affect
the results only slightly

Chang, Huang, Li, Lin, Liu
ch7-22

9  end
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Placement by the Force-Directed Method
․Hanan & Kurtzberg, 

 “Placement techniques,” in Design Automation of Digital Systems, 
Breuer, Ed, 1972.

․Quinn, Jr. & Breuer, 
“A force directed component placement procedure for printed A force directed component placement procedure for printed 
circuit boards,” IEEE Trans. Circuits and Systems, June 1979.

․Force-Directed Method:
 Reduce the placement problem to solving a set of simultaneous 

linear equations to determine equilibrium locations for cells.

․Analogy to Hooke's law:
 F = kd, F: force, k: spring constant, d: distance.

Chang, Huang, Li, Lin, Liu
ch7-23

Finding the Zero-Force Location
․Cell i connects to several cells j's at distances dij's by wires of 

weights wij's. Total force: Fi = jwijdij

․The zero-force location (     ,      ) can be determined by 
equating the x- and y-components of the forces to zero:

․ In the example,                                                     and       = 1.50.

x̂̂x

Chang, Huang, Li, Lin, Liu
ch7-24



13

Force-Directed Placement

․Can be constructive or iterative:
 Start with an initial placement.

 Select a “most profitable” cell  p (e.g., maximum F, critical 
cells) and place it in its zero force locationcells) and place it in its zero-force location.

 “Fix” placement if the zero-location has been occupied by 
another cell q.

․Popular options to fix:
 Ripple move: place p in the occupied location, compute a 

new zero-force location for q, …

 Chain move: place p in the occupied location, move q to an 

Chang, Huang, Li, Lin, Liu
ch7-25

p p p q
adjacent location, …

 Proximity Move: place p to a free location close to q.

seed

Target
location

Vacant
Occupied,
Locked,

Chang, Huang, Li, Lin, Liu ch7-26

Stopping criterion of an iteration
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TimberWolf: Placement by Simulated Annealing

․Sechen and Sangiovanni-Vincentelli, 
 “The TimberWolf placement and routing package,” IEEE J. 

Solid-State Circuits, Feb. 1985; 
 “TimberWolf 3.2: A new standard cell placement and global p g

routing package,” DAC-86.

Stage 1: High-Temperature Phase
(1) Re-location
(2) Swapping
(3) Re-orientation

Overlapping
is allowedstart

Chang, Huang, Li, Lin, Liu
ch7-27

Stage 2: Low-Temperature Phase
(1) Intra-Row Swapping
(2) Overlapping resolving

Final
placement

Questions: What are the moving scheme and cost function?

TimberWolf: Moving Type

․Solution Space:
 All possible arrangements of the modules into rows, 

possibly with overlaps.

․Moving Types․Moving Types
 M1: Displace a module to a new location.

 M2: Interchange two modules.

 M3: Change the orientation of a module.

Chang, Huang, Li, Lin, Liu
ch7-28

re-location swapping re-orientation
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TimberWolf: Moving Scheme

․Neighborhood Window: Range Limiter
 The neighborhood window shrinks as temperature decreases.

 At the beginning, (WT, HT) is big enough to contain the whole chip.

 Window height & width is proportional to log(T). Window height & width is proportional to log(T).

․Moving Scheme
 (1) Pick an M1 or M2 type of move. The probabilities of M1 is 0.8, 

while that of M2 is 0.2.

 (2) Check acceptance or rejection by cost function and temperature

 (3) If M1 is picked while rejected  Try M3 with probability of 0.1.

Chang, Huang, Li, Lin, Liu
ch7-29

neighborhood

TimberWolf: Cost Function

Cost of a move
C = C1+C2+C3

Wire Length
Estimation (C1)

Penalty
Costs

Penalty Type 1
(C2)

Penalty Type 2
(C3)

C1 =  i  Nets(i wi + i hi)

i is a horizontal weight,

i is a vertical weight,

Chang, Huang, Li, Lin, Liu
ch7-30

i g

C2 =   i  j O2
ij

: penalty factor
Oij: amount of overlaps

in the x-dimension
between cell i and j.

C3 =  r  Rows|Lr - Dr|,
 : penalty factor
Dr: Desired row length 
Lr: sum of cells’ widths

in row r

Bounding
Rectangle

wi

hi
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TimberWolf: Annealing Schedule

Set initial temperature T0

Or update temperature Tk = Tk-1 * rk
Start

If Tk < 0.1

yes no

Terminating
condition

rk: 0.8  0.94  0.8

Chang, Huang, Li, Lin, Liu
ch7-31

Try nP attempts
n: the total number of cells
P: user specified constant

End

Placement by the Genetic Algorithm

․Cohoon & Paris, “Genetic placement,” ICCAD-86.

․Genetic Ingredients:
 (1) Encoding (or Chromosome) of feasible solutions

 (2) No. of populations in each generation: e.g., 50

 (3) Fitness Function: for offspring selection

 (4) Operators: Crossover, Mutation, Inversion

A connectivity graph
For a netlist

Space to be
filled in Encoding

Chang, Huang, Li, Lin, Liu
ch7-32
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Genetic Operator: Crossover

․Main genetic operator:
 Operate on two individuals and generates an offspring.



Need to avoid repeated symbols in the solution string! Need to avoid repeated symbols in the solution string!

․Partially mapped crossover
 for avoiding repeated symbols:



 Copy idef to the offspring; scan [bidef|gcha] from the left, 
and then copy all unrepeated genes.

Chang, Huang, Li, Lin, Liu
ch7-33

Cost =
(Weighted Sum of Wire Lengths)

1

Note: Cost of each placement’s encoding

Two More Crossover Operations

․Cut-and-paste + Chain moves
 The cells that earlier occupied the neighboring locations in 

parent 2 are shifted outwards.

․Cut-and-paste + Swapping․Cut-and-paste + Swapping
 Copy k  k square modules

 Swap cells not in both square modules.

Parent 1 Parent 2 Parent 1 Parent 2

Common squares:
{BHIG}

Chang, Huang, Li, Lin, Liu
ch7-34

Cut-and-paste + chain moves Cut-and-paste + Swapping
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Genetic Operators: Mutation & Inversion

․Mutation:
 Prevents loss of diversity by introducing new solutions. 

 A commonly used mutation: pairwise interchange.

․Inversion: [bid|efgch|a]  [bid|hcgfe|a].

․Probabilities of mutation and inversion:
 probability P and Pi respectively.

Chang, Huang, Li, Lin, Liu
ch7-35

Pseudo-Code of Genetic Algorithm
Algorithm: Genetic_Placement(Np, Ng, No, Pi, P )
/* Np: population size; */            /* Ng: number of generation; */ 
/* No: number of offspring; */ 
/* Pi : inversion probability; */   /* P : mutation probability; */ 
1 beging
2 ConstructPopulation(Np);  /* randomly generate the initial population */ 
3 for j  1 to Np

4     Evaluate Fitness(population(Np)); 
5 for i  1 to Ng /* produce one generation at a time */
6    for j  1 to No

7       (x, y)  ChooseParents; /* choose parents with probability  fitness value */
8 offspring(j)  GenerateOffspring(x, y); /* crossover to generate offspring */ 
9       for h  1 to Np

10 With b bilit P l M t ti ( l ti (h))

Chang, Huang, Li, Lin, Liu

10         With probability P, apply Mutation(population(h));
11     for h  1 to Np

12         With probability Pi, apply Inversion(population(h));
13     Evaluate Fitness(offspring(j));
14  population  Select(population, offspring, Np); 
15 return the highest scoring configuration in population; 

ch7-36
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Outline

․Placement metrics

․Placement
Clustering Based Clustering-Based

 Partitioning-Based

 Force-Directed

 Simulated-Annealing

 Genetic Algorithm

․Partitioning
Kernighang Lin Partitioning Algorithm

Chang, Huang, Li, Lin, Liu
ch7-37

 Kernighang-Lin Partitioning Algorithm

 Simulated-Annealing Based Partitioning

Example: Circuit Partitioning

Chang, Huang, Li, Lin, Liu
ch7-38
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Partitioning

Chang, Huang, Li, Lin, Liu
ch7-39

Kernighan-Lin Algorithm

․Kernighan and Lin,
 “An efficient heuristic procedure for partitioning graphs,” 

The Bell System Technical Journal, vol. 49, no. 2, Feb. 1970.

B i St t․Basic Strategy
 An iterative, 2-way, balanced partitioning heuristic

․Basic Procedure
 (1) Start with an initial solution S = (A | B)

 (2) Find a subset from A and B for swapping

 (3) Iterate until there is no gain

Chang, Huang, Li, Lin, Liu
ch7-40

A B

Questions: 
(1) What is the cost function?
(2) How to find best swapping pairs?
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Internal Cost vs. External Cost

For vertex a: 
Internal cost: (1+2) = 3
External cost: (2+4) = 6

For vertex b: 
Internal cost: (1+1+2) = 4
External cost: 5

What if we swap a and b?

a
1

2

4

What if we swap a and b?
 Internal cost and external cost swaps as well.
 External Cost Change = (3+4) - (6+5) = -4 (reduction). 
 Looks like a good swap.

Chang, Huang, Li, Lin, Liu
ch7-41

A B

b

1
2

5

2
1

1

K-L Algorithm: A Simple Example

․Each edge has a unit weight.

Chang, Huang, Li, Lin, Liu
ch7-42
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Terminology

․Two sets A and B such that |A| = n = |B| and A  B = .

․External cost of a  A: Ea =         cav.

․ Internal cost of a  A: Ia =         cav.

․D-value of a vertex a: D = E - I (cost reduction for moving a)

v B
v A

․D-value of a vertex a: Da = Ea - Ia (cost reduction for moving a).

․Cost reduction (gain) for swapping a and b:
 gab = Da + Db - 2cab

a 2
4

Watch out for the edge connecting the swapping pair (a, b) !

Chang, Huang, Li, Lin, Liu
ch7-43

A B

b

1
2

4
5

2
1

1

K-L Algorithm: A Weighted Example

․Iteration 1:

Chang, Huang, Li, Lin, Liu
ch7-44
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(Step 1): Computing the g Value

․ Iteration 1:

․gxy = Dx + Dy - 2cxy.

Chang, Huang, Li, Lin, Liu
ch7-45

․Swap b and f. 

Best pick

(Step 2): Lock and Update

a

b

d

e

f

b

b

e
After locking (b, f)

A B

c f

A B

c f

Update the D-value of each unlocked vertices:
(1) For unlocked vertex, x, in A: Dx’ = Dx +  2cxb – 2cxf

(2) For unlocked vertex, y, in B: D ’ = D + 2c f – 2c b

Chang, Huang, Li, Lin, Liu
ch7-46

(2) For unlocked vertex, y, in B: Dy   Dy +  2cyf 2cyb

 Update the g-value of each unlocked vertex pairs
gxy = Dx’ + Dy’ – 2cxy

 Find the next candidate pair to lock …
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(Step 3): Determining Swapping Pairs

At the end of the locking process: each vertex is paired up with another one
Locked pairs: (b, f)  (c, e)  (a, d)

Accumulated gainGain of each pair

A B

f

e

d

b

c

a

g

4

6

4

p

4

2

-2

 Best swapping pairs {(b, f), (c, e)}

Candidate pairs before this peak

best

Chang, Huang, Li, Lin, Liu
ch7-47

Index of
candidate pairs

Accumulated
Gain

Candidate pairs before this peak
index are selected for swapping

Pseudo-Code of Kernighan-Lin Algorithm

(L k & d )

(Find next candidate pair)

Chang, Huang, Li, Lin, Liu
ch7-48

(Peak in gain curve)
(Lock & update)
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Time Complexity

․Line 4: Initial computation of D: O(n2)

․Line 5: The for-loop: O(n)

․The body of the loop: O(n2)․The body of the loop: O(n ).
 Lines 6--7: Step i takes (n – i + 1)2 time.

․Lines 4--11: Each pass of the repeat loop: O(n3).

․Suppose the repeat loop terminates after r passes.

․The total running time: O(rn3).
 Polynomial-time algorithm?

Chang, Huang, Li, Lin, Liu
ch7-49

Extensions of K-L Algorithm

․ Unequally sized subsets (assume n1 < n2)
1. Partition:  |A| = n1 and |B| = n2.
2. Add n2 - n1 dummy vertices to set A. Dummy vertices have 

no connections to the original graph.
3. Apply the Kernighan-Lin algorithm.
4. Remove all dummy vertices.

․ Unequally sized “vertices”
1. Assume that the smallest “vertex'' has unit size.
2. Replace each vertex of size s with s vertices which are fully 

connected with edges of infinite weight.
3. Apply the Kernighan-Lin algorithm.

Chang, Huang, Li, Lin, Liu
ch7-50

․ K-way partition
1. Partition the graph into k equally sized sets.
2. Apply the Kernighan-Lin algorithm for each pair of subsets.
3. Time complexity? Can be reduced by recursive bi-partition.
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Concluding Remarks

․Placement
 (1) Top-Down, Bottom-Up, or Hybrid

 (2) A Good Heuristic: Force-Directed Algorithm

 (3) Application of Simulated Annealing, Genetic Algorithm

․Partitioning
 An often encountered problem in EDA

 Kernighan-Lin algorithm is a classic algorithm

Chang, Huang, Li, Lin, Liu
ch7-51

For Any Search Problem,

Evolution Works, But Just Takes Time …
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清華大學 EE 5265

積體電路設計自動化

單元 8

Routing

教育部顧問室
「超大型積體電路與系統設計」教育改進計畫

EDA聯盟 – 推廣課程

致謝

本單元之教材主要取自於本單元之教材主要取自於
教育部

超大型積體電路與系統設計教育改進計畫
EDA聯盟之課程發展成果

․(教材編纂小組成員)
․台灣大學電機系 張耀文

清華大學電機系 黃錫瑜

Chang, Huang, Li, Lin, Liu
ch6-2

․清華大學電機系 黃錫瑜

․交通大學資科系 李毅郎

․中央大學電機系 劉建男

․元智大學資工系 林榮彬
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Classification of Routing Problems

Routing Problems

Global Routing
General-Purpose

Routing
Detailed Routing

Chang, Huang, Li, Lin, Liu
ch8-3

Steiner TreeMaze routing
Line search

Left-Edge
Robust Router

Outline

․Course contents
 Basics of Routing

 General-Purpose Routing (Maze Routing, Line Search Routing)

 Global Routing

 Detailed Routing

․Readings
 Chapter 9

Chang, Huang, Li, Lin, Liu
ch8-4
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Routing

Chang, Huang, Li, Lin, Liu
ch8-5

Routing Constraints

․Requirements of a valid routing
 100% routing completion
 100% layout rules compliance
 Use of assigned layers only

․Quality considerations of Routing
 (1) Area minimization
 (2) Performance-driven routing (critical wire length minimization)
 (3) Crosstalk alleviation
 (4) Resistance to process variations (Design for manufacturability)

Chang, Huang, Li, Lin, Liu
ch8-6
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Lee Algorithm

․Basic Concept:
 Find a path from S to T by “wave propagation”.

․Strength:
 Guarantee to find the best route

․Time and space complexities
 O(MxN) for MxN grid  Huge !

Chang, Huang, Li, Lin, Liu
ch8-7

Filling

Improvements of Maze Routing

․Starting Point Selection: 
 Choose the point farthest from the center of the grid as the 

starting point.

․Double Fan-Out:Double Fan Out: 
 Propagate waves from both the source and the target cell.

․Framing:
 Search inside a rectangle area 10-20% larger than the bounding 

box containing the source and target.

 Need to enlarge the rectangle and redo the search if it fails.

Chang, Huang, Li, Lin, Liu
ch8-8
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Connecting Multi-Terminal Nets

․Step 1: Propagate wave from the source s to the closest target.

․Step 2: Mark ALL cells on the path as s.

․Step 3: Propagate wave from ALL s cells to the other cells.

․Step 4: Continue until all cells are reached.

․Step 5: Apply heuristics to further reduce the tree cost.

Chang, Huang, Li, Lin, Liu
ch8-9

Routing on a Weighted Grid

․Motivation:
 To find a more desirable path (I.e., path of less weight)
 To achieve a more balanced routing

․Weight of a grid cell․Weight of a grid cell
 Defined as (the number of unblocked neighbor cells – 1)

Chang, Huang, Li, Lin, Liu
ch8-10
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Hightower – Line-Search Algorithm

․Hightower
 “A solution to line-routing problem on the continuous plane,” 

DAC-69.

․Basic Concept:
A route is searched by moving two crossing lines A route is searched by moving two crossing lines.

 One stride is determined at each step.
 Alternate the vertical and horizontal moves.
 Get around the obstacles and get closer to the target destination.

Chang, Huang, Li, Lin, Liu
ch8-11

Net Ordering

․Net ordering greatly affects routing solutions.

Chang, Huang, Li, Lin, Liu
ch8-12
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Net Ordering Heuristics

․Ordering Criteria
 A net with more pins within their bounding boxes last

 A net with large length estimation first (or last?)

 A net with higher timing criticality firstg g y

Chang, Huang, Li, Lin, Liu
ch8-13

Rip-Up and Re-Routing

․ Rip-up and re-routing
 Is required when a router fails to connect all nets.

․ Two steps in rip-up and re-routing
 (1) Identify bottleneck regions

 (2) Rip up some already routed nets

 (3) Route the blocked connections

 (4) Re-Route the ripped up connections

․ Stopping criteria
 (1) All nets are routed successfully

Chang, Huang, Li, Lin, Liu
ch8-14

 (2) Time limit is exceeded
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Outline

․Basics of Routing

․General-Purpose Routing
 Maze Routing

 Line Search Routing

․Global Routing
 Minimum Steiner Tree Problem 

․Channel Routing

Chang, Huang, Li, Lin, Liu
ch8-15

Graph Models for Global Routing: Grid Graph

․Vertex
 Each cell is represented by a vertex.

․Edge
 Two vertices are joined by an edge if the corresponding cells are 

dj t t h thadjacent to each other

․Occupation mark
 The occupied cells are marked as filled circles, whereas the 

others are clear circles.

Chang, Huang, Li, Lin, Liu
ch8-16
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Global Routing

․Global Routing
 is the process of roughly fixing the shapes of the 

connections for each net.

 by distributing the wiring segments among channels.

 Each shape is a rectilinear Steiner tree.

Chang, Huang, Li, Lin, Liu
ch8-17

Example Global Routing

Global routing
For Standard-Cell Design

Global routing
F G t AFor Gate-Array

Chang, Huang, Li, Lin, Liu
ch8-18

Routing could fail due to
Inadequate feed-through channels
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Global Routing in FPGA

․Routing constraints
 Depends on the switch box architecture.

․For performance-driven routing
 (1) Minimize the number of switches.

 (2) Minimize the maximum of the critical wire length.

Chang, Huang, Li, Lin, Liu
ch8-19

The Steiner Tree Problem
․Problem:

 Given a set of pins of a net, connect the pins by a routing tree.

․Minimum Rectilinear Steiner Tree (MRST) Problem:
․Given n points in the plane, find a minimum-length tree of rectilinear 

edges which connects the points.

․MRST(P) = MST(P  S), where P and S are the sets of original points 

Chang, Huang, Li, Lin, Liu
ch8-20

and Steiner points, respectively.
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Theoretical Results for the MRST Problem

․Hanan's Theorem:
 There exists an MRST with all Steiner points (set S) chosen from the 

points of horizontal and vertical lines crossing points in P.

․Hwang‘s Theorem: For any point set P, g y p ,

Chang, Huang, Li, Lin, Liu
ch8-21

Hanan Points

Coping with the MRST Problem

․ Ho, Vijayan, Wong, 
 “New algorithms for the rectilinear Steiner problem,”

 (1) Construct an MRST from an MST.
(2) Each edge is straight or L-shaped (2) Each edge is straight or L-shaped.

 (3) Maximize overlaps by dynamic programming.

․ About 8% smaller than Cost(MST).

Chang, Huang, Li, Lin, Liu
ch8-22



12

Iterated 1-Steiner Heuristic for MRST
․ Kahng & Robins (1990)

 “A new class of Steiner tree heuristics with good performance: 
the iterated 1-Steiner approach,”

Algorithm: Iterated_1-Steiner(P)
P: set of n points to be connectedp
1 begin
2 S  ;

/* H(P  S): set of Hanan points */ 
/* MST(A, B) = Cost(MST(A)) - Cost(MST(A  B)) */ 

3 while (Cand  {x  H(P  S)|  MST(P  S, {x}) > 0 }   ) do
4     Find x  C and which maximizes   MST(P  S), {x}); 
5     S  S  {x}; 
6     Remove points in S which have degree  2 in MST(P  S); 
7 Output MST(P  S); 
8 d

Chang, Huang, Li, Lin, Liu ch8-23

8 end

Remove
degree-2 node

Outline

․Basics of Routing

․General-Purpose Routing

․Global Routing

․Channel Routing
 Left-Edge Algorithm

 Robust Channel Router

Chang, Huang, Li, Lin, Liu
ch8-24
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Routing Area Partitioning

․Routing Area
 Is usually partitioned into smaller pieces before routing

․Types of routing area
(1) Normal channel (1) Normal channel

 (2) L-shaped channel
 (3) Switchbox

․An L-shaped channel
 Can be divided into a normal channel + a switchbox

Chang, Huang, Li, Lin, Liu
ch8-25

A Few Parameters When Doing Routing

․Number of terminals
 Two-terminal nets vs. multi-terminal nets

․Net types
 Power / ground / clock wires vs. signal wires

․Number of layers
 Two vs. three, or more layers

․Signal types
 Critical nets vs. non-critical nets

Chang, Huang, Li, Lin, Liu
ch8-26
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Routing Models

․Grid-based model:
 A grid is superimposed on the routing region.
 Wires follow paths along the grid lines.
 Pitch: distance between two grid lines.

․Gridless model: one without grid lines.

Chang, Huang, Li, Lin, Liu
ch8-27

Models for Multi-Layer Routing

․Unreserved layer model:
 Any net segment is allowed to be placed in any layer.

․Reserved layer model:
 Certain type of segments are restricted to particular layer(s).Certain type of segments are restricted to particular layer(s).

 Two-layer: 
 (HV): Layer 1 Horizontal, Layer 2 Vertical
 (VH): Layer 1 Vertical, Layer 2 Horizontal

 Three-layer: HVH, VHV

Layer 1

Chang, Huang, Li, Lin, Liu
ch8-28

VHV modelUnreserved
model

HVH model

Layer 1
Layer 2
Layer 3



15

Channel Routing Problem

․Inputs for channel routing
 (1) A rectangle routing area
 (2) Fixed terminals at the top and bottom boundaries

(3) Floating terminals at left and right boundaries (3) Floating terminals at left and right boundaries

․Objective
 To minimize the channel height

Chang, Huang, Li, Lin, Liu
ch8-29

Terminology for Channel Routing

․Channel density: maximum local density
 Number of horizontal tracks required  channel density.

Chang, Huang, Li, Lin, Liu
ch8-30
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Horizontal Constraint Graph (HCG)

․HCG G = (V, E) is an undirected graph, where

 V = { vi | vi represents a net ni}

 E = {(vi, vj)| a horizontal constraint exists between ni{( i j)| i

and nj}.

․For graph G:
 vertices  nets; edge (i, j)  net i overlaps net j.

Chang, Huang, Li, Lin, Liu
ch8-31

Vertical Constraint Graph (VCG)

․VCG G = (V, E) is a directed graph where
 V = { vi | vi represents a net ni}
 E = {(vi, vj)| a vertical constraint exists between ni

and nj}and nj}.

․For graph G:
 Vertices  nets; edge i j  net i must be above net j.

Chang, Huang, Li, Lin, Liu
ch8-32
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Example: Vertical Constraint Graph

․Nets to be routed:
 Nets 1, 2, 3, 4

․Columns of the channel
 Columns a, b, c, d, e, f, g, h

Chang, Huang, Li, Lin, Liu
ch8-33

Example: Cyclic Vertical Constraints

․Cyclic vertical constraints
 Needs to be resolved by splitting horizontal segments

 That is, doglegs are necessary

Chang, Huang, Li, Lin, Liu
ch8-34
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2L Channel Routing: Basic Left-Edge Algorithm

․Hashimoto & Stevens
 “Wire Routing by Optimizing Channel Assignment within Large 

Apertures,” DAC-71

 For problems without vertical constraint

 HV-layer model is used

 No doglegs are allowed

․Major operations
 (1) Treat each net as an interval

 (2) Intervals are sorted based on theirs left-end x-coordinates

 (3) Intervals are routed one at a time based on the above order

 (4) For a net, tracks are scanned from top to bottom. First 

Chang, Huang, Li, Lin, Liu
ch8-35

( ) , p
available track is assigned immediately for this net

․Results
 Simple left-edge algorithm produces minimal number of tracks

under the assumption that there are no vertical constraints

Basic Left-Edge Example
․List of nets to be routed, U = {I1, I2, …, I6};

 I1 = [1, 3], I2 = [2, 6], I3 = [4, 8], I4 = [5, 10], I5 = [7, 11], I6 = [9, 12].

․ t =1:
 Route I1: watermark = 3;
 Route I3 : watermark = 8;
 Route I6: watermark = 12;

․ t = 2:
 Route I2 : watermark = 6;
 Route I5 : watermark = 11;

․ t = 3: Route I4

Chang, Huang, Li, Lin, Liu
ch8-36
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Basic Left-Edge Algorithm

Algorithm: Basic_Left-Edge(U, track[j])
U: set of unassigned intervals (nets) I1, …, In;
Ij=[sj, ej]: interval j with left-end x-coordinate sj and right-end ej;
track[j]: track to which net j is assigned.

1 begin
2 U  {I1, I2 , …, In};
3 t  0;
4 while (U   ) do 
5     t  t + 1; 
6     watermark  0; 
7 while (there is an Ij  U s.t. sj > watermark) do

Chang, Huang, Li, Lin, Liu
ch8-37

7     while (there is an Ij  U s.t. sj  watermark) do 
8        Pick the interval Ij  U with sj > watermark,
9        track[j]  t; 
10     watermark  ej; 
11     U  U - {Ij}; 
12 end

Example: Left-Edge Under Vertical Constraints

Chang, Huang, Li, Lin, Liu
ch8-38
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Constrained Left-Edge Algorithm
Algorithm: Constrained_Left-Edge(U, track[j])

U: set of unassigned intervals (nets) I1, …, In;
Ij=[sj, ej]: interval j with left-end x-coordinate sj and right-end ej;
track[j]: track to which net j is assigned.

1 begin
2 U  { I1, I2, …, In};
3 t  0;
4 while (U  ) do 
5     t  t + 1; 
6     watermark  0; 
7      while (there is an unconstrained Ij  U s.t. sj > watermark) do 

Chang, Huang, Li, Lin, Liu
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( j j )
8     Pick the interval Ij  U that is unconstrained, 

with sj > watermark
9        track[j]   t; 
10      watermark  ej; 
11      U  U - {Ij}; 
12 end

Constrained Left-Edge Example
․ I1 = [1, 3], I2 = [1, 5], I3 = [6, 8], I4 = [10, 11], I5= [2, 6], I6 = [7, 9].

․Track 1: Route I1 (cannot route I3); Route I6; Route I4.

․Track 2: Route I2; cannot route I3.

․Track 3: Route I5.Track 3: Route I5.

․Track 4: Route I3.

Chang, Huang, Li, Lin, Liu
ch8-40
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․Deutch
 “A dogleg channel router,” 13rd DAC, 1976.

․Motivation:

Dogleg Channel Router

 Left-Edge algorithm cannot handle constraint cycles.

․Solution:
 Doglegs are used to resolve constraint cycle.

Chang, Huang, Li, Lin, Liu
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Illustration of Dogleg

․Left-Edge:
 The entire net is on a single track.

․Dogleg Strategy
Doglegs are used to split the horizontal parts of a net into Doglegs are used to split the horizontal parts of a net into 
different tracks to minimize the channel height.

․Penalty
 Additional vias might be needed.

Chang, Huang, Li, Lin, Liu
ch8-42
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Dogleg Channel Router

․Basic Idea:
 Each multi-pin net is broken down into a set of 2-pin nets.

․Two parameters are used to control routing:
 (1) Range: Determine the # of consecutive 2-terminal subnets of(1) Range: Determine the # of consecutive 2 terminal subnets of 

the same net that can be placed on the same track.

 (2) Routing sequence: Specifies the starting position and the 
direction of routing along the channel.

․Modified Left-Edge Algorithm is applied to each subnet.

Chang, Huang, Li, Lin, Liu
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Restricted vs. Unrestricted Doglegging

․Unrestricted doglegging:
 Allow a dogleg even at a position where there is no pin.

․Restricted doglegging:
 Allow a dogleg only at a position where there is a pin belonging to g g y p p g g

that net.

․The dogleg channel router
 does not allow unrestricted doglegging.

Chang, Huang, Li, Lin, Liu
ch8-44

dogleg
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Channel Routing Strategies At A Glance

Approaches Features

Optimal if no
vertical constraints

Feasible for
vertical constraints

Doglegging

Left-Edge Algorithm

Modified Left-Edge Algorithm

D l Ch l R ti

Chang, Huang, Li, Lin, Liu
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Doglegging
For cyclic V-constraints

Dogleg Channel Routing

Robust Channel Router Unrestricted Doglegging

Robust Channel Router
․Yoeli,

 “A robust channel router,” IEEE TCAD, 1991. 

․Track assigning procedure
 (1) From top and bottom sides towards to the center of channel.

(2) Alt t b t t d b tt t k t d t (2) Alternates between top and bottom tracks towards center.
 The working side is called the current side.

․Weights
 are used to guide the assignment of segments in a track, which

 (1) favor nets that contribute to the channel density;
 (2) favor nets with terminals at the current side;
 (3) penalize nets whose routing at the current side would 

cause vertical constraint violations

Chang, Huang, Li, Lin, Liu
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cause vertical constraint violations.
․Allows unrestricted doglegs by rip-up and re-route.

(1)

(2)

(3)
Track assignment procedure
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Outline of Robust Channel Router

Calculate the weight of each netstart

Set current side to “Top” or “Bottom”, alternatively 

Select nets that are not routed yet for the current row
(by an approach based on dynamic programming)

Chang, Huang, Li, Lin, Liu
ch8-47

( y pp y p g g)

Maze routing or Rip-up & Re-routing if necessary
(to resolve the unsolved vertical constraints)

Interval Graphs

․Vertex:
 There is a vertex for each interval.

․Edge:
 Vertices corresponding to overlapping intervals are linked by an edge.Vertices corresponding to overlapping intervals are linked by an edge.

․The net selection problem (I.e., selecting nets to one row)
 is equivalent to finding a minimal vertex coloring of the graph.

Chang, Huang, Li, Lin, Liu
ch8-48
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Net Selection For One Row

․The nets to be put in one row of the current side
 Is done by selecting maximum weighted compatible set in the 

interval graph. 
NP-complete for general graphs but can be solved efficiently NP-complete for general graphs, but can be solved efficiently 
for interval graphs using dynamic programming.

․Main ideas:
 The interval for net i is denoted by [ximin

, ximax
]; its weight is wi.

 (1) Process each channel column from left to right column;
 The optimal benefit for position c is denoted by total[c];
 (2) A net n with a rightmost terminal at position c is taken into 

the candidate set if w + total[x – 1] > total[c – 1]

Chang, Huang, Li, Lin, Liu
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the candidate set if wn + total[xnmin
1] > total[c 1] 

1 2 3 4 3

1 2 4

1 2 3 4 3

1 2 4

What nets are
selected

for the 1st row?

Candidate Selection Criterion

wn + total[xn i
– 1] > total[c – 1]

Net n is selected as a condidate if the following holds:

n [ nmin
] [ ]

Benefit if
Selecting net n

Total benefits

up to xnmin

Total benefit if
Not selecting net n

E.g., at current position c = 4
Assume:

Chang, Huang, Li, Lin, Liu
ch8-50

1 2 3 4 3

1 2 4

W2 = 987, Total [1] = 0, Total [3] = 0
W2 + Total [1] > Total [3]
Net 2 is included as a candidate
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Weight Computation

1 2 3 4 3
d(1) = 1
d(2) = 2
d(3) = 2

(Density at each column position)

․ Computation of the weight wi for net i:
1. favor nets that contribute to the channel density: add a large B to wi.
2. favor nets with current side terminals at column x: add d(x) to wi.
3. penalize nets whose routing at the current side would cause vertical 

constraint violations: subtract Kd(x) from wi, K = 5 ~ 10.

1 2 4

( )
d(4) = 3 (nets 2, 3, 4)
d(5) = 2

Chang, Huang, Li, Lin, Liu
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( ) i,
 Assume B = 1000 and K = 5 in the 1st iteration (top side):

 w1 = (0) + (1) + (-5 * 2) = -9 
 Net 1 does not contribute to the channel density
 One net 1 terminal on the top
 Routing net 1 causes a vertical constraint from net 2 at column 

2 whose density  is 2

Weight Computation (cont’d)

1 2 3 4 3 d(1) = 1
d(2) = 2
d(3) = 2
d(4) = 3 (nets 2, 3, 4)

․Computation of the weight wi for net i:
1. favor nets that contribute to the channel density: add a large B to wi.

2. favor nets with current side terminals at column x: add d(x) to wi.

3. penalize nets whose routing at the current side would cause vertical 
constraint violations: subtract Kd(x) from wi, K = 5 ~ 10.

A B 1000 d K i h 1 t i i ( id )

1 2 4
d(5) = 2

Chang, Huang, Li, Lin, Liu
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 Assume B = 1000 and K = 5 in the 1st iteration (top side):

 w1 = (0) + (1) + (-5 * 2) = -9 

 w2 = (1000) + (2) + (-5 * 3) = 987

 w3 = (1000) + (2+2) + (0) = 1004

 w4 = (1000) + (3) + (-5 * 2) = 993

兩賞一罰
+ Channel density contributor
+ Current side terminals
- Vertical constraint violator
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1st Iteration: Top-Row Net Selection

1 2 3 4 3 1 2 3 4 3

․w1 = -9,  w2 = 987, w3 = 1004, w4 = 993.
․A net n with a rightmost terminal at position c is taken into 

the candidate set if: wn + total[xnmin
– 1] > total[c – 1] .

1 2 4

total[1] = 0 selected_net[1] = 0

total[2] = max(0, 0-9) = 0 selected_net[2] = 0

total[3] = 0 selected net[3] = 0

1 2 4

Net ID

Column ID

Column
ID

Chang, Huang, Li, Lin, Liu
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․Select those nets not violating horizontal constraints
backwards from right to left: Only net 3 is selected for the 
top row. (Net 2 is not selected since it overlaps with net 3.)

total[3] = 0 selected_net[3] = 0

total[4] = max(0, w2+total[1]) = 987 selected_net[4] = 2

total[5] = max(987, 0+1004, 0+993) = 1004 selected_net[5] = 3

Best net
Ending col. 5

2nd Iteration: Bottom-Row Net Selection

1 2 3 4 3

1 2 4

1 2 3 4 3

․ 2nd iteration: bottom-row selection
 w1 = (1000) + (2) + (0) = 1002 
 w2 = (1000) + (2) + (-5 * 2) = 992
 w4 = (1000) + (1) + (-5 * 2) = 991

1 2 4

total[1] = 0 selected_net[1] = 0

total[2] = max(0 0+1002) = 1002 selected net[2] = 1

1 2 4

(1) Forward scan
- pick candidate nets

(2) Backward scan
- decide max. compatible set

Chang, Huang, Li, Lin, Liu
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․ Nets 4 and 1 are selected for the bottom row.

total[2]  max(0, 0 1002)  1002 selected_net[2]  1

total[3] = 1002 selected_net[3] = 0

total[4] = max(1002, 0+992) = 1002 selected_net[4] = 0

total[5] = max(1002, 1002+991) = 1993 selected_net[5] = 4
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Maze Routing + Rip-up & Re-route

1 2 3 4 3
1 2 3 4 3

․3rd iteration
 Routing net 2 in the middle row leads to an 

infeasible solution.

 Apply maze routing and rip-up and re-route nets 2 

1 2 4
1 2 4

Chang, Huang, Li, Lin, Liu
ch8-55

and 4 to fix the solution. 

Concluding Remarks

․Routing In One Shot
 Maze routing or line search routing

․Routing In Stages (Divide-and-Conquer)
 (1) Routing Area Decomposition( ) g p

 (2) Global Routing

 (3) Detailed Routing

․Global Routing
 To find minimum rectilinear Steiner tree

 Good heuristics are available

․Detailed Channel Routing
Getting around vertical and horizontal constraints

Chang, Huang, Li, Lin, Liu
ch8-56

 Getting around vertical and horizontal constraints

 Modified left-edge, Robust router, etc.

Routing In A Maze,

It Is Important That All Mice Find Their Ways Out !
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History of Lex & Yacc

• Lex & Yacc were both developed at Bell Lab. in 
the 1970sthe 1970s.

• Yacc was developed as the first of the two by 
Stephen C. Johnson.

• Lex was designed by Mike E. Lesk and Eric 
Schmidt to work with Yacc.

Electrical Engineering
National TsingHua University, TaiwanLex & Yacc Tutorial

A1-3

• Standard UNIX utilities

Who Needs Lex & Yacc ?

• Lex & Yacc are programming tools designed for 

– Writers of compiler and interpreters

– Non-compiler-writers

• Any application looking for patterns in its input 
or having an input/command language is a 
candidate for Lex/Yacc.

Electrical Engineering
National TsingHua University, TaiwanLex & Yacc Tutorial
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Why Lex & Yacc ?

• Lex & yacc help you write programs that 
transform structured input

L t l i l l– Lex: generate a lexical analyzer
• (將文章分成一個一個辭彙)

Divide an input stream into tokens

Pass the tokens to Yacc

– Yacc: generate a parser
(將 個 個辭彙組成符合自訂文法的句子)

Electrical Engineering
National TsingHua University, TaiwanLex & Yacc Tutorial
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• (將一個一個辭彙組成符合自訂文法的句子)

Grammar checking

Create an interpreter
Ｅx: 德語裡，動詞放在受詞的後面

Lex with Yacc

Lexical Rules Grammar Rules

Lex Yacc

Input Token

文章 辭彙 符合文法的句子

Electrical Engineering
National TsingHua University, TaiwanLex & Yacc Tutorial
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yylex() yyparse()
Parsed Input
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A Simple Example

• Build a program that recognizes different types of 
English words

• Extend it to handle multiword sentences that• Extend it to handle multiword sentences that 
conform to a simple English grammar

• Vocabulary set:

Noun: Tom, Mary, apple, dog, cat
Pronoun: I, you, they, we
Verb: love, hate,

辭彙

Electrical Engineering
National TsingHua University, TaiwanLex & Yacc Tutorial
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• Valid sentence grammar: subject + verb + object 

Verb: love, hate, 

Is “Mary hate dog” a valid sentence?

文法

we {return (PRONOUN);}
love |
hate {return (VERB);}
|\n {ECHO;}

Recognizing Word w/ Lex

%{
#include  “y.tab.h”
%}
%% .|\n {ECHO;}

%%

main( )
{

yylex();

%%
[ \t]+ ;
Tom |
Mary |
apple | 
dog |
cat {return (NOUN);}
I |

Mary

hate

dog

Noun

Verb

Noun

Electrical Engineering
National TsingHua University, TaiwanLex & Yacc Tutorial

A1-8

}
|

you |
they |
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object:    NOUN
;

%%

Checking Grammar w/ Yacc

%{
#include <stdio.h>
%} %%

extern FILE *yyin;
main ()
{

do{  
yyparse(); 

}while(!feof(yyin));
}

( )

}

%token NOUN PRONOUN VERB

%%
sentence: subject VERB object 

{printf(“valid\n”);}
;

bj t NOUN

Mary

hate

dog

Noun

Verb

Noun

subject

object

Electrical Engineering
National TsingHua University, TaiwanLex & Yacc Tutorial
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yyerror(s)
char *s; 
{ fprintf(stderr,”%s\n”,s);}

subject:   NOUN
|  PRONOUN
;

References

1. John R. Levine, “lex & yacc,” O’REILLY, 1992.

2. M.E. Lesk and E.Schmidt, “Lex – A Lexical Analyzer 
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Outline 

• Overview
L A L i l A l G t• Lex: A Lexical Analyzer Generator
– Lex Source Format
– Lex Regular Expressions
– Lex Actions
– Usage
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• Yacc: Yet Another Compiler-Compiler
• Case Study

An Overview of Lex

Lex Source lex.yy.c (預設檔名)

Lex

C Compiler
lex.yy.c

I t St

a.out

T k

Electrical Engineering
National TsingHua University, TaiwanLex & Yacc Tutorial
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a.out
Input Stream Tokens
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Format of Lex Source

• Lex source consists of three parts:

definitions section}
%%

– Separated by lines consisting of %%

– The first two sections are required, can be empty

%%
{rules section}
%%
{user subroutines}

Electrical Engineering
National TsingHua University, TaiwanLex & Yacc Tutorial
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

– The absolute minimum lex program is: 

Copy the input to the output 
unchanged

Definition Section

• Can include the included code, name translation, 
start conditions and changes to internal setting

A E l• An Example:

int count;     /*<space>  <code> */
%{
int words_count;  
int lines_count;
void foo( );
%}

將這段 code 加到
lex.yy.c 的最前面

Electrical Engineering
National TsingHua University, TaiwanLex & Yacc Tutorial
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W   [a-zA-Z]
D    [0-9]
%Start state1 state2
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Rules Section

• Contains regular expression and actions, program 
fragments to be executed when expressions are 
recognizedg

• An example:

%%
[ \t] ; /*no action*/
\n {lines_count++;}
apple {ECHO;}    /* <regexp>   <action> */
{W}+ {printf(“find a word %s\n”, yytext);}

Electrical Engineering
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<state1>man {printf(“a man in state1\n”);}
<state2>man {printf(“a man in state2\n”);}
{D}+ {foo( );}

User Subroutines Section

• Includes user-defined routines called from the rules, 
and the redefined input(), output(), unput() or yywrap()

• The content in this section is copied verbatim to C file• The content in this section is copied verbatim to C file.

%%
main( )
{

yylex( );
printf (“word count = %d\n”, words_count);

}
void foo( ){

Electrical Engineering
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void foo( ){
…
}
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One Simple Example

%%
|\ ECHO /* t h h t.|\n ECHO; /* matches any character or a 

new line */

%%

This program copies standard input to standard out!!

Electrical Engineering
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Another Example

%{
int charCount=0, wordCount=0, lineCount=0;
%}

A word count program

%}
word  [^ \t\n]+
%%
{word} {wordCount++; charCount+=yyleng;}
\n {charCount++; lineCount++;}
. charCount++;
%%
main ( ){

Electrical Engineering
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yylex ( );
printf (“%d %d %d”, charCount, wordCount, lineCount);

}
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Outline 

• Overview
L A L i l A l G t• Lex: A Lexical Analyzer Generator
– Lex Source Format
– Lex Regular Expressions
– Lex Actions
– Usage

Y Y t A th C il C il
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• Yacc: Yet Another Compiler-Compiler
• Case Study

Lex Regular Expressions
• Specify a set of strings to be matched

• Contain text characters and operator characters
– OperatorsOpe ato s

– Character classes

– Arbitrary character

– Optional expressions

– Repeated expressions

– Alternation and Grouping

Electrical Engineering
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– Context sensitivity

– Repetitions and Definitions
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Operators

• The set of operator characters:

“  \ [  ]  ^  - ?  .  *  +  |  (  )  $  /  {  }  %  <  >

• If used as text characters, an escape should be added.

• Any blank not contained within [ ] must be quoted.

• Every character but blank, tab (\t), newline (\n), and 

xyz “+ +” =    “xyz++” =   xyz\+\+ xyz++

Electrical Engineering
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the list above is always a text character.

Character Classes

• Class of characters can be specified using the 
operator pair [ ].

• Most operator meanings are ignored exceptMost operator meanings are ignored except

 \ (turn into ASCII character), 

 – (indicate range),

 ^ (except)
[abc] => a or b or c
[a-z]  => from a to z

Electrical Engineering
National TsingHua University, TaiwanLex & Yacc Tutorial

A1-22

[-+0-9] => all the digits and the two signs
[^a-zA-Z] => any character which is not a letter
[\40-\176] => from octal 40 (blank) to octal 176 (tilde~) 
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Arbitrary Character 

• The operator character . matches all characters 
except newline.except newline.

• [\40-\176] matches all printable characters in 
the ASCII character set.

Electrical Engineering
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Optional & Repeated Expressions

a?   =>  zero or one instance of a

a*   =>  zero, one, or more instances of a

a+   =>  one or more instances of a

ab?c  => ac or abc
[a-z]+  => all strings of lower case letters
[A-Za-z][a-zA-Z0-9]*  =>  all alphanumeric strings with

a leading alphabetic character

Electrical Engineering
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a  leading alphabetic character  

d923940 ?





Alternation and Grouping

• The operator | indicates alternation.

• The parentheses ( ) can be used for grouping.

(ab|cd)  =   ab|cd  =>  ab or cd
(ab|cd+)?(ef)*   => abefef, efefef, cdef, or cddd 

but not abc, abcd, or abcdef

Electrical Engineering
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cdcdef ?

Context Sensitivity

• The operator ^ means the expression is matched 
from the beginning of the line.

• The operator $ means the expression is matched 
from the end of the line.

• The operator / indicates trailing context.

^ab => matches the string ab, but only if ab is at the start of the line

ab$ => matches the string ab, but only if ab is at the end of the line

b/ d > t h th t i b b t l if f ll d b d
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ab/cd => matches the string ab, but only if followed by cd
ab/\n =  ab$
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Repetitions and Definitions

• The operators { } specify
– Repetitions (if enclosing a number)Repetitions (if enclosing a number)

– Definition expansion (if enclosing a name) 

a{1,5}  =>  1 to 5 occurrences of a
{digit}  =>  inserts a predefined string named digit

(The string is defined in definition section)
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Regular Expression Summary
Regexp Description

x the character “x”

“x” an “x”, even if x is an 
operator

Regexp Description

x$ an x at the end of a line

x? an optional x

* 0 1 2 i t f
p

\x an “x”, even if x is an 
operator

[xy] the character x or y

[x-z] the characters x, y or z

[^x] any character but x

. any character but newline

x* 0, 1, 2, … instances of x

x+ 1, 2, 3, … instances of x

x|y an x or a y

(x) an x

x/y an x but only if followed 
by y 
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^x an x at the beginning of a 
line

<y>x an x when Lex is in start 
condition y

{xx} the translation of xx from 
the definitions section

x{m,n} m through n occurrences 
of x
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Outline 

• Overview
• Lex: A Lexical Analyzer Generator

– Lex Source Format
– Lex Regular Expressions
– Lex Actions
– Usage

• Yacc: Yet Another Compiler-Compiler
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• Case Study

Lex Actions
• When an expression is matched

– Lex executes the corresponding action, i.e., a C 
program fragmentp g g

• The action character | indicates the action for this 
rule is the action for the next rule.

%%
regexp <one or more blanks> {action (C codes)}

-?(([0-9]+)|([0-9]*\.[0-9]+)([eE][-+]?[0-9]+)?)  {printf(“number\n”);}
[ \t\n] ; => ignore the three spacing characters
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[ \t\n]   ;        > ignore the three spacing characters
“ ” |
“\t” |
“\n” ;             => the same as [ \t\n]
%%





More Lex Actions

• Lex predefined variable yytext is the pointer to the 
matched string.

• yyleng indicates the length of matched string.

• The action of ECHO is to print the matched string.

[a-z]+   printf(“%s”, yytext);
[a-z]+   ECHO;           =>  the same
[a-zA-Z]+        {wordsCount++;charsCount+=yyleng;}
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yytext[yyleng-1] The last character of the matched string

Ambiguous Source Rules

• When more than one expression can match the 
current input,

Th l t t h i f d– The longest match is preferred

– The rule given first is preferred

is | am | are       {printf(“Verb\n”);}
ambiguous        {printf(“ADJ\n”);}
[a-zA-Z]+          {printf(“Unknown\n”;}
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How does lex choose the action when the input is “ambiguous”?

ADJ





Lex Action REJECT

• The action REJECT means “go do the next 
alternative”

To override the rules
有點像 Recycle
Matched token– To override the rules

she        s1++;
he         h1++;
. |
\n          ;

she       {s2++;REJECT}
he         {h2++;REJECT}
. |
\n          ;

Matched token
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When the input is “she”

s1=1; h1=0;
s2=1; h2=1;

More Details – yymore

• yymore( )
– Append the next matched token to the end of 

the current matched token

串連好幾個 Matched tokens 到 yytext 裡

the current matched token

%%
hyper  {yymore();}
text     {printf(“Token is %s\n”, yytext);}

Input: “hypertext”
O t t “T k i h t t”

First match Second match

Electrical Engineering
National TsingHua University, TaiwanLex & Yacc Tutorial

A1-34

Output: “Token is hypertext”
hyper text

Output one token





More Details – yyless

• yyless( n )

– Push back all but the first n characters of the 
tokentoken

• Consider a string “= – a”
=-[a-zA-Z]  {printf(“Op: =-\n”);

yyless(yyleng-1);
…action for =- …
}

[ A Z] { i f(“O \ ”)

=-/[A-Za-z]
=-
a
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=-[a-zA-Z]  {printf(“Op: =\n”);
yyless(yyleng-2);

…action for = …
}

=/-[A-Za-z]
=
-a

Start Conditions

• When only a few rules change from one 
environment to another
– The start conditions can be used to explicitlyThe start conditions can be used to explicitly 

declare multiple states (in definition section)

• Different rules are applied according to the 
corresponding state

%Start  state1   state2 …
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corresponding state.

<state1>man             printf(“a man in state1\n”);
<state2>man             printf(“a man in state2\n”);
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Example of Start Conditions

• Consider the following problem:

– copy the input to the output

changing the word magic to first on every line– changing the word magic to first on every line 
which began with the letter a,

– changing the word magic to second on every line 
which began with the letter b,

– changing the word magic to third on every line 
which began with the letter c.
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g
amagic magic
b magic
cmagicmagic

afirst first
b second
cthirdthird

Example of Start Conditions (Cont.)

int flag;
%%
^ {fl ‘ ’ ECHO }

Using flag

%Start AA BB CC
%%

Using Start Conditions

^a {flag=‘a’;ECHO;}
^b {flag=‘b’;ECHO;}
^c {flag=‘c’;ECHO;}
\n {flag= 0 ; ECHO;}
magic {

switch(flag)
{
case ‘a’: printf(“first”);break;
case ‘b’: printf(“second”);break;

^a {ECHO;BEGIN AA;}
^b {ECHO;BEGIN BB;}
^c {ECHO;BEGIN CC;}
<AA>magic printf(“first”);
<BB>magic printf(“second”)
<CC>magic printf(“third”)
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case b : printf( second );break;
case ‘c’: printf(“third”);break;
default: ECHO; break;
}
} Equivalent





Predefined Variables in LEX
Name Description

char  *yytext pointer to matched string

int yyleng length of matched string

FILE *yyin input stream pointerFILE *yyin input stream pointer

FILE *yyout output stream pointer

int yylex(void) call to invoke lexer, returns token

char* yymore(void) return the next token

int yyless(int n) retain the first n characters in yytext

int yywrap(void) Wrap-up, return 1 if done, 0 if not done
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ECHO write matched string

REJECT go to the next alternative rule

INITIAL initial start condition

BEGIN condition switch start condition

Outline 

• Overview
L A L i l A l G t• Lex: A Lexical Analyzer Generator
– Lex Source Format
– Lex Regular Expressions
– Lex Actions
– Usage

Y Y t A th C il C il
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• Yacc: Yet Another Compiler-Compiler
• Case Study
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How to Generate 辭彙解析器 by LEX

Step1: Turn the lex source into a C program

lex test l

– lex.yy.c is then produced, which is a C program for 
lexical analyzer.

Step2: Compile lex.yy.c into an executable

lex test.l

gcc lex.yy.c -ll
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Step3: Run the lexical analyzer program

./a.out  <  inputfile

Versions of Lex

• AT&T – lex
– http://www.combo.org/lex yacc page/lex.htmlhttp://www.combo.org/lex_yacc_page/lex.html

• GNU – flex
– http://www.gnu.org/manual/flex-2.5.4/flex.html

• Win32 version of flex
– http://www.monmouth.com/~wstreett/lex-yacc/lex-yacc.html

• Cygwin
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Cygwin
– http://sources.redhat.com/cygwin/





Outline 

• Overview

• Lex: A Lexical Analyzer Generator

• Yacc: Yet Another Compiler-Compiler

- What does Parser do

- Introduction to YACC

- How the Parser Works

W k ith L
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- Work with Lex

• Case Study

What does Parser do ?

• Parser invokes scanner for token processing.

• Parser analyzes the syntactic structure.

• Parser executes the semantic routines.

Scanner 就是 Token Recognizer 辭彙解析器
Parser 就是文章解析器
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Parser 就是文章解析器
Syntactic: 語法的 (有關句子的結構)
Semantic: 語意的 (有關句子的意義)





Outline 

• Overview

• Lex: A Lexical Analyzer Generator

• Yacc: Yet Another Compiler-Compiler

- What does Parser do 

- Introduction to YACC

- How the Parser Works

- Work with Lex
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Work with Lex

• Case Study

Introduction of Yacc

• Yacc source format 

Declarations 

%%

Rules (Grammar) 

%%

Programs
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Declarations

• C source codes, include files, etc

• Token definition
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Declarations

Example :

%{

#include <stdio.h>#include stdio.h

%}

%token NOUN PRONOUN VERB ADVERB 
ADJECTIVE PREPOSITION CONJUNCTION
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Rules
Example :

%token NAME NUMBER
%%

大寫或字串的是 Token
小寫的是 Non-Token
(下一頁進一步解釋…)

%%
statement: NAME '=' expression

| expression { printf("= %d\n", $1); }
;

expression: expression '+' NUMBER { $$ = $1 + $3; }
| i ' ' NUMBER { $$ $1 $3 }

LHS RHS
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| expression '-' NUMBER   { $$ = $1  - $3; }
| NUMBER { $$ = $1; }
;

Parse Tree (如何理解一個句子)

exp
相關課程:
(1) Compiler

i

Non-Terminal Symbol

exp ‘+’ exp

token

Non-Terminal
Symbol

Non-Terminal
Symbol
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1 1

token token

Token is also called “terminal symbol”, 為基本辭彙
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Programs

Example :

%%
void yyerror(char *s) {

fprintf(stderr, “%s\n”, s);
}

int main(void) {
yyparse();
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yyparse();
return 0;

}

Outline 

• Overview

• Lex: A Lexical Analyzer Generator

• Yacc: Yet Another Compiler-Compiler

- What does Parser do?

- Introduction to YACC

- How does the Parser Work?

- Work with Lex
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Work with Lex

• Case Study
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How Does the Parser Work?

Calcu.y 自己寫的 YACC 描述檔

Yacc
Produce

y.tab.c

gcc
Produce

a.out

a.out :
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a.out :   

Executable program that will parse grammar given in 
Calcu.y

How Does YACC Process An Article?
It can be done by scanning the tokens in the input file,
performing grammar reduction recursively with the aide of a stack…

exp

‘+’INTEGER (e.g.. 1) INTEGER (e.g.. 1)

exp exp

exp
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N G (e.g.. ) INTEGER (e.g.. 1)





How Does YACC Work?

• The parser produced by Yacc consists of a finite 
state machine with a stack.

• The machine has only four actions available to it .
- SHIFT (move on to the next token – keep parsing…)

- REDUCE (a grammar has just matched)

- ACCEPT (the entire article has parsed successfully)

ERROR (th ti l d t f t th )
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- ERROR (the article does not conform to the grammars)

A shift and reduce action example

Part of Rule section:

exp : INTEGER { $$ = $1 ;}exp : INTEGER    { $$  $1 ;}

| exp ‘+’ exp    { $$ = $1 + $3 ;}

| exp ‘-’  exp    { $$ = $1  - $3 ;}

stack:
<empty>

Input :
3+1
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p y3+1

Reduce and shift!!





A shift and reduce action example

Part of Rule section:

exp : INTEGER { $$ = $1 ;}

stack:
exp

Input :
+1

exp : INTEGER    { $$  $1 ;}

| exp ‘+’ exp    { $$ = $1 + $3 ;}

| exp ‘-’  exp    { $$ = $1  - $3 ;}
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p+1

shift!!

matched no grammar..

A shift and reduce action example

Part of Rule section:

exp : INTEGER { $$ = $1 ;}exp : INTEGER    { $$  $1 ;}

| exp ‘+’ exp    { $$ = $1 + $3 ;}

| exp ‘-’  exp    { $$ = $1  - $3 ;}

stack:
exp +

Input :
1
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exp +1

Reduce and Shift!!





A shift and reduce action example

Part of Rule section:

exp : INTEGER { $$ = $1 ;}exp : INTEGER    { $$  $1 ;}

| exp ‘+’ exp    { $$ = $1 + $3 ;}

| exp ‘-’  exp    { $$ = $1  - $3 ;}

stack:
exp + exp

Input :
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exp + exp

Continue to Reduce

<empty>

A shift and reduce action example

Part of Rule section:

exp : INTEGER { $$ = $1 ;}exp : INTEGER    { $$  $1 ;}

| exp ‘+’ exp    { $$ = $1 + $3 ;}

| exp ‘-’  exp    { $$ = $1  - $3 ;}

stack:
exp

Input :
<empt >
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exp<empty>

At the completion of parsing all the
input tokens, we conclude that it is an expression





Associative – Left or Right

1-1-1

1-(1-1) (1-1)-1

5-2*2

Ambiguity
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5-(2*2) (5-2)*2

Under “Declaration Section” :

%left '+' ' ‘

Precedence & Association

%left '+' '-‘
%left ‘*' ‘/‘

Association :

%left :
A – B – C ( A – B ) – C

Higher precedence
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A – B – C  ( A – B ) – C

%right :
A – B – C A – ( B – C ) 





Left Association 

exp : INTEGER    { $$ = $1 ;}
| exp ‘+’ exp    { $$ = $1 + $3 ;}
| exp ‘ ’ exp { $$ = $1 $3 ;}| exp ‘-’  exp    { $$ = $1  - $3 ;}

exp

-exp exp

exp

-exp exp
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exp exp- exp exp-

Desired!!!

Outline 

• Overview

• Lex: A Lexical Analyzer Generator

• Yacc: Yet Another Compiler-Compiler

- What does Parser do 

- Introduction to YACC

- How the Parser Works

Work with Lex
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- Work with Lex

• Case Study
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Work with Lex

以 YACC 為主，以 LEX 為輔

YACC
yyparse( )

Call yylex()

LEX
yylex( )

Return a token
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Input Data

Outline 

• Overview

L A L i l A l G t• Lex: A Lexical Analyzer Generator

• Yacc: Yet Another Compiler-Compiler

• Case Study

– A calculator
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Example

• Try to realize a calculator by Lex & Yacc

• (Provided example files)

- calculator.h (共同的 header file)

- calculator.l (LEX 描述檔)

- calculator.y (YACC 描述檔)
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- exercise

Example: Parse Tree 

Input : log(5)

S

Statement
List

Exp

Statement

Exp
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NAME

log ‘(‘ 5 ‘)’

NUMBER





Exercise of an Extension

• Please add the power function (e.g. pow(2,3)=8 )

into the calculator yinto the calculator.y
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清華大學 EE 5265

積體電路設計自動化

Appendix 1: IP Design

教育部顧問室
「超大型積體電路與系統設計」教育改進計畫 DIP聯盟

Outline

 Brief Introduction of Verilog
 HDL stands for Hardware Description Language

 Cell-Based Design Flow

A2-2
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Verilog HDL (Data-Flow)

A2-3

Data-Flow for Adder

// Dataflow description of 4-bit adder 

module  binary_adder (A, B, Cin, SUM, Cout);

input  [3:0] A,B;

input  Cin; // carry input

output  [3:0] SUM;

output  Cout; // carry output

assign  {Cout, SUM} = A + B + Cin;

endmodule

A2-4

endmodule
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Data-Flow for Comparator

// Dataflow description of a 4-bit comparator.

module  magcomp (A, B, ALTB, AGTB, AEQB);

input  [3:0] A,B;

output  ALTB,AGTB,AEQB;

assign  ALTB = (A < B),

AGTB = (A > B),

AEQB = (A = = B);

endmodule

A2-5

endmodule

Data-Flow for 2-To-1 MUX

// Dataflow description of 2-to-1-line multiplexer

module mux_2x1 _in_data_flow (A,B,select,OUT);

input  A, B, select;

output  OUT;

assign  OUT = select ? A : B;

endmodule

A2-6
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Behavior Description for MUX

// Behavioral description of 2-to-1-line multiplexer

module  behavior_2x1_mux(A, B, select, OUT);

input A B select;input  A, B, select;

output  OUT;

reg  OUT;    

always @ (select  or  A  or  B)

begin

if  (select == 1)  OUT = A;

l OUT B

Left-Hand-Side (LHS) variables
Of assignment statements in always block
has to be declared as reg type of variables

For example, variables OUT

A2-7

else  OUT = B;

end

endmodule

// Behavioral description of 4-to-1- line multiplexer
module  behavior_4x1_mux (i0, i1, i2, i3, select, y);

input  i0, i1, i2, i3;

Behavior Description for MUX

input  [1:0] select;
output  y;
reg  y;

always  @ (i0 or i1 or i2 or i3 or select)
begin

case  (select)
2'b00: y = i0; i0

i1
00
01

A2-8

2'b01: y = i1;
2'b10: y = i2;
2'b11: y = i3;

endcase
end

endmodule

select

i1
i2
i3

01
10
11

MUX y
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Simulation Testbench

(also called testbench)

A2-9

Basics of a Testbench

 Initial block: executed once

 $display – dump variables’ values with the end-of-line

$ i h $di l b i h h d f li $write – the same as $display but without the end-of-line

 $monitor – dump variables’ values when changed

 $time – dump simulation time

 $finish – terminate simulation

A2-10

Syntax: Task_name(format specification, argument list);
Example: $display(%d, %b, %b, C, A, B)

 Display C in decimal and A, B in binary
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Testbench for Adder

// Stimulus for 3-input 2-output circuit analysis
module  test_circuit;

reg  [2:0] D;
i F1 F2wire  F1, F2;

analysis fig42(D[2], D[1], D[0], F1, F2);

initial
D = 3'b000;
repeat(7)

#10 D = D + 1'b1;
end

Simulation log:
ABC=000  F1=0  F2=0
ABC=001  F1=1  F2=0
ABC=010  F1=1  F2=0
ABC=011  F1=0  F2=1
ABC=100  F1=1  F2=0
ABC=101  F1=0  F2=1
ABC=110  F1=0  F2=1
ABC=111 F1=1 F2=1
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initial
$monitor ("ABC = %b  F1 = %b  F2 =%b ",

D, F1, F2);

endmodule

ABC 111  F1 1  F2 1

D Flip-Flop

//D flip-flop

module D-FF（Q, D ,CLK）；

output Q；

// D flip-flop with asynchronous reset.

module DFF（Q, D, CLK, RST）；

output Q；output  Q；

input  D, CLK；

reg  Q；

always @（posedge CLK）

Q=D；

endmodule

output  Q；

input  D, CLK, RST；

reg  Q；

always @（posedge CLK or negedge RST）

if（~RST）Q=1’b0;

//same as：if（RST ==0）

else Q=D；

A2-12

else Q D；

endmodule
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Register-Transfer-Level (RTL)

 A digital system 
 is represented at RTL when it is specified by the 

following three components
 (1) The set of registers in the system
 (2) Operations performed on registers’ values
 (3) The control regulates the operations

Ex (sequence of RTL operations): 
R1  R1 + R2    // Add contents of R2 to R1
R3 R3 3 // I R3 b 1 ( d )

A2-13

R3  R3 + 3       // Increment R3 by 1 (count upwards)
R4  shr R4      // Shift right R4
R5  0               // Clear R5 to 0

Different Ways of Register-
Transfer Operations in Verilog

Register-Transfer Operations

Continuous Assignment Procedural Assignment

Blocking
Procedural Assignment

Non-Blocking
Procedural Assignment

Assign S = A + B;

A2-14

Always @(A, B)
S = A + B;

Always @(negedge clock)
begin

RA = RA + RB;
RD = RA;

end

Combinational logic

Sequential logic

Always @(negedge clock)
begin

RA <= RA + RB;
RD <= RA;

end

Sequential logic
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Sequential Circuit
(Two always-blocks description)

module Circuit（x , y, CLK, RST）；
input  x , CLK, RST；
output  y；
reg  y；
reg [ 1: 0 ] Prstate Nxtstate；reg  [ 1: 0 ] Prstate, Nxtstate；
parameter  S0 =2’b00,  S1 =2’b01,  S2 =2’b10,  S3 =2’b11；
always @ （posedge  CLK or negedge RST）

if（~RST）Prstate = S0； / / Initialize to state S0
else Prstate = Nxtstate； / / Clock operations

always @ （Prstate or x） / / Determine next state
case（Prstate）
S0：if（x） Nxtstate = S1；

else Nxtstate = S0； // And other operations

A2-15

else   Nxtstate  S0； // And other operations
S1：if（x） Nxtstate = S3；

else   Nxtstate = S0；
S2：if（~x）Nxtstate = S0；

else  Nxtstate = S2；
S3：if（~x）Nxtstate = S2；

else  Nxtstate = S0；
endcase

…..

Outline

 HDL Verilog

 HDL stands for Hardware Description Langauge

 Cell-Based Design Flow

 Design a Greatest-Common-Divisor

 Simulation and Synthesis

A2-16
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Cell-Based Synthesis Flow

High-Level Synthesis

Testbench RTL coding & simulation
front

d

C program

g

RTL code

Cell Library

synthesis view RTL-synthesis (Design Compiler)

Netlist

Place & Route (Apollo) SDF: standard

end

back

A2-17

violation

physical view Place & Route (Apollo)

Layout

Post-Layout Timing Check (Prime Time)

SDF

SDF: standard 
delay format end

(e.g., cb35os142.db)

A Design Block 
Two-way interactions often exist between 
CONTROL and DATA

Control signal command

S0 S1 S2

Feedback signal f

case (command):

CONTROL

A2-18

case (command):
`RESET:            c = 0;
`NOP:                 c = c;
`INCREMENT: c = c + 1;

endcase
assign f = (c==6) ? 1 : 0;

DATA
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Why EFSM?

 Extended Finite State Machine (EFSM)
 is a high-level graphic representation of a g g p p

design
 combines the CONTROL and DATA in a 

single model
 captures the design intensions easily
 Also called Algorithmic Finite State Machine
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Example of An EFSM

FSM: a transition is associated with Boolean input conditions
and a set of Boolean output operations.

Extended FSM: a transition is modeled by an “if statement”

S2S1S0

If(counter != 6) counter++;

If(1) ; If(counter== 6) ;

counter != 6 is the trigger condition
counter++ is the operation

Extended FSM: a transition is modeled by an if statement

A2-20

S2S1S0

If(1) counter = 0;
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Ex1: Greatest Common Divisor
Inputs: two natural numbers x1 and x2
Output: the greatest common divisor of x1 and x2 
Example: (9, 6)  (3, 6)  (3, 3)  Found GCD = 3

u=x1;  v=x2; 

u > v

u = u-v;
u==v

START

no

yes
yes

no

A2-21

u = u-v; 

v = v-u; done = 1;
GCD = u;

END

Flow-Chart of GCD

From Flow-Chart To EFSM

u=x1;  v=x2; START

no

Flow-Chart of GCD


u > v

END

no

yes

v = v-u; done = 1;
GCD = u;

u==v
yes

no

if( u>v ) u=u-v; EFSM d lif( ! start );

u = u-v; 



A2-22

S0 S1

S2 S3

if( start ) 
{u=x1; v=x2;} if( u==v )

done=1;
GCD=u;

if( u != v )
v = v–u;

if( ! (u>v) );

if( u>v ) u=u-v; EFSM model

if(1); 

if( ! start ); 
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One-Module RTL Coding
case(state)

`S0:
if(start) begin

next_u <= x1; next_v <= x2; next_state <= `S1;
endend

`S1:
if(u > v) next_u <= u – v;
else       next_state <= `S2;

`S2:
if(u==v) done<=1; GCD<=u; next_state <= `S3;
else next_v = v – u; next_state <= `S1;

`S3: begin end
endcase

A2-23

S0 S1

S2 S3

if( start ) 
{u=x1; v=x2;} if( u==v )

done=1;
GCD=u;

if( u != v )
v = v–u;

if( ! (u>v) );

if( u>v ) u=u-v; EFSM model

if(1); 

if( ! start ); 

Three-Block Architecture
FSM-block: for controller
A-block: for data operation
E-block: for trigger evaluationgg

ｕ = u – v;state

FSM-block

triggers

primary
inputs

primary
outputs

encoded
command

A2-24

A-block

regs u, v

v = v – u;

E-block

if ( u > v)
if ( u == v )
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Design Verification

C-model
outputs

y

equivalence ?

C model

input
samples

x

y

=

Running C program

A2-25

RTL code
outputs

y’

RTL simulation

Sequential Divider - Algorithm
Function Specification: A / B = Q + R

Procedure of sequential divider (using shift-and-subtract)
Example : A = 1011, B = 0010
Expected Result: A/B = (11/2) = 5 + 1

00010110010

Quotient = 50

0000

0001011

1

0010

01

A2-26

Remainder = 1

0000011
0000

0000011
0010

0000001
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Flow Char – One Quotient Bit

0 ? ? ?0 0 0 0 1 0 1 10 0 1 0

B (除數) R (Partial Remainder) Q (商數)

if R’[7:4] > B

R’ = R << 1;S
computation of i-th iteration

A2-27

Next_R = R’
Next_Q[i] = ‘0’

Next_R = R’- B
Next_Q[i] = ‘1’

E

Complete Flow Chart & States

If (!start) If (start)
count = 4;

Start Y1
If (count != 0)

States = {Start, Y1, Y2}

if R’[7:4] > B

R’ = R << 1;
count ++;

If (count != 0)

Next R = R’- BNext R = R’

A2-28

Y2

If (count == 0)

Next_R  R B
Next_Q[i] = ‘1’

Next_R  R
Next_Q[i] = ‘0’
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Synthesis Script
design_dir = ../design
io_dir = /home/users/cic/CIC_CBDK35_V3/Synopsys
lib_dir = /home/users/cic/CIC_CBDK35_V3/Synopsys
search_path =  search_path + lib_dir + io_dir + design_dir
define_design_lib Analyzed  -path analyzed_dir
/*----- (1) Specify Target Libraries   -----*/ 
target_library = "cb35os142_max.db "
li k lib " b35 142 db “link_library = "cb35os142_max.db “
/*----- (2) Read in design  -----*/ 
design_list = { m1.v, m2.v}
read -format verilog design_list
link 
/*----- (3) Set constraints  -----*/ 
create_clock  -period 2 -waveform  {0, 1}  find(port *clk)
set_input_delay -max 0.0 -clock clk all_inputs() 
set_input_delay -min 0.0 -clock clk all_inputs()
set_output_delay -max 0.0 -clock clk all_outputs() 
set_output_delay -min 0.0 -clock clk all_outputs()

t l d 1 ll t t ()

A2-29

set_load 1 all_outputs()
/*----- (4)  Compile      ------*/
uniquify
set_structure true -timing true
compile -map_effort low -boundary_optimization 
/*----- (5)  Report results      ------*/
write -f verilog -output FIR.gate.v
report_timing -max  1 > FIR.data
report_area >> FIR.data
report_power >> FIR.data

Example of Time-Budgeting

set input delay -max 2.0 -clock clk all inputs()

Timing Constraints For Block B:

預計A  用掉 1ns

R1 A B R1C

2 ns 3 ns5 ns

set_input_delay max 2.0 clock clk all_inputs() 
set_output_delay -max 3.0 -clock clk all_outputs() 留 3ns 給 C

A2-30

R1 A B R1

CLK
CLK

C
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Synthesis Results

Direct Form Transposed
Form

architecture

criteria

Area
(gate-count)

1674
(1573, 101)

1212
(1110, 101)

Timing
(ns) 12.7 ns 10.37 ns

Power
(mW) 35.03 nW 37.26 mW

A2-31

(mW)

(1) Gate count is in terms of equivalent 2-input NAND gate
(2) Timing is based on static timing analysis
(3) Power dissipation is only a very rough estimation
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SystemC Tutorial

Author: Silvio VelosoAuthor: Silvio Veloso
svfn@cin.ufpe.br

Contents

 Needed tools Needed tools
 Starting example
 Introduction
 SystemC highlights
 Differences

A4-2

 Modules, processes, ports, signals, clocks 
and data types



2014/2/12

2

Needed tools

 SystemC library package v2 0 1   SystemC library package v2.0.1  
Download in www.systemc.org

 Linux platform
 GCC compiler
 GTKWave – Waveform tool

A4-3

 some text editor

Starting Example:Full Adder

SC MODULE( FullAdder ) {

FullAdder.h FullAdder.cpp

SC_MODULE( FullAdder ) {

sc_in< sc_uint<16> >   A;
sc_in< sc_uint<16> >   B;
sc_out< sc_uint<17> > result;

void doIt( void );

SC CTOR( FullAdder ) {

void FullAdder::doIt( void ) {
sc_int<16> tmp_A, tmp_B;
sc_int<17> tmp_R;

tmp_A = (sc_int<16>) A.read();
tmp_B = (sc_int<16>) B.read();

tmp_R = tmp_A + tmp_B;

A4-4

_ ( ) {

SC_METHOD( doIt );
sensitive << A;
sensitive << B;

}

};

p_ p_ p_

result.write( (sc_uint<16>) tmp_R.range(15,0) );
}
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Introduction

 What is SystemC ? What is SystemC ?
 SystemC is a C++ class library and methodology 

that can effectively be used to create a cycle-
accurate model of a system consisting of 
software, hardware and their interfaces. 

A4-5

Introduction

 Where can I use SystemC ? Where can I use SystemC ?
 In creating an executable specification of the 

system to be developed.

 What should I know to learn SystemC ?
 Notions of C++ programming and VHDL helps 

A4-6

 Notions of C++ programming and VHDL helps 
you a lot.
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SystemC highlights
 Supports hardware and software co-design
 Developing an executable specification 

avoids inconsistency and errors
 Avoids wrong interpretation of the 

specification
 SystemC has a rich set of data types for 

you to model your systems

A4-7

you to model your systems
 It allows multiple abstraction levels, from 

high level design down to cycle-accurate 
RTL level 

Why is SystemC different ?

 Current design methodology Current design methodology

A4-8

• Manual conversion creates errors
• The C model is not more used
• Many tests are needed to validate
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Why is SystemC different ?

 SystemC design methodology SystemC design methodology

A4-9

•Better methodology, translate is not necessary
•Written in only one language

Modules

 Modules are the basic building blocks to  Modules are the basic building blocks to 
partition a design

 Modules allow to partition complex 
systems in smaller components

 Modules hide internal data representation, 
use interfaces

A4-10

use interfaces
 Modules are classes in C++
 Modules are similar to „entity“ in VHDL
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Modules
SC MODULE(module name)SC_MODULE(module_name)
{

// Ports declaration 
// Signals declaration
// Module constructor : SC_CTOR
// Process constructors and sensibility list
//           SC_METHOD
// S b M d l i d i

A4-11

// Sub-Modules creation and port mappings
// Signals initialization

}

They can contain ports, signals, local data, 
other modules, processes and constructors.

Modules
 Module constructor
 Similar to „architecture“ in VHDL

SC_CTOR( FullAdder ) {

Example: Full Adder constructor

A4-12

SC_METHOD( doIt );
sensitive << A;
sensitive << B;

}
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Modules
 Sub-modules instantiation:

 Instantiate module 

Module_type Inst_module (“label”); 

 Instantiate module as a pointer

A4-13

 Instantiate module as a pointer
Module_type *pInst_module;
// Instantiate at the module constructor SC_CTOR

pInst_module = new module_type (“label”);

Modules

How to connect sub modules ?How to connect sub-modules ?

Named Connection or 

Positional Connection

A4-14

Positional Connection
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Modules

 Named Connection Named Connection

Inst_module.a(s);
Inst_module.b(c);
Inst_module.q(q);

A4-15

pInst_module -> a(s);
pInst_module -> b(c);
pInst_module -> q(q);

Modules

 Positional Connection Positional Connection

Inst_module << s << c << q;
(*pInst_module)(s,c,q);

A4-16
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Modules

 Internal Data Storage Internal Data Storage
 Local variables: can not be used to 

connect ports
 Allowed data types
 C++ types 

A4-17

 C++ types 
 SystemC types
 User defined types

Modules
SC_MODULE( Mux21 ) {

sc_in< sc_uint<8> >   in1;
sc in< sc uint<8> >   in2;

Objects of
l  l  i

 Example: Mux 2:1

sc_in< sc_uint<8> >   in2;
sc_in< bool >       selection;
sc_out< sc_uint<8> >  out;

void doIt( void );

SC_CTOR( Mux21 ) {

SC METHOD( doIt );

template class sc_in
(8-bit unsigned integer input port)

A4-18

_ ( );
sensitive << selection;
sensitive << in1;
sensitive << in2;

}

};
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Modules
 Example:

SC_MODULE(filter) {
// Sub-modules : “components”
sample *s1;
coeff *c1;
mult *m1; Example:

s1

sample

din dout

coeff

mult

a

q

q

s

mult m1;

sc_signal<sc_uint 32> q, s, c; // Signals

// Constructor : “architecture” 
SC_CTOR(filter) {

// Sub-modules instantiation and mapping
s1 = new sample (“s1”);
s1->din(q); // named mapping
s1->dout(s);

A4-19

filter
filter

c1

coeff

cout

m1
b

c
c1 = new coeff(“c1”);
c1->out(c); // named mapping

m1 = new mult (“m1”);
(*m1)(s, c, q); // Positional mapping

}
}

Processes
 Processes are functions that are identified to the  Processes are functions that are identified to the 

SystemC kernel. They are called if one signal of 
the sensitivity list changes its value.

 Processes implement the funcionality of modules

 Processes can be Methods, Threads and CThreads

A4-20

 Processes can be Methods, Threads and CThreads
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Processes
 Methods
When activated, executes and returns

- SC_METHOD(process_name)

 Threads
Can be suspended and reactivated

- wait() -> suspends
- one sensitivity list event -> activates
- SC_THREAD(process_name)

A4-21

 CThreads
Are activated in the clock pulse

- SC_CTHREAD(process_name, clock value);

Processes
Type SC_METHOD SC_THREAD SC_CTHREAD_ _ _

Activates 
Exec.

Event in sensit. list Event in sensit. List Clock pulse

Suspends 
Execution

NO YES YES

Infinite Loop NO YES YES
suspended/ 
reactivated 

by

N.D. wait() wait()
wait_until()

A4-22

by
Constructor &

Sensibility 
definition

SC_METHOD(call_back);
sensitive(signals);

sensitive_pos(signals);
sensitive_neg(signals);

SC_THREAD(call_back);
sensitive(signals);

sensitive_pos(signals);
sensitive_neg(signals);

SC_CTHREAD(
call_back,

clock.pos() );
SC_CTHREAD(

call_back,
clock.neg());
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Ports and Signals
 Ports of a module are the external interfaces that Ports of a module are the external interfaces that 

pass information to and from a module

 In SystemC one port can be IN, OUT or INOUT

 Signals are used to connect module ports 
allowing modules to communicate

A4-23

g

 Very similar to ports and signals in VHDL

Ports and Signals
 Types of ports and signals:yp p g

 All natives C/C++ types
 All SystemC types
 User defined types

 How to declare

A4-24

 IN : sc_in<port_typ>
 OUT : sc_out<port_type>
 Bi-Directional : sc_inout<port_type>
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Ports and Signals
 How to read and write a port ?How to read and write a port ?

 Methods read( ); and write( );

 Examples:

 in_tmp = in.read( );  //reads the port in to in_tmp

A4-25

 out.write(out_temp); //writes out_temp in the out port

Processes

 Process Example Process Example

void doIt( void );

SC_CTOR( Mux21 ) {

SC METHOD( doIt );

Into the .H file void Mux21::doIt( void ) {

sc_uint<8> out_tmp;

if( selection.read() ) {
out tmp = in2.read();

Into the .CPP file

A4-26

SC_METHOD( doIt );
sensitive << selection;
sensitive << in1;
sensitive << in2;

}

ou _ p ad();
} else {

out_tmp = in1.read();
}

out.write( out_tmp );
}
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Clocks
 Special object

H  t  t  ? How to create ?
sc_clock clock_name (

“clock_label”, period, duty_ratio, offset, 
initial_value );

 Clock connection
f1.clk( clk signal );  //where f1 is a       

A4-27

f1.clk( clk_signal );  //where f1 is a       
module

 Clock example:

2 12 22 32 42

sc_clock clock1 ("clock1", 20, 0.5, 2, true);

Data Types
 SystemC supports:SystemC supports:

 C/C++ native types 
 SystemC types

 SystemC types 
 Types for systems modelling
 2 values (‘0’,’1’)

A4-28

( , )
 4 values (‘0’,’1’,’Z’,’X’)
 Arbitrary size integer (Signed/Unsigned)
 Fixed point types
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SystemC types
Type Description

l i Si l  bit ith 4 l (0/1/X/Z)sc_logic Simple bit with 4 values(0/1/X/Z)

sc_int Signed Integer from 1-64 bits

sc_uint Unsigned Integer from 1-64 bits

sc_bigint Arbitrary size signed integer 

sc_biguint Arbitrary size unsigned integer

sc_bv Arbitrary size 2-values vector

sc lv Arbitrary size 4-values vector

A4-29

sc_lv Arbitrary size 4 values vector

sc_fixed templated signed fixed point

sc_ufixed templated unsigned fixed point

sc_fix untemplated signed fixed point

sc_ufix untemplated unsigned fixed point

SystemC types
 Simple bit type
 Assignment similar to char

my_bit = ‘1’;
 Declaration

 bool my_bit;

A4-30

Operators
Bitwise & (and) | (or) ^ (xor) ~ (not)

Assignment = &= |= ^=

Equality == !=
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SystemC types
Operators of fixed precision types
Bitwise ~ & | ^ >> <<
Arithmetics + - * / %
Assignement = += -= *= /= %= &= |= ^=
Equality == !=
Relational < <= > >

=

A4-31

Auto-Inc/Dec ++ --
Bit selection [x]                 ex) mybit = myint[7]

Part select range()         ex) myrange = myint.range(7,4)

Concatenation (,)                  ex) intc = (inta, intb);

SystemC types
 Bit vector

 sc_bv<n>
 2-value vector (0/1) 2-value vector (0/1)
 Not used in arithmetics operations
 Faster simulation than sc_lv

 Logic Vector
 sc_lv<n>
 Vector to the sc_logic type

 Assignment operator (“=“)
 my_vector = “XZ01”
 Conversion between vector and integer (int or uint)

A4-32

 Conversion between vector and integer (int or uint)
 Assignment between sc_bv and sc_lv
 Additional Operators

Reduction           and_reduction()    or_reduction()    xor_reduction()

Conversion          to_string()
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SystemC types
 Examples:p

 sc_bit y, sc_bv<8> x;
 y = x[6];

 sc_bv<16> x, sc_bv<8> y;
 y = x.range(0,7);

 sc bv<64> databus, sc logic result;

A4-33

_ , _ g ;
 result = databus.or_reduce();

 sc_lv<32> bus2;
 cout << “bus = “ << bus2.to_string();

Ending Example:Full Adder

SC MODULE( FullAdder ) {

FullAdder.h FullAdder.cpp

SC_MODULE( FullAdder ) {

sc_in< sc_uint<16> >   A;
sc_in< sc_uint<16> >   B;
sc_out< sc_uint<17> > result;

void doIt( void );

SC CTOR( FullAdder ) {

void FullAdder::doIt( void ) {
sc_int<16> tmp_A, tmp_B;
sc_int<17> tmp_R;

tmp_A = (sc_int<16>) A.read();
tmp_B = (sc_int<16>) B.read();

tmp_R = tmp_A + tmp_B;

A4-34

_ ( ) {

SC_METHOD( doIt );
sensitive << A;
sensitive << B;

}

};

p_ p_ p_

result.write( (sc_uint<16>) tmp_R.range(15,0) );
}



1

Appendix: 
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Shi-Yu Huang
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National Tsing Hua University, Taiwan
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Outline

 What is FO-WLP?

- Evolution of packaging technology

- Processing steps

- Advantages

 Example of application

- An RF test chip validated by TSMC

 Discussion

A5-3

 Discussion

Classical Single-Die Package

wire bond

Wire-Bond Package

Laminate
(package substrate)

Printed Circuit Board

silicon die

Solder ball

Flip-Chip Package

A5-4

Laminate
(package substrate)

Printed Circuit Board

silicon dieSolder bump
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Classical SiP (System-In-Package)
(multi dies or components in a single package)

Structure Example

Side by SideSide-by-Side
Structure

Stacked
Structure

Package
On

Package
Stacking

Die

Wire Bonded Wire Bonded &
Flip Chip PoP Flip-Chip Type

Flip-ChipWire Bonded

A5-5

Stacking
Through Silicon Via

Another PoP example

Easier to test (O)
Lengthy interconnects (X)

Substrate cost (X)

Evolution of Packaging Technologies

MCM: Multi-Chip Module

A5-6
Source: Eric Mounier, Yole Development, Lyon, France, Global SMT & Packaging July 2007.
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Interposer-Based 2.5D-Ics
CoWoS (Chip-on-Wafer-on-Substrate) – TSMC 2012

Die Die

InterposerExpensive! p

Package substrate

C4 bump
p

A5-7

Quest:
C h l 2 5D IC i hCan we have a low-cost 2.5D IC without 

interposer?

 FO-WLP might be it (with adequate 
performance)p f )
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Typical Wafer-Level Package (Fan-In WLP)

Three layers: (1) Silicon die, (2) Solder Ball, (3) PCB

Only one-layer of solder bump/ball  No Laminate, but larger IO pitch

Silicon Die

~400m

A5-9

P.S. One typical dimension of an IO pad is roughly 60m x 60m
P.S. ITRS roadmap: The IO pad pitch will continue to shrink…

Interconnect Pitch Gap Problem

Small
Chip PitchChip Pitch

A5-10

Large
Customer

Board Pitch

Source: Infineon
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InFO-WLP
(Integrated Fan-Out Wafer-Level Packaging)

Fanout: the extra area outside the die areas
Wafer-Level Package: Interconnects and ball-dropping on a re-constituted wafer

A5-11
BGA: Ball-Grid Array

400 pins

RDL (Re-Distribution Layer)

Exploit higher Flexibility provided by RDL (Re-Distribution Layer) 
between bare dies and solder balls
 (1) package foot-print > chip foot-print, (2) multi-chip package( ) p g p p p , ( ) p p g

A5-12

RDL: used to route the signal path from the die’s IOs to desired bump locations



7

Detailed View of a Solder Joint

Solder ball sitting on top a die’s IO

Solder Ball and a die’s IO
Connected by RDL

pad

A5-13

y

pad

RDL

IO pad

Technology Steps for InFO-WLP

1: Wafer reconstruction
(including wafer molding)

original
wafer

2: Re-Distribution

3 Ball Mount and Singulation

reconstructed
wafer

after thin-film

A5-14

3. Ball Mount and Singulation

4. Test, Mark, Scan, Pack 

after thin film
processing

Final package
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Another View of Processing Steps

Original Wafer Reconstituted Wafer

10m
thin-film

technology

A5-15

"good tested" dies of a silicon wafer are placed 
face-down onto a carrier with an adhesive tape.

Layers of a FO-WLP Package

A5-16

EMC: Encapsulated Molded Compound

Source: STMicroelectronics, SiRF 2012.
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A Specific WLP Technology
- Embedded Wafer-Level Ball-Grid Array (eWLB)

 eWLB was a technology pioneered by Nanium

 Siemens Infineon (1999) Qimonda (2006) Nanium (2010)

With proven high-volume manufacturing capability, Nanium have
shipped more than 300 million eWLB components, achieving
industry-level yields and full JEDEC quality/reliability compliance.

MOTIVATION:

A5-17

MOTIVATION: 
to address the growing mismatch in interconnect gap, higher levels 
of integration, improved electrical performance and shorter vertical 
interconnects.

Business Outlook of FO-WLP

A5-18

We are here! 4.5X increase till 2020

Based on Yole Development, due to ramp-up of fabless wireless IC vendors
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Features of eWLB

Flexibility to integrate die from diverse processes, manufacturing 
sources & silicon wafer nodes for increased functionality 

2D solutions in single & multi-die configurations, down to 0.4mm

MCP i ith fli hi & IPD (i t t d i d i )MCP versions with flip chip & IPD (integrated passive devices) 
integration capability 

2.5D & 3D options offer lower overall cost than TSV integration with 
increased process simplicity 

Industry’s thinnest 3D PoP solutions (ultra thin z-height of 0.3mm with 
stacked thickness down to 0.8mm height) 

Ultra fine ball pitch (down to 0.3mm) & maximum I/O density 

A5-19

Thin film processing enables very fine lines for X,Y routing (line-
width/line-space ratios less than 10um/10um), very fine via pitches 
and thin dielectrics 

Bumpless thin film interconnection offers lowest cost structure over 
competing manufacturing approaches

Source: web site of STATS ChipPAC

Features of eWLB - Continued

Elimination of substrate results in a thinner package with lower 
warpage, simplifying supply chain & reducing costs 

Cost effective HVM batch processing (includes wafer level test) 

Advanced dielectric materials for reliable, power-efficient solutions 

Strong electrical performance (capable to beyond 60GHz) 

Effective heat dissipation supports strong thermal performance 

KGD helps achieve strong yields (99.9%) 

Cu/low-k (ELK) compatible packaging technology 

Green packaging (Pb-free and Halogen-free)

A5-20
Source: web site of STATS ChipPAC
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InFO-WLP for 2.5D and 3D Integration

TMV (Through Mold Via)

Laminate substrate

A5-21

Multi-Chip Test Vehicle

Die-to-Die distance is 300 m in this case

7 mm

A5-22

Die-to-die interconnects
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TMV (Through Mold Via in z-Direction)
- also called TEV (Through Encapsulant Via)

(Via-Before-Molding)
The placement of pre-fabricated via barsThe placement of pre fabricated via bars
prior to the molding of the
Reconstituted Wafer.

(Via-After-Molding)
laser drilling and copper filling of vias in
the mold compound.

A5-23

ePOP Process Flow with Via Bars

Green parts

A5-24

are solder stop
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Defects

Potential manufacturing imperfections:
(1) Die shift (due to imprecision of pick-and-place equipment)
(2) Wafer warpage
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D
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Outline

 What is FO-WLP?

 Example of application Example of application

- RF test vehicles

 Discussion

A5-26
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Integration of Passive Components

Why passive components matter:
(1) Wireless products are everywhere
(2) Passives (in particularly inductors) are key in RF circuits

Low Noise Amplifiers (LNA) Voltage Controlled Oscillators (VCO)- Low-Noise Amplifiers (LNA), Voltage Controlled Oscillators (VCO),
- Power Amplifiers (PA), filters, impedance matching networks…

FO WLP
Silicon

Integrated
Discrete
Passives

Larger size
Higher performance

Smaller size
Lower performancePromising

A5-27

FO-WLP Integrated
Passives

Passives
On Board

More integrated

Q Factor of Inductance

Parasitic
Resistance

Desired
Inductance wL

L R

Smaller R  Higher Inductor’s Q Factor
(Less Energy Loss in the Tuned Circuit)

Q =
wL

R

A5-28

Typical Q-factor range: 
(1)Around 10 for CMOS inductors
(2)Around 25 ~ 35 for eWLB inductors
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2-RDL Based Inductor in FO-WLP

Minimum RDL width and space: 10m

A5-29

FO-WLP Package on Board

A5-30
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20-Bit DCO (Digitally Controlled Oscillator)
- using LC Tank Oscillator

Schematic

varactor

Resonant freq.

LC
fr 2

1


A5-31

Varactor: Variable Capacitor

Q Factor of a Band-Pass Filter

A5-32
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DCO Performance Summary

A5-33

Peak Q Vale at Different Regions

A5-34
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Thermal Analysis

A5-35

Thermal Map

Thinner package
better heat dissipation

A5-36

Multi-Chip Module (MCM) InFO-WLP
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Concluding Remarks

Wafer-Level Packaging (WLP) 
has great potential for future multi-chip packaging.

Impacts on Testing:Impacts on Testing:
(1) Yield might be highly dependent on KGD test
(2) Solder ball could be a weak point of thermal reliability
(3) Testing & Delay characterization for die-to-die interconnects

A5-37

Ref: Coefficient of Thermal Expansion
(~2.6ppm/º̊C for silicon and 17ppm/ºC for PCB)

Fatigue of solder ball
after intensive

Temperature Cycling
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