國立清華大學 電機工程學系 一〇二學年度第二學期

EE-5265 『積體電路設計自動化』講義

Feb. – June, 2014

清華大學 EE 5265

積體電路設計自動化

單元 1

Overview of Design Automation

教育部顧問室 「超大型積體電路與系統設計」教育改進計畫 EDA聯盟 - 推廣課程

Technology node (nm) On-chip local clock (GHz) Microprocessor	250	180	130	100			
On-chip local clock (<i>GHz</i>) Microprocessor	A	·		1 100	70	50	35
Microprocessor	0.75	1.25	2.1	3.5	6.0	10	16.9
chin size (mm^2)	300	340	430	520	620	750	901
Microprocessor transistors/chip	11M	21M	76M	200M	520M	1. 4 0B	3.62B
Microprocessor cost/transistor (×10 ⁻⁸ USD)	3000	1735	580	255	110	49	22
DRAM bits per chip	256M	1 G	4G	16G	64G	256G	1T
Wiring level	6	6-7	7	7-8	8–9	9	10
Supply voltage (V)	1.8-2.5	1.5-1.8	1.2-1.5	0.9-1.2	0.6-0.9	0.5-0.6	0.37-0.42
Power (W)	70	90	130	160	170	175	183
 Source: Internati Deep submediate 	ional Te nicron	chnolog technol	jy Roadi logy: no	map for ode (fea	Semicor Iture siz	nductors ze) < 0.2	s, Nov, 20 25 μm.

Veer of Draduction	2005	2006	2007	2008	2000	201.0	2011	2012	2012	Drivor
DRAM 16 Ditab (pm) (contexted)	2005	2006	2007	2006	2009	2010	2011	2012	2013	Driver
Mask cost (\$m) from publicly available data	1.5	2.2	3.0	4.5	6.0	9.0	12.0	18.0	24.0	SOC
% Vdd Variability % variability seen at on-chip circuits	10%	10%	10%	10%	10%	10%	10%	10%	10%	SOC
% Vth variability Doping Variability impact on VTH	24%	29%	31%	35%	40%	40%	40%	58%	58%	SOC
% Vth variability Includes all sources	26%	29%	33%	37%	42%	42%	42%	58%	58%	SOC
% CD variability CD for now; might add doping later	10%	10%	10%	10%	10%	10%	10%	10%	10%	SOC
% circuit performance variability circuit comprising gates and wires	41%	42%	45%	46%	49%	50%	53%	54%	57%	SOC
% circuit power variability circuit comprising gates and wires	55%	55%	56%	57%	57%	58%	58%	59%	59%	SOC

Name	Distinctive shape	Algebraic equation	Cost (# of transistors)	Scaled gate delay (ps)
AND	xF	F=XY	6	24
OR	x y	F=X+Y	6	24
NOT (inverter/ repeater)	xF	F=X	2	10
Buffer (driver/ repeater)	xF	F=X	4	20
NAND	x y	$F = \overline{XY}$	4	14
NOR	x y	F=X+Y	4	14
Exclusive–OR (XOR)	x	F=XY+XY =XQY	14	42
	Chang, H	uang, Li, Lin, Liu		

Design Rules	
 Layout rules are used for preparing the masks for fabrication Fabrication processes have inherent limitations in accuracy. Design rules specify geometry of masks to optimize yield an reliability (trade-offs: area, yield, reliability). Three major rules: Wire width: Minimum dimension associated with a given feature Wire separation: Allowable separation. Contact: overlap rules. 	n. d
 I wo major approaches: – "Micron" rules: stated at micron resolution. – λ rules: simplified micron rules with limited scaling attributes. 	
 λ may be viewed as the size of minimum feature. Design rules represents a tolerance which insures very high probability of correct fabrication (not a hard boundary betwee correct and incorrect fabrication). 	en
 Design rules are determined by experience. 	
Chang, Huang, Li, Lin, Liu	ch1-68

• M ht • 3 	OSIS d ttp://ww basic d Wire w Wire s Conta	lesign rules (SCMOS rules) are available at vw.mosis.org. design rules: width separation act rule design rule examples		
·	P1	Min active area width	3)	
	R3	Min poly width	2λ	
	R4	Min poly spacing	$\frac{1}{2}\lambda$	
	R5	Min gate extension of poly over active	$\frac{1}{2}\lambda$	
	R8	Min metal width	3λ	
	R9	Min metal spacing	3λ	
	R10	Poly contact size	2λ	
	D11	Min poly contact spacing	21	

清華大學 EE 5265

積體電路設計自動化

單元 2

Generic Algorithms

教育部顧問室 「超大型積體電路與系統設計」教育改進計畫 EDA聯盟 - 推廣課程

Decision Problem	
 Decision problems: problem with "yes" or "no" answer Examples: (1) MST: Given a graph G=(V, E) and a bound K, is spanning tree with a cost at most K? (2) TSP: Given a set of cities, distance between eac cities, and a bound B, is there a route that starts at a given city, visits every city exactly once, and here a set of cities are a set of cities. 	there a ch pair of nd ends nas total
• A decision problem $\Pi = (F, c, k)$ - Solution Space Y_{Π} : • The input sub-space for which the answer is "yes" - Solution Checking: (deciding if an input point is in • Checking whether the cost of a solution point, $f \in F$, than k.	no yes Y _Π) is less
 Could apply binary search on decision problems obtain solutions for optimization problems. NP-completeness is associated with decision problems. 	ems to n
Chang, Huang, Li, Lin, Liu	ch2-10

清華大學 EE 5265

積體電路設計自動化

單元 3

Logic Synthesis

教育部顧問室 「超大型積體電路與系統設計」教育改進計畫 EDA聯盟 - 推廣課程

致謝	
本單元之教材主要取自於 教育部 超大型積體電路與系統設計教育改進計畫 EDA聯盟之課程發展成果 • (教材編纂小組成員) • 台灣大學電機系張耀文 • 清華大學電機系 張耀文 • 清華大學電機系 黄錫瑜 • 交通大學資科系 李毅郎 • 中央大學電機系 劉建男 • 元智大學資工系 林榮彬	
Chang, Huang, Li, Lin, Liu	ch3-2

Col	umn	Со	veriı	ng ('	1/4)			
	Seven on-set elements							
Prime implicants	4	5	6	8	9	10	13	
0,4 (0-00)	×							
0,8 (-000)				×				
8,9 (100-)				×	×			
8,10 (10-0)				×		×		
9,13 (1-01)					×		×	
4,5,6,7 (01)	×	×	×					
5,7,13,15 (-1-1)		×					×	
	rows	= prim	e imp	licant	S			
Note: minterms 0, 7, 11, 15	columns = ON-set elements							
are thus not shown in the table.	place an "X" if ON-set element is covered by the prime implicant							
		Chang, Hu	ang, Li, Lin,	Liu				ch3-18

co-kernel	kernel
1	a((bc + fg)(d + e) + de(b + cf))) + beg
а	(bc + fg)(d + e) + de(b + cf)
ab	c(d + e) + de
abc	d + e
•	
ac	b(d + e) + def
acd	b + ef
•	
bc	ad + ae

Chang, Huang, Li, Lin, Liu

ch3-32

Cube-Literal Matrix											
Cube-literal matrix											
$f = x_1 x_2 x_3 x_4 x_7 + x_1 x_2 x_3 x_4 x_8 + x_1 x_2 x_3 x_5 + x_1 x_2 x_3 x_6 + x_1 x_2 x_9$											
	Literals										
		x_I	x_2	x_3	x_4	x_5	x_6	x_7	x_8	<i>x</i> 9	
	$x_1 x_2 x_3 x_4 x_7$	1	1	1	1	0	Ο	1	0	0	
	$x_1 x_2 x_3 x_4 x_8$	1	1	1	1	0	0	0	1	0	
Cubes	$x_1 x_2 x_3 x_5$	1	1	1	0	1	Ο	0	0	0	
	$x_1x_2x_3x_6$	1	1	1	0	0	1	0	0	0	
	$x_{1}x_{2}x_{9}$	1	1	0	0	0	0	0	0	1	
Chang, Huang, Li, Lin, Liu										ch3-34	

清華大學 EE 5265

積體電路設計自動化

單元 4

Simulation

教育部顧問室 「超大型積體電路與系統設計」教育改進計畫 EDA聯盟 - 推廣課程

致謝	
本單元之教材主要取自於 教育部 超大型積體電路與系統設計教育改進計畫 EDA聯盟之課程發展成果 • (教材編纂小組成員) • 台灣大學電機系張耀文 • 清華大學電機系 張耀文 • 清華大學電機系 黄錫瑜 • 交通大學資科系 李毅郎 • 中央大學電機系 劉建男 • 元智大學資工系 林榮彬	
Chang, Huang, Li, Lin, Liu	ch4-2

Ex:Evaluate a Channel-Connected Component				
• The table below shows how input signal changes are propagated to the output. $V_{dd} = n_0(5)$ $-d = (3) n_2(1) = n_3(1)$ (4) $V_{ss} = n_1(5)$				
Propagate (from → to)	State of n ₂	State of n ₃		
"Initial state"	('X', 1)	('X', 1)		
$n_{o \rightarrow} n_2$	('1', 3)	('X', 1)		
$n_{1 \rightarrow} n_{2}$. ('0', 4)	('X', 1)		
$n_2 \rightarrow n_3$	('0', 4)	('0', 3)		
ی Winner takes all	Logic value Strength Chang, Huang, Li, Lin, Liu		ch4-42	

清華大學 EE 5265

積體電路設計自動化

單元 6

Floorplanning

教育部顧問室 「超大型積體電路與系統設計」教育改進計畫 EDA聯盟 - 推廣課程

致謝	
本單元之教材主要取自於 教育部 超大型積體電路與系統設計教育改進計畫 EDA聯盟之課程發展成果	
 (教材編纂小組成員) 台灣大學電機系張耀文 清華大學電機系黃錫瑜 交通大學資科系李毅郎 中央大學電機系 劉建男 元智大學資工系 林榮彬 	
Chang, Huang, Li, Lin, Liu	ch6-2

清華大學 EE 5265

積體電路設計自動化

單元 7

Placement and Partitioning

教育部顧問室 「超大型積體電路與系統設計」教育改進計畫 EDA聯盟 - 推廣課程

致謝	
本單元之教材主要取自於 教育部 超大型積體電路與系統設計教育改進計畫 EDA聯盟之課程發展成果	
 (教材編纂小組成員) 台灣大學電機系張耀文 清華大學電機系黃錫瑜 交通大學資科系李毅郎 中央大學電機系 劉建男 元智大學資工系 林榮彬 	
Chang, Huang, Li, Lin, Liu	ch4-2

1 hegin		
2 Com	ute the connectivity for each cell:	
3 Sort t	he cells in decreasing order of their connectivities into	list L:
4 while	(Iteration Count < Iteration Limit) do	1130 D,
5 Se	ed \leftarrow next module from L:	
6 De	seed vacant seed vacant seed vacant	
7 00	while $(E_n dB_{innle} - E ALSE)$ do	
, a	Compute target location of the seed	
ă	case the target location	Target
10	VACANT	location
11	Move seed to the target location and lock:	¥74
12	End Binnle \leftarrow TBUE: Abort Count \leftarrow 0'	
13	SAME AS PRESENT LOCATION	Locked
14	EndBinnle \leftarrow TBUE: AbortCount \leftarrow 0'	Locacu
15		
16	Move selected cell to the nearest vacant locat	ion:
17	$EndRipple \leftarrow TRUE: AbortCount \leftarrow AbortCount$	+1
18	if (AbortCount > AbortLimit) then \Box_{t}	· - ·
19	Unlock all cell locations:	terion of an ite
19	$IterationCount \leftarrow IterationCount + 1;$	
20	OCCUPIED AND NOT LOCKED:	
21	Select cell as the target location for next mov	e;
22	Move seed cell to target location and lock the	target locat
23	$EndRipple \leftarrow FALSE; AbortCount \leftarrow 0;$	
26 ond		

致謝	
本單元之教材主要取自於 教育部 超大型積體電路與系統設計教育改進計畫 EDA聯盟之課程發展成果	
 (教材編纂小組成員) 台灣大學電機系張耀文 清華大學電機系黃錫瑜 交通大學資科系李毅郎 中央大學電機系 劉建男 元智大學資工系 林榮彬 	
Chang, Huang, Li, Lin, Liu	ch6-2

%% . \n	ECHO; /* matches any character or a new line */
%%	
This _l	program copies standard input to standard out!

Regexp	Description	Regexp	Description	
X	the character "x"	x \$	an x at the end of a line	
"x"	an "x", even if x is an	x?	an optional x	
	operator	x *	0, 1, 2, instances of x	
\ x	an "x", even if x is an			
	operator	x +	1, 2, 3, instances of x	
[xy]	the character x or y	xlv	an x or a v	
[x-z]	the characters x, y or z	(v)	an x	
[^x]	any character but x	(A)		
•	any character but newline	x/y	an x but only if followed by y	
^ <u>x</u>	an x at the beginning of a line	{xx}	the translation of xx from the definitions section	
<y>x</y>	an x when Lex is in start condition y	x{m,n}	<i>m</i> through <i>n</i> occurrences of x	

Using flag	Using Start Conditions
<pre>int flag; %% ^a {flag='a';ECHO;} ^b {flag='b';ECHO;} ^c {flag='c';ECHO;} \n {flag= 0; ECHO;} magic { switch(flag) { case 'a': printf("first");break; case 'b': printf("first");break; case 'c': printf("third");break; default: ECHO; break; } }</pre>	%Start AA BB CC %% ^a {ECHO;BEGIN AA;} ^b {ECHO;BEGIN BB;} ^c {ECHO;BEGIN CC;} <aa>magic printf("first"); <bb>magic printf("second") <cc>magic printf("third")</cc></bb></aa>

Name	Description	
char *yytext	pointer to matched string	
int yyleng	length of matched string	
FILE *yyin	input stream pointer	
FILE *yyout	output stream pointer	
int yylex(void)	call to invoke lexer, returns token	
char* yymore(void)	return the next token	
int yyless(int n)	retain the first n characters in yytext	
int yywrap(void)	Wrap-up, return 1 if done, 0 if not done	
ЕСНО	write matched string	
REJECT	go to the next alternative rule	
INITIAL	initial start condition	
BEGIN condition	switch start condition	

How to Generate 辭彙解析器 by LEX				
Step1: Turn the lex source into a C program				
lex test.l				
 lex.yy.c is then produced, which is a C program for lexical analyzer. 				
Step2: Compile lex.yy.c into an executable				
gcc lex.yy.c -ll				
Step3: Run the lexical analyzer program				
./a.out < inputfile				
A1-41				

	表 4-10 Verilog HDL 蓮算子
寻 號	運算
+	binary addition;二進位加法
_	binary subtraction;二進位滅法
&	bit-wise AND;位元的及運算
	bit-wise OR;位元的或運算
^	bit-wise XOR;位元的互斥或運算
~	bit-wise NOT:位元的反相運算
==	equality;全等
>	greater than:大於
<	less than;小於
{}	concatenation; 連結
?:	conditional; 條件 式

A2-4

Data-Flow for Comparator

// Dataflow description of a 4-bit comparator. module magcomp (A, B, ALTB, AGTB, AEQB); input [3:0] A,B; output ALTB,AGTB,AEQB; assign ALTB = (A < B), AGTB = (A < B), AEQB = (A = = B); endmodule

```
A2-5
```


<pre>//D flip-flop module D-FF (Q, D, CLK) ; output Q; input D, CLK; reg Q; always @ (posedge CLK) Q=D; endmodule</pre>	<pre>// D flip-flop with asynchronous reset. module DFF (Q, D, CLK, RST) ; output Q; input D, CLK, RST ; reg Q; always @ (posedge CLK or negedge RST) if (~RST) Q=1'b0; //same as : if (RST ==0) else Q=D; endmodule</pre>

architecture criteria	Direct Form	Transposed Form
Area (gate-count)	1674 (1573, 101)	1212 (1110, 101)
Timing (ns)	12.7 ns	10.37 ns
Power (mW)	35.03 nW	37.26 mW

· · · · ·	SYSTEMC"
Starting Ex	ample:Full Adder
_FullAdder.h	FullAdder.cpp
<pre>SC_MODULE(FullAdder) { sc_in< sc_uint<16> > A; sc_in< sc_uint<16> > B; sc_out< sc_uint<17> > result; void dolt(void); SC_CTOR(FullAdder) { SC_METHOD(dolt); sensitive << A; sensitive << B; } };</pre>	<pre>void FullAdder::dolt(void) { sc_int<16> tmp_A, tmp_B; sc_int<17> tmp_R; tmp_A = (sc_int<16>) A.read(); tmp_B = (sc_int<16>) B.read(); tmp_R = tmp_A + tmp_B; result.write((sc_uint<16>) tmp_R.range(15,0)); }</pre>
	A4-4

14°	SYSTEMCT
Modules	SC_MODULE(Mux21) {
Objects of template class <i>sc_in</i> (8-bit unsigned integer input port)	<pre>sc_in< sc_uint<8> > in1; sc_in< sc_uint<8> > in2; sc_in< bool > selection; sc_out< sc_uint<8> > out;</pre>
Example: Mux 2:1	void dolt(void);
	SC_CTOR(Mux21) {
	SC_METHOD(dolt); sensitive << selection; sensitive << in1; sensitive << in2;
	}
	}; A4-18

Pro	cesses		SYSTEM CT
Туре	SC_METHOD	SC_THREAD	SC_CTHREAD
Activates Exec.	Event in sensit. list	Event in sensit. List	Clock pulse
Suspends Execution	NO	YES	YES
Infinite Loop	NO	YES	YES
suspended/ reactivated by	N.D.	wait()	wait() wait_until()
Constructor & Sensibility definition	SC_METHOD(<i>call_back</i>); sensitive(<i>signals</i>); sensitive_pos(<i>signals</i>); sensitive_neg(<i>signals</i>);	<pre>SC_THREAD(call_back); sensitive(signals); sensitive_pos(signals); sensitive_neg(signals);</pre>	SC_CTHREAD(call_back, clock.pos()); SC_CTHREAD(call_back, clock.neg());
			A4-22

Syste	emC types	(SYSTEMC
Туре	Description	
sc_logic	Simple bit with 4 values(0/1/X/Z)	
sc_int	Signed Integer from 1-64 bits	
sc_uint	Unsigned Integer from 1-64 bits	
sc_bigint	Arbitrary size signed integer	
sc_biguint	Arbitrary size unsigned integer	
sc_bv	Arbitrary size 2-values vector	
sc_lv	Arbitrary size 4-values vector	
sc_fixed	templated signed fixed point	
sc_ufixed	templated unsigned fixed point	
sc_fix	untemplated signed fixed point	
sc_ufix	untemplated unsigned fixed point	
		A4-29

Syste	mC ty	ypes		(SYSTEM C"
 Simple Assignm my_bit Declaration bool model 	<i>bit type</i> nent simi t = '1'; tion ny_bit;	e lar to <i>cl</i>	har		
Operators					
Bitwise	& (and)	(or)	^ (xor)	~ (not)	
Assignment	=	&=	=	^ =	
Equality	==	!=			
					A4-30

	(SYSTER CT
Ending Exa	mple:Full Adder
FullAdder.h	FullAdder.cpp
<pre>SC_MODULE(FullAdder) { sc_in< sc_uint<16> > A; sc_in< sc_uint<16> > B; sc_out< sc_uint<17> > result; void dolt(void); SC_CTOR(FullAdder) { SC_METHOD(dolt); sensitive << A; sensitive << B; } }</pre>	<pre>void FullAdder::dolt(void) { sc_int<16> tmp_A, tmp_B; sc_int<17> tmp_R; tmp_A = (sc_int<16>) A.read(); tmp_B = (sc_int<16>) B.read(); tmp_R = tmp_A + tmp_B; result.write((sc_uint<16>) tmp_R.range(15,0)); }</pre>
<i>J</i> ,	A4-34

	References
1.	Web site at STATSChipPAC http://www.statschippac.com/
2.	Web site at "SEMI Networking Day: Packaging – Key for System Integration," <u>http://www.semi.org/eu/node/8481</u>
3.	T. Meyer et al., " <u>System Integration with eWLB</u> ", Electronic System-Integration Technology Conference (ESITC), 2010.
4.	Seung Wook et al., " <u>Fanout Flipchip eWLB (embedded</u> <u>Wafer Level Ball Grid Array) Technology as 2.5D Packaging</u> <u>Solutions</u> " Electronic Components and Technology Conf., (ECTC) 2013.
5.	Christianto C. Liu et al., " <u>High-Performance Integrated Fan- Out Wafer Level Packaging (InFO-WLP): Technology and</u> <u>System Integration</u> ", Int'I Electron Device Meetings (IEDM), 2012.
6.	Cedric Durand et al., " <u>High Performance RF Inductors</u> Integrated in Advanced Fan-Out Wafer Level Packaging Technology", Silicon Monolithic Integrated Circuits in RF Systems (SiRF), 2012.

TMV (Through Mold Via in z-Direction) - also called TEV (Through Encapsulant Via)

(Via-Before-Molding) The placement of pre-fabricated via bars prior to the molding of the Reconstituted Wafer.

(Via-After-Molding) laser drilling and copper filling of vias in the mold compound.

A5-23

	On-Chip	InFO-WLP (High Perf)	InFO-WLF (Low Power)
Center Freq (GH	z)	10.6	
Technology (nm)	28	
Supply Voltage (V	/)	0.85	
Power (mW)	4.84	4.85	4.25
Phase Noise @ 1 MHz (dBc/Hz)	-100	-115	-107
FOM (dBc/Hz)	-174	-189	-181

	FC-BGA/ MCM	InFO-WLP	
Package Size (mm ²)	8	8x8	
Die Sizes (mm ²)	1 5x5 die, 2	1 5x5 die, 2 2x1.25 dies	
Die Thickness (mm)	0.5	<0.3	
Substrate Thickness (mm)	0.3	N/A	
Ball Count	4	00	
Ball Diameter/Pitch (mm)	0.2	0.26/0.4	
Total Power (W)	2	2.0	
Ambient Temp (°C)	:	25	
Max Temp (°C)	90.5	81.5	
Thermal Resistance (°C/W	32.5	28.0	

