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BJT 1: Overview of Design Automation

e Course contents:
— Introduction to VLSI design flow
— Introduction to VLSI design automation tools
— Semiconductor technology roadmap
— Design styles
— CMOS technology
¢ Readings
— Chapters 1-2
— Appendix A
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Milestones for IC Industry

e 1947: Bardeen, Brattain & Shockley invented the transistor, the
foundation of the IC industry.

e 1952: SONY introduced the first transistor-based radio.
e 1958: Kilby invented integrated circuits (ICs).

e 1965: Moore’s law.

¢ 1968: Noyce and Moore founded Intel.

e 1970: Intel introduced 1 K DRAM.

el i Thrstic by Kily
First transistor First IC by Noyce
Chang, Huang, Li, Lin, Liu chl-5

Milestones for IC Industry

1971: Intel announced 4-bit 4004 microprocessors (2250
transistors).

1976/81: Apple Il/IBM PC.
1985: Intel began focusing on microprocessor products.
1987: TSMC was founded (to support fabless IC design).

1991: ARM introduced its first embeddable RISC IP core
(chipless IC design).

Intel
founders

Chang, Huang, Li, Lin, Liu chl-6




Complexity Is Skyrocketing ...

1996: Samsung introduced IG DRAM.

1998: IBM announced 1GHz microprocessor.
1999/earlier:
— System-on-Chip (SOC) methodology gains popularity.
— Intel P4 processor: 42 million transistors

Productivity:
— 30 million transistors per person today for ASIC chips
— 1 billion/person by 2008

" - e = Blue tooth
4GB DRAM (2001) Pentium 4 Scanner-on-chip technology

Chang, Huang, Li, Lin, Liu chl-7
IC Design & Manufacturing Process
f 1 IC Fabrication
A ‘, Wafer
Architecture Design (hundreds of dies)
1 Sawing & Packaging
Block
diagram Final chips
Circuit & Layout Design Final Testing
A
1 @-’W’n
§ customers
5. ‘ Bad chips || Good chips ‘
Chang, Huang, Li, Lin, Liu chl-8




From Wafer to Chip

|Warer: Place of Making Dies

.

Silicon Ingot

Final Chips

Chang, Huang, Li, Lin, Liu ch1-9

Traditional VLSI Design Cycle

System specification

Functional design

Logic synthesis

Circuit design

Physical design and verification

Fabrication

Packaging

Other tasks involved: simulation, testing, etc.

Design metrics: area, speed, power dissipation, noise,
design time, testability, etc.

e NO WA WNE

Chang, Huang, Li, Lin, Liu ch1-10




Traditional VLSI

System Specification ‘

functional
simulation

logic
simulation

circait
analysis

specification

Function/architecture
Dresign

behaviorial
representarion

Logic Synthesis

structural
representation

Circuit Design |

exrraction

& verification

structural
representation

Chang, Huang, Li, Lin,

Design Cycle

o oD ™

Z=a+bc+ de

chi-11

Traditional VLSI Design Flow (Cont'd)

Fabrication

Packaging

entraction & structural
verification | representation

Physical Synthesis

physical
representation

Chang, Huang, Li, Lin, Liu

ch1-12




Design Actions

Synthesis:
— increasing information about the design by providing more
details (e.g., logic synthesis, physical synthesis)
Optimization:
— increasing the quality of the design by restructuring a given
description (e.g., logic optimizer, timing optimizer).
Analysis:
— collecting information on the quality of the design (e.g., timing
analysis, power analysis, etc).
Verification:
— checking whether an implementation conforms to the desired
specification
— Is what | get really what | want?
Design Management:

— storage of design data, cooperation between tools, design flow,
etc. (e.g., database).

Chang, Huang, Li, Lin, Liu ch1-13

Gajski’s Y-Chart

BEHAVIORAL DOMAIN STRUCTURAL DOMAIN
Systems
Algorithms
Register transfers
Logic

Transfer functions

Processors
ALU’s, RAM, etc.
Gates, flip-flops, etc.

Transistors
Transistor layout
Cell layout
Module layout
Floor plans
Physical partitions
PHYSICAL DOMAIN

Chang, Huang, Li, Lin, Liu chl-14




Top-Down Structural Design

BEHAVIORAL DOMAIN

Systems
Algorithms
Register transfers

Logic
Transfer functions

Transistor layout

STRUCTURAL DOMAIN

Processors
ALU’'s, RAM, etc.

Gates, flip-flops, etc.
Transistors

Cell layout
Module layout
Floor plans
Physical partitions
PHYSICAL DOMAIN

Chang, Huang, Li, Lin, Liu ch1-15
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Design Issues and Tools

System-level design (taking a C code as the input)

— Hardware/software partitioning, co-verification

— System-Verilog, System-C for co-simulation

— Silicon compilation (from C to layout) =» rarely used...
Architecture-level design

— RTL simulation

— RTL synthesis (From RTL code to Gate-Level circuit)
Logic-level design

— Logic optimization

— Gate-level simulation (functionality, timing, power, etc)

— Static timing analysis (STA), or statistical static timing analysis (SSTA)

— Formal verification

Transistor-Level Design

— Schematic editor, circuit simulation (SPICE)
Physical-level design

— Floorplanning, Placement, Routing, Compaction

— DRC for Design Rule Checking

— LVSfor Layout vs. Schematic Check

— Parasitic RC extraction

Chang, Huang, Li, Lin, Liu ch1-17

Logic Synthesis

. | ) I
original logic optimized technology timized
| optimization ﬁ%nction mapping | ogircuiﬁe

L logic synthesis

Logic synthesis programs
— transform Boolean expressions into logic gate networks in a
particular library.

Optimization goals:
— minimize area, delay, power, etc
Technology-independent optimization: logic optimization
— Optimizes Boolean expression.
Technology-dependent optimization: technology
mapping/library binding
— Maps Boolean expressions into a particular cell library.

Chang, Huang, Li, Lin, Liu ch1-18




Logic Optimization Examples

e Two-level: minimize the # of product terms.

— F = fyxpx3 + y2pxy + 21Epxz + xifoxy tryroxy = F = x5+
E1L3.

e Multi-level: minimize the #'s of literals, variables.
— E.g., equations are optimized using a smaller number of literals.

gigi?. “ logic 1 =d+e;

= , optimization Db+ h,'
=ab+d — . ”
A-11 21 fg B=af2+c
5=t h+ 12 3 M=t 3 +fgh
F=1t5;

subject graph for the optimized equations

Chang, Huang, Li, Lin, Liu ch1-19

Circuit Simulation of a CMOS Inverter (0.6 um)

2 0 0 nch W=1.2u L=0.6u AS=2.16p PS=4.8u AD=2.16p PD=4.8n
2 1 1 pch W=1.8u L=0.6u AS=3.24p PS=5.4u AD=3.24p PD=5.4u
G 0.2pF

0= =
|l
W ww

v, vy t t t.  Pulse Width Period
VDD 1 0 3.3 LR f

3 /
VIN 2 ¢ DC O PULSE (0 3.3 Ons 100ps 100ps 2.4ns bns)
Pulse width

+—>

.LIB ’../mod 06’ typical

.0PTION NOMOD POST INGOLD=2 NUMDGT=6 BRIEF
.DC VIN OV 3.3V C.C01V A

.PRINT DC V(3) ty  period
_TRAN 0.001iN BN
.PRINT TRAN V(2) V(3)
.END
Y > ]
1 e T
N A
L PN
=
M ICL AR
1 oL 35 o 1 2 3 4 s
= = Time ns
Chang, Huang, Li, Lin, Liu ch1-20
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Physical Design

physical
design

e Physical design
converts a circuit description into a geometric description.
The description is used to manufacture a chip.
¢ Physical design cycle:
1 Logic partitioning
2. Floorplanning and placement

s, Routing
4. Compaction
® Others:
® circuit extraction, timing verification and design rule checking

Chang, Huang, Li, Lin, Liu ch1l-21

Physical Design Flow

Physical Design

Partitioning

e

4 |

Roung Fabriwtion

Compaction

-

Extraction &
Verification

Chang, Huang, Li, Lin, Liu ch1-22
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Logic Circuit (or Logic Netlist)

e Multi-level logic:
— A set of logic equations with no cyclic dependencies
e Example: Z=(AB+C)(D+E+FG)+H
— 4-level, 6 gates, 13 gate inputs
A B F G

Level 1
Level 2

Level 3

]

Level 4

Chang, Huang, Li, Lin, Liu

ch3-23

Boolean Network
(Data Structure for A Logic Netist)

e A Boolean Network
— Is a Directed Acyclic Graph (DAG)
— Each source node is a primary input
— Each sink node is a primary output
— Each internal node represents an equation
— Arcs represent variable dependencies

X2
x4 \ y

X6

Chang, Huang, Li, Lin, Liu

ch3-24
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Floorplan Examples

Pentium 4
A floorplan A=
with 9800
blocks
Chang, Huang, Li, Lin, Liu ch1-25
Routing Example
¢ 0.18um technology
I | Il‘—h—‘
- ! — ;
Hi s AL
| 1 b
| -r.J
g e
i = -
1 '- 'ﬁ
Chang, Huang, Li, Lin, Liu chl-26
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IC Design Considerations

chip

System
specifications

e Several conflicting considerations:
— Design Complexity: large number of devices/transistors

Performance: optimization requirements for high

performance

Time-to-market: about a 15% gain for early birds

Cost: die area, packaging, testing, etc.

die

Others: power, signal integrity (noise, etc), testability,

reliability, manufacturability, etc.

Chang, Huang, Li, Lin, Liu

chl-27
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“Moore’s” Law: Driving Force of Technology

¢ Logic capacity doubles per IC at aregular interval.

* Moore:
— Logic capacity doubles every two years (1975).
* D. House:
— Computer performance doubles every 18 months (1975)

[Transistors

L ]
_ Pentium
Pentium TV

per die 10" +

| 4004

8086

80386

" Pentium 1M
Pentivm ppy

Pentium 4

LI L - L e I

Year
ch1-29

Technology Roadmap for Semiconductors
Year 1997 1999 2002 2005 2008 2011 2014
Technology
node (nm) 250 180 130 100 70 50 35
On-chip Tecal
clock (GHz) 0.75 1.25 2.1 3.5 6.0 10 16.9
Microprocessor
chip size (mm?2) 300 340 430 520 620 750 901
Microprocesscr
transistors /chip 11M 21M 76M 200M 520M 1.40B 3.628B
Microprocessor
cost/transistor 3000 1735 580 255 110 49 22
(x10—8 UsD)
DRAM bits
per chip 266M 1G 4G 16G 654G 256G 1T
Wiring level 6 6—7 7 7-8 59 9 10
Supply voltage
(v 1.8-2.5|15-18 | 1.2-15 | 0.9-1.2 | 0.6-0.9 | 0.5-0.6 | 0.37-0.42
Power (W) 70 90 130 160 170 175 133
® Source:

— International Technology Roadmap for Semiconductors, Nov, 2002.
¢ Deep submicron technology: node (feature size) < 0.25 um.

¢ Nanometer Technology: node < 0.1 um.

Chang, Huang, Li, Lin, Liu

ch1-30
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Nanometer Design Challenges

* In 2005, feature size = 0.1 um, u P frequency » 3.5 GHz, die size = 520
mm?2, 4 P transistor count per chip ~ 200M, wiring level = 8 layers,
supply voltage ~ 1 V, power consumption = 160 W.

_ Feature size ¥ > sub-wavelength lithography (impacts of process
variation)? noise? wire coupling? reliability?

— Frequency A = interconnect delay? electromagnetic field effects?
timing closure?

— Chip complexity Az = large-scale system design methodology?

_ Supply voltage ¥ - signal integrity (noise, IR drop, etc)?

— Wiring level A & manufacturability? 3D layout?

— Power consumption A 2 power & thermal issues?

Chang, Huang, Li, Lin, Liu ch1-31

Design for Manufacturability (DfM)
- Optical Proximity Correction (OPC)

OPC: An technique that modifies that layout in a way that
the distortion of the lithography can be compensated

Severely Distorted!

Fle | od

@ Mask Pattern Lithography Image Printed on Wafer
Better!
Chang, Huang, Li, Lin, Liu ch1-32
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3D Transistor

FinFET Transistor

Traditional Planar Transistor

Chang, Huang, Li, Lin, Liu ch1-33

Worsening Manufacturing Variability

Year of Production 05 | 2008 | 2007 | 2005 | 2008 | 2010 | 20011 | 2012 | 2013 | Driver
DRAM ¥ Pitch (nm) {contaced) 80 0 5 57 50 45 10 35 32

Mask cost (Bm)

from publicly available data 15 2.2 30 4.5 6.0 9.0 120 | 180 2.0 500
% Wdd Variability

% variability seen at on-chip cireuits 10% | 0% | 10% | 10% | 10% | 10% | 10% | 10% | 10% [ SOC
% Wt variability

Daping Variability impact on VTH 24%, | 25% | 3% | 3B% | 40 | 40 | 40% | 58% | S8% [ SOC
% Wthvariability

Incdudes all sources 6% | 20% | 33% | 3% | 42% | 42% | 42%

% CD variability

CO for now; might add doping later 10% | 10% | 10% | 10% | 10% | 10% | 10% | 10% | 10% | SOC
% circuit performance variability

eircuit compriging gates and wires MY | 4% | B% | 46%

%, circuit power variability

eircuit comprising gates and wires 55% | 55% | BB% | &%

Tabie 1. Design for Memfacturabiity: Near-Term Years

http://www.future-fab.com/documents.asp?d_ID=3996

Chang, Huang, Li, Lin, Liu chl-34

17



More Moore + More Than Moore

Beyond
CMODS

Baseline CMOS:
CPU, Memory, Logic

Mare than Moore :
Functional Diversification

Interacting with people
and environment
Non-digital content System™
in-Package (SiP)

FIGURE 1. SoC and SiP technologies provide a path for continued improvement in
performance, power, cost and size at the system level, exclusive of conventional
CMOS scaling.

Source” http://pcdandf.com/cms/magazine/212/4495-sips-give-more-to-moore

Chang, Huang, Li, Lin, Liu ch1-35

From Multi-Core to Many-Core Era

New Elements:
(1) (HW) Network on Chip (NoC) + Global-Local Memory Architecture
(2) (SW) Multi-thread programming

S RAFLOP OF PERFORMANCE

100 million transistors

ch1-36

Chang, Huang, Li, Lin, Liu
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SiP: Stacked Dies with Wire Bonding

Plastic overmould 1—>’//

Wire bonds
ThinSi die

™

Thindie
attach film

BGA Package
Interposer s ubstrate

BGA Package s
Solder balls

Ref: E. Beyne, “3D System Integration Technologies”

Chang, Huang, Li, Lin, Liu

Evolution of System Interconnect
Technologies

MCM: multi-chip module
2D MCM

PoP
Pkg-on-pkg SoC

Form Factor
farger —*

smaller

SiP System-on-chip
stacked w
| wirebond 1

—

Circuit4o-Circuit Interconnect Density ~ frcreasing

Ref: R. E. Jones, R. Chatterjee, and S. Pozder,
“Technology and Application of 3D Interconnect”

Chang, Huang, Li, Lin, Liu

19



True 3D IC
(with TSV - Through Silicon Via)

Brld&\!la Plug\\na
Dielectric 2 = —

3rd Level| FSIEE |;
(Thinned %
Subsirate)

< Bond
(Face-to-back)

(Thinned 1
Substrate)

Multi-level on-chip interconnects
I ———.
Substrate

1st Level4

http://www.process-evolution.com/3d-ics_doe.html

Chang, Huang, Li, Lin, Liu

llustration of a3D IC

/Ivr A A A S
B3 7 A 7 4
& l; -~

http://lsi.epfl.ch/page-13136-en.html

Chang, Huang, Li, Lin, Liu

ch1-40
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Benefits of 3D IC’s

e Smaller form-factor

e Shorter Interconnect

* | ower Power

e Higher Yield?

® Heterogeneous Integration

¢ Fast and High-Bandwidth between logic and memory

Chang, Huang, Li, Lin, Liu

Design-and-Test Challenges

¢ 3D IC Process / Manufacturing
— Aligning, stacking, thinning, TSV's

e New Process / Memory Architecture
e Power Delivery

e 3D Design Flow

¢ Floor-plan & Layout

e Thermal Modeling

¢ Yield Enhancement
— Design for Yield & Resiliency
¢ Testing

— Electrical Characterization of TSV, Boundary Scan, Known-Good-Die
(KGD)

Chang, Huang, Li, Lin, Liu

21



Xilinx Virtex-8 FPGAs
(4-Die Integrated on Interposer)

Micro bumps

Through-silicon Vias

Passive Silicon Interposer

W EEGASlice | 280m FEGA Slice | lffmf"ﬁﬂiﬁ_./

Package Substrate
8 C4 Bumps

http://www .. .com/forum/showwiki.php?ti ki:Three-
Dimensional+Integrated+Circuit+3D+IC+Wiki

<—— BGABalls
s

Micro bumps

| «<—— Silicon Interposer
-

Through-Silicon Vias

ource: Xilinx

Chang, Huang, Li, Lin, Liu ch1-43
Design Productivity Crisis
g 10,000M 100,000K T
§ 1,000M 10,000K - §-
% 100M 58%/yr compound et 1.000K 3 g*
& complexity growth rate e =2
g, 10M limiter 100K QI’::;
7 3 =
o M 10K S s
f 0.1M 21%lyr compound 1K s 2.
= —
ES 0.01M productivity growth rate 01K %
1980 1985 1990 1995 2000 2005 2010
¢ Human factors
— may limit design more than technology.
e Keys to solve the productivity crisis:
— hierarchical design, abstraction, CAD (tool &
methodology), IP reuse, etc.
Chang, Huang, Li, Lin, Liu chl-44

22



Hierarchical Design

e Hierarchy: something is composed of simpler things.

¢ Design cannot be done in one step = partition the design
hierarchically.

hierarchical

-— |evel 1

-— |evel 2

-&— |evel 3

-%— |evel 4

A c
©] (® Y
©
Chang, Huang, Li, Lin, Liu ch1-45
Abstraction
e Abstraction: when looking at a certain level, you
don’t need to know all details of the lower levels.
( Sy
@ system
( NCIH.':E\
‘ :B- module
: (j A——— gate
{Eh_ circuit
' . pEvice
. | sk 1, | Clevice
1§ \ | | EsESY I\-L_J
¢ Desigh domains:
— Behavioral: black box view
— Structural: interconnection of subblocks
— Physical: layout properties
e Each design domain has its own hierarchy.
Chang, Huang, Li, Lin, Liu ch1-46
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Three Design Views

module add4 (s, c4, ci, a, b),

input [3:0] a, b;

input ci;

output [3:0] s,

output c4,
. wire [2:0] co;
Behavior add 10 (co[0], S[0], a[0], b[0], ci);
add 11 (co[1], s[1], a[1], b[1], co[C]);
add 12 (co[2], s[2], a[2], b[2], co[1]);
add 13 (c4, s[3], a[3], b[3], co[2]);

endmedule

b[3] al3]1  b[2] a[2]  b[1] a[l]  b[0] a[0]

Structural :4—i

ad
a[{,] s[£ s[ti] s]lU]
(400, 400) (100, 100)
Physical ] o) 2 ] o[ ©
— — — =l o)

Chang, Huang, Li, Lin, Liu

d -addHadd|——|add|<—

ci

chi-47
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Chang, Huang, Li, Lin, Liu

ch1-48
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Design Styles

e Specific design styles shall require specific CAD tools

issues of
VLSI circuits

Performance

Area Cost Time-to—market

N/~

‘ Different design sryie.s'

!

‘Full custom ‘ |Standard cell | | Gate array| |FPGA| | CPLD ‘ ‘ SPLD|

Performance, Area efficiency, Cost, Flexibility

A

Chang, Huang, Li, Lin, Liu ch1-49

SSI/SPLD Design Style

Xepe XF: Xaps Xis
K

P4L586 P4LSO2 LS00

s
iyl

f i
iy
f ]-l [owo
P\ xi@yi .
{a) 4—bit comparator. (b) SS[implementation.
=
e
s
o e AND aray
g
Xa
Lb“ T
N LB; [T

QQQ?UD%

OR array

(e} SPLD (PLA) implementation.

Chang, Huang, Li, Lin, Liu ch1-50
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Full Custom Design Style

® Designers can control the shape of all mask patterns.
* Designers can specify the design up to the level of individual
transistors.

* | F HE H B -r.
| \ |
Data path ] T oy
I | over—lhe:{ell
PLLA [~ routing
", lW vo| M
L==0%
. ROM/RAM . via
Controller L/—Ecomacl)
"
. A/D converter [Sn:dl‘):u;:l% .
N/ N,
pins /O pads
Chang, Huang, Li, Lin, Liu ch1l-51

Standard Cell Design Style

® Selects pre-designed cells (of same height) to implement
logic

library cells
caic Cell D Feedthrough Cell
Chang, Huang, Li, Lin, Liu ch1-52
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Example: Standard Cells

GND ! - E i R lT RO f

Cell row
Interconnections are routed over the cells.

Chang, Huang, Li, Lin, Liu ch1-53

Gate Array Design Style

® Prefabricates a transistor array
* Needs wiring customization to implement logic

Prefabricated 2|  Customized
Transistor ~  Wiring
Array
Chang, Huang, Li, Lin, Liu ch1-54
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FPGA Design Style

¢ Logic and interconnects are both prefabricated.
e |llustrated by a symmetric array-based FPGA

&

| m B m 0 ||m
"I e "
|t |
logic * E i ~|_ routing
blocks =] ¥ e ] tacks
W= BB |
e = @
| |
il
mlm mlm mllm

switches

Prefabricated all chip components
preonps ch1-55

Array-Based FPGA Example

e Lucent Technologies 15K ORCA FPGA

® 0.5um 3LM CMOS
® 2.45 M Transistors
® 1600 Flip-flops

® 25K bit user RAM
® 320 I/0Os

Chang, Huang, Li, Lin, Liu ch1-56

28



FPGA Design Process

e |llustrated by a symmetric array-based FPGA
¢ No fabrication is needed

4

i

T

System Design

TII\ 'ﬂII

'[II'\*(III

g [Pl
o R

Placement Routing Customization

Partitioning
<
Mapping

Logic + Layout Synthesis

Chang, Huang, Li, Lin, Liu ch1-57

Design Style Trade-offs

10°
Turnaround
Time
(Days)

Logic Capacity (Gates)

Chang, Huang, Li, Lin, Liu ch1-58
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Chang, Huang, Li, Lin, Liu

ch1-59

A CMOS Inverter

Metal Metal—diffusion contact

A|B
1,0
01

source

gate p—channel (pMOS)
drain
- Diffusion
nMOS transistor n—channel (nMOS)

source

== wetal 2: brown ] contacvvia: black [ n-—diffusion: green (n—well: light green)

Chang, Huang, Li, Lin, Liu

B p-diffusion: yellow {p—well: light yellow)

ch1-60
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A CMOS NAND Gate

inl in2 out
A|B|C
Metal ojof1
VDD “ | o|1]1
Diffusion L{o]t
1{1]0
Polysilicon VDD
Mc
A l B
A C
B
GND
layout
Chang, Huang, Li, Lin, Liu chl-61
A CMOS NOR Gate
Metal A|lB|C
0|01
oo I ojLio
1{0]0
Polysilicon il1lo
VDD
§ il
A
L c|
= Diffusion
GND
layout
Chang, Huang, Li, Lin, Liu ch1-62
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Basic CMOS Logic Library

Thsnnenve Algebraic Cost (# of Scaled gate

Name shape equaticn transistors) delay (ps)
AND x :D—F Py ¢ 24

X o
ox S 2
NCT X —
(inverter/ F F=X 2 10
repeater)
Buffer
(driver/ X —‘ > F F=X 4 20
repedter)

X F F=XY 4 14
NAND Y

X —
NOR v j)o—F F=XoY 4 14
Exclusive—-OR X % _
[XOR) F F=XY+XY

v e 14 42

Chang, Huang, Li, Lin, Liu ch1-63

Stick Diagram

Intermediate representation

— between the transistor level and the mask (layout) level.
Gives topological information

— (identifies different layers and their relationship)
Assumes that wires have no width.

It is possible

— to translate stick diagram automatically to layout with
correct design rules.

p—channel
switch

n—channel
switch

el
H
—_— _ 1 %
1
[ ]
—— =

Chang, Huang, Li, Lin, Liu chl-64
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Stick Diagram (cont'd)

* When the same material (on the same layer) touch or cross, they
are connected and belong to the same electrical node.

® When polysilicon crosses N or P diffusion, an N or P transistor
is formed.

— Polysilicon is drawn on top of diffusion.
— Diffusion must be drawn connecting the source and the drain.
— Gate is automatically self-aligned during fabrication.

e When a metal line needs to be connected to one of the other three
conductors, a contact cut (via) is required.
contact
[anannnnnny isssciiis | [T T iR
P, N, or p—diff n—diff poly

metal p e
olysilicon
¥ Lnang, uang, Li, Lin, Liu ch1-65

CMOS Inverter Stick Diagrams

¢ Basic layout

SHIENINININED <RRRRRIRINNNNRNARNRNRIEN
¥ i
R
e

e More area efficient layout

EEEIII]]]]]J“::IID:I:I:I:IIEEEEEEEEEIIEEEEEIIEU VDD
N p—diff
. Vss
n—diff
In poly
QOut
Chang, Huang, Li, Lin, Liu ch1-66
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CMOS NAND/NOR Stick Diagrams

o
Z
%
%

[ TT13

Chang, Huang, Li, Lin, Liu ch1-67

Design Rules

Layout rules are used for preparing the masks for fabrication.
Fabrication processes have inherent limitations in accuracy.
Design rules specify geometry of masks to optimize yield and
reliability (trade-offs: area, yield, reliability).

Three major rules:

— Wire width: Minimum dimension associated with a given feature.
— Wire separation: Allowable separation.

— Contact: overlap rules.

Two major approaches:

— “Micron” rules: stated at micron resolution.

— Arules: simplified micron rules with limited scaling attributes.

A may be viewed as the size of minimum feature.

Design rules represents a tolerance which insures very high
probability of correct fabrication (not a hard boundary between
correct and incorrect fabrication).

Design rules are determined by experience.

Chang, Huang, Li, Lin, Liu ch1-68
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SCMOS Design Rules

wb tie via
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n—diff vias

kPN metal 1
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MOSIS Layout Design Rules

e MOSIS design rules (SCMOS rules) are available at
http://www.mosis.org.
¢ 3 basic design rules:
— Wire width
— Wire separation
— Contact rule
¢ MOSIS design rule examples

R1
R3
R4
R5
R8
R9
R10
R11

Min active area width

Min poly width

Min poly spacing

Min gate extension of poly over active
Min metal width

Min metal spacing

Poly contact size

Min poly contact spacing

NRNW®NNNW
B D Dt e D D e 3

Chang, Huang, Li, Lin, Liu ch1-70
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Concluding Remarks

¢ Milestones technology in silicon era
— Transistor = Integrated Circuits = CMOS Technology
e Key weapons in SOC era
— Design Automation
— Design Reuse
e Breakthrough techniques in design automation
— Simulation (e.g., SPICE, Verilog-XL, etc.)
— Automatic Placement and Routing (APR)
— Logic Synthesis (e.g., Design Compiler)
— Formal Verification
— Test Pattern Generation

It is EDA that
pushes the IC design technology forward !

Chang, Huang, Li, Lin, Liu chl-71

Latest Design Automation — by Synopsys

¢ 10M Gate Routing in Under ¥2 Hour
e Complete Physical Verification Solution Through 45nm

¢ Design Compiler® Graphical: Congestion Prediction and Removal
During Synthesis

¢ Get to Market Early with SystemC™ TLM Virtual Platforms
e Hot Topics in Test: Power- and Timing-Aware DFT
¢ Low Power Verification

¢ Matching Moore's Law, PrimeTime® Performance, Capacity and
QoR

¢ Mixed-Signal Circuit Design and Verification with Discovery™-AMS
and Synopsys' Custom Environment

® Synopsys Eclypse™ Low Power Solution
e SystemVerilog Verification Solution with VCS®

¢ Transistor-Level Design Analysis and Sign-Off Using Star-RCXT®,
HSIM™ and HSPICE®

Chang, Huang, Li, Lin, Liu ch1-72
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CAD Related Conferences/Journals

¢ Important Conferences:

ACM/IEEE Design Automation Conference (DAC)
IEEE/ACM Int'l Conference on Computer-Aided Design (ICCAD)

ACM/IEEE Asia and South Pacific Design Automation Conf. (ASP-

DAC)

ACM/IEEE Design, Automation, and Test in Europe (DATE)
IEEE Int'l Conference on Computer Design (ICCD)

IEEE Custom Integrated Circuits Conference (CICC)

IEEE Int'l Symposium on Circuits and Systems (ISCAS)
ACM Int'l Symposium on Physical Design (ISPD)

IEEE Int’'l Test Conference (ITC)

Others: VLSI Design/CAD Symposium/Taiwan

¢ Important Journals:

IEEE Transactions on Computer-Aided Design (TCAD)

ACM Transactions on Design Automation of Electronic Systems
(TODAES)

IEEE Transactions on VLSI Systems (TVLSI)
IEEE Transactions on Computers (TC)

IEE Proceedings — Circuits, Devices and Systems
IEE Proceedings — Digital Systems
INTEGRATION: The VLSI Journal

Chang, Huang, Li, Lin, Liu

chl-73
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Outline

e Complexity

e Common Problems in EDA
— Optimization Problem
— Decision Problem
— Satisfiability Problem

e General-Purpose Algorithms
— Exhaustive v.s. Branch-and-Bound
— Greedy v.s. Dynamic Programming
— Divide-and-Conquer v.s. Hierarchical
— Mathematical Programming
— Simulated Annealing
— Tabu Search

— Genetic Algorithm

Chang, Huang, Li, Lin, Liu ch2-3

O: Upper Bounding Function

¢ Def: f(n)= O(g(n)) if 3 ¢ >0 and n, > 0 such that 0 < f(n)
<cg(n) for all n > n,,.

— Examples: 2n?+ 3n = O(n?), 2n?= O(n3), 3n log n = O(n?)

e Intuition: f(n) “<” g(n) when we ignore constant
multiples and small values of n.

3
c gln)

flw)

IH

Hg Sny=0(g(n))

Chang, Huang, Li, Lin, Liu ch2-4




Big-O Notation

¢ How to show O (Big-Oh) relationships?
_ f(n) = O(g(n)) iff lim, _, , TV = ¢ for some ¢ > 0.
n
¢ “An algorithm has worst-case running time O(f(n)):

there is a constant ¢ such that (s.t.) for big enough
value n, the execution on an input of size n takes at

most cf(n) time.
3

€ gln)

Jln)

o fo)=0tgn)

Chang, Huang, LI, Lin, Liu

ch2-5

Computational Complexity

e Computational complexity:
— an abstract measure of the time and space necessary to
execute an algorithm as a function of its “input size”.
® Input size examples:
— (1) sort n words of bounded length = n
— (2) the input is a graph G(V, E) = |V| and |E|
¢ Time complexity

— is expressed in elementary computational steps (e.g., an
addition, multiplication, pointer indirection).

e Space Complexity
— is expressed in memory locations (e.g. bits, bytes, words).

ch2-6

Chang, Huang, Li, Lin, Liu




Asymptotic Functions

¢ Polynomial-time complexity:
— O(nk), where n is the input size and k is a constant.
e Example polynomial functions:
— 999: constant
— log n: logarithmic (sub-linear)
— n:linear
— nlog n: log-linear
— n2 quadratic
— n3: cubic
e Example non-polynomial functions
— 2", 3": exponential
— n!: factorial

Chang, Huang, Li, Lin, Liu ch2-7

Optimization Problems

¢ Optimization problems:

— Those finding a legal configuration such that its
cost is minimum (or maximum).

® An instance a = (F, c) where

— (1) Feasible solution space: F
= Fis also referred to as search space

— (2) Cost function: c: F= R
= Assigning a cost value to each feasible solution

e Example
— Minimum Spanning Tree (MST)

— Given a graph G=(V, E), find the cost of a
minimum spanning tree of G.

Chang, Huang, Li, Lin, Liu ch2-8




The Traveling Salesman Problem (TSP)

e Problem Definition of TSP:
— Given a set of cities and the distance between each pair of cities.

— Find the distance of a “minimum tour” both starting and ending
at a given city and visiting every city exactly once.

€ G Cy ¢y & C3 ¢y 6 €3

€4

Euclidean
Space e e
Cs
——
(©)
Graph
Space

[ (=) ch2-9

Decision Problem

¢ Decision problems:
— problem with “yes” or “no” answer
e Examples:
— (1) MST: Given a graph G=(V, E) and a bound K, is there a
spanning tree with a cost at most K?

— (2) TSP: Given a set of cities, distance between each pair of
cities, and a bound B, is there a route that starts and ends
at a given city, visits every city exactly once, and has total

distance at most B?
« A decision problem /7= (F, c, k) no / yes
— Solution Space Yg : 'n
= Theinput sub-space for which the answer is “yes”
— Solution Checking: (deciding if an input pointis in Yp)

= Checking whether the cost of a solution point, f € F, is less
than k.

® Could apply binary search on decision problems to
obtain solutions for optimization problems.

* NP-completeness is associated with decision
problems.

Chang, Huang, Li, Lin, Liu ch2-10




Boolean Satisfiability Problem (SAT)

e Given

— n binary variables {xy, X5, ..., X}

— A Boolean expression in Product-of-Sum (POS) form
e Boolean Satisfiability Problem

— Is adecision problem

— Decides if there is a variable assignment such that every
term evaluates to true?

e Example: (x1 + x3 + x4)(x1 + x2 + x5)(x3 + x4 + x5)

A Term or Clause

Chang, Huang, Li, Lin, Liu ch2-11

The Circuit-Satisfiability Problem (Circuit-SAT)

¢ The Circuit-Satisfiability Problem (Circuit-SAT):
— Instance: A combinational circuit C composed of AND, OR, and
NOT gates.

— Question: Is there a set of input values (called input pattern or
input vector) that makes the output of Cto 1?

e A circuit is satisfiable

— if there exists an input pattern that makes the output of the
circuit to be 1.

— Circuit (a) is satisfiable since <x,, X,, X3> =<1, 1, 0> makes the
output to be 1, while circuit (b) is not satisfiable.

X

(a) satisfiable circuit (b) unsatisfiable circuit

Chang, Huang, Li, Lin, Liu ch2-12




Discussion Flow On Problem Complexity

NP: Non-deterministic Polynomial

Concept

P & NP Class P Class NP of .

Problems Problems
NP-Complete

Concept

Reduction TSP vs. HC Oof
Reduction

al NP-Hard Algorithms for
NP-hard ass Nr-nar NP-Hard

Problems Steiner Tree

Problems

Chang, Huang, Li, Lin, Liu ch2-13

Complexity of Class-P Problems

e The Class-P problems
— Are problems that can be solved in polynomial time in
terms of input size
— Problems in Class-P are considered tractable.
e Computational Model: deterministic Turing machine
— (1) A Turing machine is a mathematical model of a
generic computer (any computation that needs
polynomial time on a Turing machine can also be
performed in polynomial time on any other machine).

— (2) “Deterministic” means that each computational step is
predictable.
e Example:
— Minimum Spanning Tree Problem is a class-P problem.

Chang, Huang, Li, Lin, Liu ch2-14




Complexity Class-NP

e Suppose that solution checking for a given problem can
be done in polynomial time on a deterministic machine
= Then, the problem can be solved in polynomial time
on a nondeterministic Turing machine.

— Nondeterministic: in some sense the machine is able to
evaluate all possibilities in parallel.

® The class-NP (Nondeterministic Polynomial):

— (1) Is aclass of problems that can be verified in polynomial
time in the size of input.

— (2) NP is also a class of problems that can be solved in
polynomial time on a nondeterministic machine.

® IsTSP € NP?

— Need to check a solution in polynomial time.
= Guess atour.
= Check if the tour visits every city exactly once.
= Check if the tour returns to the start.
» Check if the total distance < B.
— All can be done in O(n) time, so TSP € NP.

ch2-15

Chang, Huang, Li, Lin, Liu

NP-Completeness

e An issue which is still unsettled:
P < NP or P =NP?
e There is a strong belief that P # NP, due to the
existence of NP-complete problems.
e The class NP-complete (NPC):
— Developed by S. Cook and R. Karp in early 1970.
— All problems in NPC have the same degree of difficulty:

Any NPC problem can be solved in polynomial time = all
problems in NP can be solved in polynomial time.

NP if P=NP

most likely
case

ch2-16

Chang, Huang, Li, Lin, Liu




Reduction

e Given
— Two decision problems, L, and L,

¢ Reduction
— (1) Is amapping function between the input spaces of L, and L,
— (2) The final yes/no answers are retained

o A : Algorithm for Ly
N " p 71 fw e 1| xe L] o
T_p:" i | p——
§ | T dpm,
= Ly <p I
Chang, Huang, Li, Lin, Liu ch2-17

Polynomial-Time Reduction
* Motivation:

— LetL,and L, betwo decision problems. Suppose algorithm A,
can solve L,. Can we use A, to solve L,?

® Polynomial-time reduction f
— fromL,toLy L, Sp L,
— freduces an input for L, into an input for L, s.t. the reduced input is a
“yes” input for L, iff the original input is a “yes” input for L;.
= L, < L, if 3 polynomial-time computable function f: {0, 1}'— {0, 1}
s.t.x e Ly iff f(x) e Ly, V x € {0, 1}.

» L,is at least as hard as L,.

— fis computable in polynomial time.

o '—“_f‘-{:]-ﬂ. Az Algorithm for L
™ = _x { ) |:f(x)€ Ly | x € L7 (yesna)
- P o B2, oo s on 4
- Ly Sp )

Chang, Huang, Li, Lin, Liu ch2-18




Example: Polynomial-time Reduction

¢ The Hamiltonian Circuit Problem (HC)
— Instance: an undirected graph G = (V, E).
— Question: is there a cycle in G that includes every vertex exactly
once?
e TSP (The Decision-version Traveling Salesman Problem)
¢ How to show HC <, TSP?
1 Define a function f mapping any HC instance into a TSP instance,
and show that f can be computed in polynomial time.
2. Prove that G has an HC iff the reduced instance has a TSP tour
with distance < B (x € HC < f(x) € TSP)

Hamiltonian nonhamiltonian ch2-19
HC <, TSP: Step 1
1. Define areduction function f for HC <, TSP.
— Given an arbitrary HC instance G = (V, E) with n vertices
e Create a set of n cities labeled with names in V.
* Assign distance between u and v
1, if(u,v) eF
d{u,v) = - ? !
(u, v) {2, if (u,v) € F.
e Set bound B =n.
— f can be computed in O(V?) time.
HC instance TSP instance
2
HC: <«1,5,2,3,4, 1> tour <1, 5, 2, 3, 4, 1> with
distance bound B=5
ch2-20

Chang, Huang, Li, Lin, Liu
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HC <, TSP: Step 2

2. G has an HC iff the reduced instance has a TSP with distance < B.
- XeHC =f(x) e TSP.

~ Supposethe HCis h =<v,, v,, ..., v,, V;>. Then, h is also a tour
in the transformed TSP instance.

— Thedistance of the tour his n = B since there are n consecutive
edges in E, each having distance 1 in f(x).

— Thus, f(x) € TSP (f(x) has a TSP tour with distance <B.

HC instance TSP instance

HC: «1,5,2.3.4, I> tour <1, 5.2, 3,4, 1> with
distance bound B = 5

ch2-21

Chang, Huang, Li, Lin, Liu

HC <, TSP: Step 2 (cont’d)

2. G has an HC iff the reduced instance has a TSP with
distance < B.
~ f(x) e TSP = x € HC.
— Suppose thereis a TSP tour with distance <n =B. Let it
be <v,, vy, ..., v, V>
— Since distance of the tour < n and there are n edges in the
TSP tour, the tour contains only edges in E.

— Thus, <v,, V,, ..., V,, V;>is a Hamiltonian cycle (x € HC).

HC instance TSP instance

HC: <«1,5,2, 3.4, 1> tour <1, 5,2.3.4, 1> with
distance bound B = 5
ch2-22

Chang, Huang, Li, Lin, Liu
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Summary of Proving NP-Completeness

e Five steps for proving that L is NP-complete:
1. ProvelL e NP.
2. Select a known NP-complete problem L.
3. Construct areduction f that can transform any
arbitrary instance of L' to an instance of L.
4. Prove that f is a polynomial-time transformation
5. Provethat x e L"iff f(x) e L for all x € {0, 1}".
¢ We have shown that TSP is NP-complete, since HC is
a proven NP-complete problem

A known f A problem L

NP-complete I:> to be proved

problem L’ reduce NP-complete

Hamiltonian Circuit problem TSP problem
Chang, Huang, Li, Lin, Liu ch2-23

NP-Completeness and NP-Hardness

® L is NP-complete if
— NP-Hard: L* <, L for every L' e NPC.
— LeNP

e NP-hard: If L satisfies the 15t property, but not
necessarily the 2"d property, we say that L is NP-hard.

Chang, Huang, Li, Lin, Liu ch2-24
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NP-Hard Problems

NP-hard is at least as hard as NPC
(1) For some problem that we don’t know if it is NP
(2) Optimization version of certain NPC-class

NP-hard Beyond NP

-B f NP
Space Upper-Bound o

4

NP-complete

Space

Upper-Bound of P

P Space

Chang, Huang, Li, Lin, Liu ch2-25

Coping with NP-hard problems

e Approximate algorithms
— The solution found is guaranteed to be a fixed percentage
away from the optimum.
— E.g., MST for the minimum Steiner tree problem.
¢ Pseudo-polynomial time algorithms
— Has the form of a polynomial function for the complexity,
but not in terms of the problem size.
¢ Restriction
— Work on some subset of the original problem.
— E.g.,the longest path problem in Directed Acyclic Graphs
(DAG).
¢ Exhaustive search/Branch and bound
— Is feasible only when the problem size is small.
e Local search:
— Simulated annealing (hill climbing), genetic algorithms, etc.
¢ Heuristics: No guarantee of performance.

Chang, Huang, Li, Lin, Liu ch2-26
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Spanning Tree v.s. Steiner Tree

e Manhattan distance:

— If two points (nodes) are located at coordinates (X, y;) and (X5, Y,),
the Manhattan distance between them is given by d, = [X;-X,| + |Y1-Yl-

¢ Rectilinear spanning tree:
— aspanning tree connected with Manhattan paths (Fig. (b) below).
e Steiner tree:

— atree that connects its nodes, and additional points (Steiner points)
are permitted to be used for the connections.

Steiner

. - / points
S gE R =21
H++H

HHHHH  HHH

@ & ©

Chang, Huang, Li, Lin, Liu ch2-27

Complexities of Spanning and Steiner Trees

e The minimum rectilinear spanning tree problemisin P
* The minimum rectilinear Steiner tree (Fig. (c)) problem is NP-
complete.
— The spanning tree algorithm can be an approximation for the
Steiner tree problem (at most 50% away from the optimum).

Steiner

. -— / points
SNE /f
H+HHH

HHHHH HHH

(@ (b ©

Chang, Huang, Li, Lin, Liu ch2-28
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Outline

e Complexity

e Common Problems in EDA
— Optimization Problem
— Decision Problem
— Satisfiability Problem

‘ e General-Purpose Algorithms

— Exhaustive v.s. Branch-and-Bound
— Greedy v.s. Dynamic Programming
— Divide-and-Conquer (Hierarchical)
— Mathematical Programming
— Simulated Annealing
— Tabu Search
— Genetic Algorithm

Chang, Huang, Li, Lin, Liu ch2-29

Search Paradigms

¢ Exhaustive search: Search the entire input space.
¢ Branch and bound: A search technique with pruning.
e Greedy method: Pick a locally optimal solution at each step.

e Dynamic programming: Partition a problem into a collection of sub-
problems, the sub-problems are solved first, and then the original
problem is solved by combining the solutions. (Applicable when the
sub-problems are NOT independent).

e Hierarchical approach: Divide-and-conquer.

e Mathematical programming: A system of optimizing an objective
function under constraints.

e Simulated annealing: An adaptive, iterative, non-deterministic
algorithm that allows “uphill” moves to escape from local optima.

e Tabu search: Similar to simulated annealing, but does not decrease
the chance of “uphill” moves throughout the search.

e Genetic algorithm: A population of solutions is stored and allowed
to evolve through successive generations via mutation, crossover,

etc. e X

Chang, Huang, Li, Lin, Liu ch2-30
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Exhaustive Search v.s. Branch and Bound

Graph for TSP Problem

Q Backtracking / Exhaustive search
fi= 6
£r= ® (B (F)
£ = () () (D) (£} & © O @
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Chang, Huang, Li, Lin, Liu ch2-31

Branch-and-Bound Search

Graph for TSP Problem

Branch-And-Bound Search

Early
Termination

v

Tour length Estimate =
Best-so-far result as (length-so-far + MST of remaining nodes)

the bounding condition MST: minimum spanning tree

Chang, Huang, Li, Lin, Liu ch2-32
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Dynamic Programming (DP) v.s. Divide-and-Conquer

e Both solve problems by combining the solutions of sub-problems.
e Divide-and-conquer algorithms
— (1) Partition a problem into independent sub-problems
— (2) Solve the sub-problems recursively
— (3) Combine their solutions to derive the final answer
e Dynamic programming (DP)
— Defines optimal solutions in terms of optimal partial solutions
— Applicable when the sub-problems are mutually dependent
¢ Principle of Optimality
— Parts of the search space can be discarded without losing optimality
if DP is exact

OOO Construction

globally optimal

Rule .
A number of — solution
locally optimal solutions
Chang, Huang, Li, Lin, Liu ch2-33

DP-Example 1: Shortest-Path Problem

void ShortestPath( const int n, const int v) // Dijkstra’s Algorithm
[ dist[j], 0=j<n, is set to the length of the shortest path from vertex v to vertex j
/l'in a graph G with n vertex and edge lengths given by length[i][j]

for (int i=0; i<n; i++ ) { s[i] = FALSE; dist[i] = length[V][i]; } // initialize
s[v] = TRUE;
dist[v] = 0;

for (i=0; i<n-2; i++) { // problem increases incrementally
int u = choose(n); // routine ‘choose’ returns a value u such that
[ dist[u] = minimum dist[w], where s[w] = FALSE
s[u] = TRUE;
for (int w=0; w<n; w++) {
if (1s[w])
if (dist[u] + length[u][w] < dist[w] )
dist[w] = dist[u] + length[u][w];

} ERILEAE O fEEEATR n-1 18

Chang, Huang, Li, Lin, Liu ch2-34
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DP-Example 2: TSP Problem via DP

e Given

— A graph G(V, E) with edge weights w

e Sub-Problem Formulation

— Vg the starting vertex of the tour

— C(S, v): the shortest tour length (vy=Vv) passing through
intermediate vertex set S

e Construction Rule (problem size from k to k+1)

C(S,v) = rrgeip[c:(s —{m}, m) +w(m,V)]

Every vertex in S

Y, V. Can be the last vertex m

Chang, Huang, Li, Lin, Liu

ch2-35

DP-Example 2: TSP Problem Via DP (Details)

C(S,v) = rnqeiSn[C(s —{m}, m) +w(m,V)]

Problem size |S| =0

— C(¢.B)=9,C(¢, C) = o0, C(¢, D) = o, C(¢, E) =3, C(¢$, F) =5

Problem Size |S| = 1, there are 20 computation, e.g.,

_ C({B},C)=C(¢,B) +W(B,C)=9+5=14

_ C{B},F)=C(¢,B)+wW(B,F)=9+4=13

— C{F},B)=C(¢, F) +W(F,B)=5+4=9

Problem Size = 2, there are 30 computations, e.g.,

— C({B, F}, C)=min [ C({B}, F) + w(F, C), C({F}, B) + w(B, C)
=min [ 13+8, 9+5] =14

Final solution: C({B, C,D, E, F}, A) =18

Chang, Huang, Li, Lin, Liu

ch2-36
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Linear Programming (LP)

e Given :
— matrix A and vectors b, ¢

— An unknown vector x

Canonical form: Standard form:
Minimize or maximize: cTx Minimize or maximize: c™x
Subjectto: Ax = bandx = 0 Subjectto: Ax=bandx = 0

1. The two forms are interchangeably

* (interception and/or adding dummy variables)
2. Algorithms for solving LP

* Polynomial, ellipsoid

* Exponential in worst-case, simplex

* In most cases, simplex is better than ellipsoid
Chang, Huang, Li, Lin, Liu ch2-37

Integer Linear Programming

¢ INTEGER LINEAR PROGRAMMING (ILP)
— ILPis a special form of linear programming
— Each variable takes on an integer value
— ILPis very common for solving combinatorial optimization
— ILPis NP-complete
— ILP-solvers are available at public domain
¢ Applications in VLSI Design Automation
— Often takes a special form: zero-one ILP
— (1) Exact solutions for problems with small input sizes
— (2) To know how good the other heuristics are
— (3) As a source of inspiration for developing new heuristics

Interpretation

—

Any
Given
Problem

Formulation

Chang, Huang, Li, Lin, Liu ch2-38
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Example: Bin Packing

e The Bin-Packing Problem :
— Items U ={uy, u,, ..., u.}, where u; has a size denoted as s;
— A et of bins, each with a capacity denoted as b

e Goal:
— Pack all items, minimizing # of bins used. (NP-hard!)

| An edge means assignment

] = ul o ¥ =50

i 42 ul M bi
bin 42

size=4 . b2
Exp:b =6, 5=(1,4,2,1,2,3,5) ul

optimat: 3 3

3 bk

4 2 un
i i
A bipartite graph
Chang, Huang, Li, Lin, Liu ch2-39

Algorithms for Bin Packing

-
Exp:b =6 S=(1,4,2,1,2, 3,5)

sptimeal: 3 E
2
Fi i

* Greedy approximation algorithm
— First-Fit Decreasing (FFD)

e Dynamic Programming? Hierarchical Approach?
Genetic Algorithm? ...

e Mathematical Programming: Use integer linear
programming (ILP) to find a solution using |B| bins,
then search for the smallest feasible |B|.

Chang, Huang, Li, Lin, Liu ch2-40
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ILP Formulation

e Variables

— 0O-1variable x;=1 if item u; is placed in bin b;, 0 otherwise

— There are nitems, {u,, u,, ..., u,}, and the size of u; is w;

— There are |B| bins, {B,, B,, ..., B,}, each having capacity of b
e [LP Formulation

— Three types of constraints for feasible solutions

(1) 0-1 variables x; {05}

B

_ X. =1
(2) Exactly once assignment % y

ga w N P N B~ P

n
(3) Bin capacity constraint zWi Xjj <b
i=1

Chang, Huang, Li, Lin, Liu

Flow of Solving Bin Packing By ILP

Set initial value of |B|

L

Create ILP program

v Call ILP solver

Binary search for minimal |B|
Does there exist a solution?

yes no
No more
possibility Set new |B| based on Set new |B| based on
Binary Search Binary Search
End
Chang, Huang, Li, Lin, Liu ch2-42
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Simulated Annealing

¢ Inspiration

— The material’s slow cooling-down process

— (1) Initially, molecules are free to move like liquid

— (2) Gradually, they lose their energy and take a fixed position
— Also called statistical cooling

* Analogy Prob.
— Energy = cost function KT
— Molecule movement =» movement in search space
— Temperature = Control parameter T AT

A

A costincrease of amove

Cost Function Moving Strategy:
(1) Cost Down: Always Accept A
(2) Cost Up: Accept with probability @ T

Input space

Chang, Huang, Li, Lin, Liu ch2-43

Tabu Search

® Principles:

— Moves to the cheapest neighbor, even when cost increases
e Side Effect

— There will be risk of cycling
¢ Cycle Prevention

— Store the last k feasible solutions in a tabu list

— Any attempts getting into the tabu list is rejected

Chang, Huang, Li, Lin, Liu ch2-44
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Genetic Algorithms

® Principles:

— Based on analogy with evolution process in nature

— Optimization based on survival-of-the-fittest principle
* Major elements

— (1) A population of feasible solutions

— (2) Encoding of each solution, called chromosome

— (3) Crossover: to produce children (or offsprings)

— (4) Mutation (32%8): to escape from local minimum

. 1
First parent First child i i
) 0101 |001| |-01011|-110|
lllustration of | >
Crossover 10000[[110 1000000 1]
Second parent Second child
|

Chang, Huang, Li, Lin, Liu ch2-45

Concluding Remarks

* NP-Hard problems are everywhere in EDA

— Cannot be exactly solved

— However, many good heuristics still lead to good results
e When it comes to search problems ...

— Numerous paradigms exist

— Each has its own proper application domain

— Atug-of-war between space and time

Problem =» Formulation = Algorithms
A problem is half solved when it is clearly formulated.

Chang, Huang, Li, Lin, Liu ch2-46
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Logic Synthesis
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Chang, Huang, Li, Lin, Liu
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Outline

® RTL Synthesis
¢ Logic Optimization
¢ Technology Mapping

Original
Circuit

Logic
Optimization

Technology
Mapping

Circuit

Technology
Independent
Circuit

Chang, Huang, Li, Lin, Liu

Optimized

Cell-based netlist

ch3-3

RTL Synthesis Flow

HDL Code
(Verilog or VHDL)

Functional unit allocation
Interconnect binding

Translation to
3-address code

Special Element
Inference

Combinational Circuit
Generation

Initial Structure
Netlist Generation

Chang, Huang, Li, Lin, Liu

e.g.,z=Xxopy

Gate-Level
Netlist

ch3-4




Example of RTL Synthesis

RTL code 3-address L
Circuit Component
segment code
SO
x=c+d+e; t=c+d; d
if(a==b) x= e-f; q X=t+e; ‘ a —
y=X; s = (a==b); b~
if(s) x=e-f;
y=X; t — S
e /G)_ X
0 M
: ] —
1
O
Chang, Huang, Li, Lin, Liu Ch3-5

Control Data Flow Graph

e CDFG (Control/Data Flow Graph)

— Avrepresentation for the cycle behavior of an RTL code
— Nodes: operation, decision, or merge point

— Edges: signal flow
— Used to resolve the data and control dependency

—(ESERATRE R SR > FIILAGRSE
/*d1* x = a;
if(s) begin
[*d2*/ x=b;
*d3*  y=x+a; ‘

end
[*d4*l y = x;

CDFG is used to decide where the
input operands should come from. y=b or a,
depending on the value of s

Chang, Huang, Li, Lin, Liu c 3-6




[*d1*/ x=a;

if(s) begin
[*d2*/  x=b;
[*d3* y=x+a;

end
[*d4*] y = x;

Component Binding

Y1

a’ g3

d4

Chang, Huang, Li, Lin, Liu

ch3-7

Special Element Inferences

e Three special elements to be inferred
— Latch (D-type) inference
— Flip-Flop (D-type) inference
— Tri-state buffer inference

reg Q;
always@(D or en)
if(en) Q = D;

reg Q;
always@(posedge clk)

Q=D;

Latch inferred!!

Flip-flop inferred!!

Chang, Huang, Li, Lin, Liu

reg Q;

always@ (D or en)
if(en) Q = D;
else Q=1bz

Tri-state buffer
inferred!!

ch3-8




Sequential Section vs. Combinational Section

e Sequential section
— “Always statement” triggered by clock edges
e Combinational section

— All signals whose values are used in the “always statement”
are included in the sensitivity list

reg Q; reg Q;

always@(posedge clk) always@(in or en)
Q=D; if(en) Q=in;
Sequential section Combinational section

Conduct flip-flop inference Conduct latch inference

(in dangling if-the-else)

ch3-9

Chang, Huang, Li, Lin, Liu

Outline

* RTL Synthesis
mm) ° Logic Optimization
— Two-Level Logic Minimization
— Multi-Level Logic Minimization

¢ Technology Mapping

What can we do beyond Karnaugh Map [1953]
and Quine-McCluskey [1956] ?

ch3-10

Chang, Huang, Li, Lin, Liu




Prime Implicant

Review: implicant and prime implicant

ab

cd 00 o1 11 10 prime

implicant

00 1 ‘(Ai\l (?[\ ac'
B 4
a'b'c'd’
ab'c’
o kL)

11 1 | (prime implicant)
a'b'c >

10 L\\l/ 1)
F

a'cd’ (prime implicant)

abc'

Chang, Huang, Li, Lin, Liu

ch3-11

Essential Prime Implicant

e Essential Minterm
— Is aminterm covered by only one prime implicant
¢ Essential Prime Implicant

— lIs aprime implicant that contains at least one essential minterms

Essential minterm

r@— 1
\1 |[1)
/L / I
Essential minterm 1 1 I 1 | — Essential minterm

A

Chang, Huang, Li, Lin, Liu

ch3-12




Classical Logic Minimization

e Theorem:[Quine, McCluskey]

There exists a minimum cover for F that is prime

— We only need to look at just primes (to reduce the search space)

e Classical methods: using a two-step process
1. Generate all prime implicants
2. Find a minimum cover (covering problem)

- A cover is a set of primes that covers every on-set minterm

Prime implicant generation

Covering problem

Chang, Huang, Li, Lin, Liu Ch3-13
Primary Implicant Generation (1/4)
Implication Table
Column |
zero “1” —— 0000 O
16160 4 &
one“1” Q . ab OO 01 11 10
1000: 8
Teoornnneed : 00 X 0 0 0
0101} 5
: 1 1 1
0110} 6 01 X
two “1” :
1001§ 9 11 0 1 X 0
1010:10
10| 1 1] x 1
three “1” SOlllé ! !
110113 7 on-set minterms
4 don’t-care minterms
four“1” — 11111 15

Chang, Huang, Li, Lin, Liu

ch3-14




Primary Implicant Generation (2/4)

P N N W

Implication Table
Column | Column |11
lOOOO | 0-00
-000
SR
0100 |
1000 | 010-
01-0
0101 | 100-
0110 | 10-0
1001 |
101 1-1
010 | (0]
-101
0111 | 011-
1101 | 1-01
1111 | -111
11-1

Chang, Huang, Li, Lin, Liu

ch3-15

Primary Implicant Generation (3/4)

A * means prime implicants
(since it was not further

Implication Table
Column | Column Il | Column Il
|oooo | |O—OO * 01-- *
-000 *
SR
0100 | -1-1 >
1000 | 010- |
01-0 |
0101 | 100- *
0110 | (j10-0 * merged with any others)
1001 |
101 1-1
010 | (0] |
-101 |
S
0111 | 011- |
1101 | 1-01 *
1111 | )| -111 |
11-1 |

Chang, Huang, Li, Lin, Liu

ch3-16




Primary Implicant Generation (4/4)

There are seven prime implicants in this case

ab

a
cd 00 o1 11 10
00 Q(] 1 0 C\L Prime Implicants:
0-00 = a'c'd’
‘ 100- = ab'c’
ol 0 F &1 1 1-01 = ac'd
= -1-1 = bd
11 0 % X 0 -000 = b'c'd’
c 10-0 = ab'd
01-- = ab
10 0 1 0 1
1 (1)
L]

Chang, Huang, Li, Lin, Liu

ch3-17

Column Covering (1/4)

Prime implicants

Seven on-set elements
5 6 8 9 10

13

0,4 (0-00)
0,8 (-000)
8,9 (100-)

8,10 (10-0)
9,13 (1-01)
4,5,6,7 (01- -)

5,7,13,15 (-1-1)

Note: minterms 0, 7, 11, 15
are don’t-care terms
are thus not shown in the table.

X
X

X X

X

rows = prime implicants
columns = ON-set elements

place an "X" if ON-set element
is covered by the prime implicant

Chang, Huang, Li, Lin, Liu

ch3-18




Column Covering — Row Reduction (2/4)

Seven on-set elements
Prime implicants 4 5 6 8 9 10 13

0,4 (0-00) X

0,8 (-000)

X X

8,9 (100-)

8,10 (10-0)

9,13 (1-01) X X

4,5,6,7 (01--)

5,7,13,15 (-1-1) x x

X
%

X

AV
- ]

If column has a single X, then the
implicant associated with the row

is essential. It must appear in
minimum cover

Chang, Huang, Li, Lin, Liu

ch3-19

Column Covering — Column Reduction (3/4)

On-set elements

Prime implicants 4 5 6778 9 10 13

0,4 (0-00) x
0.8 (-000)
05 1001 ®
8,10 (10-0) | I B 5¢)
9,13 (1-01) 69 ®

G 4567015 [ %% 3¢

5,7,13,15 (-1-1) )F ®

Eliminate all columns covered by
essential primes

Chang, Huang, Li, Lin, Liu

ch3-20
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Column Covering — Min. Cover (4/4)

On-set elements

Prime implicants 4 5 6 8 9 10 13

0,4 (0-00) )k

0,8 (-000)
8,9 (100-) I GD

Chang, Huang, Li, Lin, Liu

8,10 (10-0) (5¢) | ab'd’
[ x x | acd
4,5,6,7 (01- -) XX | a’b
5,7,13,15 (-1-1) + @
Find minimum set of rows that
cover the remaining columns
f=ab'd'+ ac'd + a'b
Chang, Huang, Li, Lin, Liu Ch3-21
Petrick’s Method
* Solve the Satisfiability problem of the following function
P = (P1+P6)(P6+P7)P6(P2+P3+P4)(P3+P5)P4(P5+P7)=1
« Each clause represents a corresponding column
* Each column must be chosen at least once
¢ All columns must be covered
4 5 6 8 9 10 13
P1 0,4 (0-00) X
p2 0,8 (-000)
P3 8,9 (100-) X X
(prime implicants) P4 w0000 x X
P5 9,13 (1-01) X X
P6 456701-0 | X X X
P7 s713.15¢10) X X
ch3-22

11



Brute Force Technique

¢ Brute force technique: Consider all possible elements

/\
e e
N

e Complete tree has 2IPl leaves!!
— Need to prune it

e Complexity reduction
— Essential primes can be included right away
= If thereis arow with a singleton “1” for the column
— Keep track of best solution seen so far
= Classical branch and bound

ch3-23

Chang, Huang, Li, Lin, Liu

Heuristic Optimization

¢ Generation of all prime implicants is impractical

¢ Finding an exact minimum cover is NP-hard
— Cannot be finished in polynomial time

e Expansion-Based Heuristic:
— Avoid generation of all prime implicants

e Procedure

— (Step 1): An on-set minterm is selected, and expanded until it
becomes a prime implicant

— (Step 2): The prime implicant is included in the final cover,
and all minterms covered by this prime implicant are
removed

— (Step 3): Iterate until all minterms of the ON(f) are covered

e “ESPRESSO” developed by UC Berkeley
— The kernel of synthesis tools

ch3-24

Chang, Huang, Li, Lin, Liu
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Outline

¢ RTL Synthesis
e Logic Optimization
— Two-Level Logic Minimization
‘ — Multi-Level Logic Minimization

e Technology Mapping

Chang, Huang, Li, Lin, Liu Ch3-25
Multi-Level v.s. Two-Level
* Two-level: e Multi-level:
— Often used in control — Datapath or control
f1 = XX + Xy Xg + XX, — Can share x, + x5 between the
f) = Xy X, + X' X3 + X1X,4 two expressions
— Only x;x, shared — Can use complex gates
— Sharing restricted to g; =X+ X3 Common
common cube 0, = X1X4 sub-functions
fi=x10,+09,
f,=x,0,+0;
A EEFE common sub-functions BEHERRAN [HRSFE]
ch3-26

Chang, Huang, Li, Lin, Liu
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Minimization via Division

e Goal:

— Reduce the no. of literals in a given Boolean formula
e Two problems:

— (1) Find good common sub-functions !

— (2) How to perform division ?

(Minimization Via Division)
F: a Boolean function in SOP form
P: a good sub-function (kernel)

Example:
F:PQ+r F=ac+ad+bc+bd+e
/ \ F = (a+b)(c+d) + e
Literal count: 9 =» 5
Quotient Remainder
function function

ch3-27

Chang, Huang, Li, Lin, Liu

Terminology: Primary Divisors

® Cube-Free Expression

— An expression is cube-free if no cube divides the
expression

— E.g.,ab +cis cube-free

— E.g.,ab+ac=a(b +c) is not cube-free

— A cube-free expression must have more than one cube

— E.g., abc is not cube-free
¢ Primary Divisors

— The set of primary divisors of an expression fis defined as:
D(f) ={f/c | c is a cube}
— We are more interested in finding cube-free divisors

ch3-28

Chang, Huang, Li, Lin, Liu
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Terminology: Kernels and Co-Kernels

e Kernel

— The set of kernels of an expression f is defined as cube-free
primary divisors, l.e.,

K(f) ={g | ge D(f) and g is cube-free}
e Co-kernel
— The cubes used to obtain the kernels are co-kernels, C(f)

f=K(@f)+ C(f)+r

/N

Kernel: Co-Kernels:
Cube-free primary divisor f/c Cube c

ch3-29

Chang, Huang, Li, Lin, Liu

Example: Factorization by Kernels

e Example:
f = X XoX5 + XXX, + X3'X, =@ 8 literals
K ={X1Xg+ X1X4 + X5', X3 + X4}
— X,is the co-kernel for kernel (X;X3 + XX, + X3)
— X;X,is the co-kernel for kernel x5 + X,

e Kernels can be used to factorize an expression

f= (X3 +X)(X1Xp) + X3'X5 = Xp(X1 (X3 + X4) + X3')
= 5 literals

e For multiple-function minimization
— ltis key to find common divisors between expressions

ch3-30

Chang, Huang, Li, Lin, Liu
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Find Out All Kernels (1/2)

abcd + abce + adfg + aefg + adbe + acdef + beg

| (27 literals)
a b
b c d e| f ¢ ld le @
le [a Je o e fe [¢ | ¢ @ (a) ac+d+g
d+e c+#d b+ef  b+df b+cf ce+g cd+g d;e
® cre
=abc (d+e) + afg(d+e) + (adbe + acdef + beg)
= (abc+afg)(d+e) + (adbe + acdef + beq)
= a(bc+fg)(d+e) + [ade(b + cf) + beg] (16 literals)
Chang, Huang, Li, Lin, Liu Ch3-31
Find Out All Kernels (2/2)
co-kernel kernel
1 a((bc + fg)(d + e) + de(b + cf))) + beg
a (bc + fg)(d + e) + de(b + cf)
ab c(d + e) + de
abc d+e
ac b(d + e) + def
acd b + ef
bc ad + ae
They can be obtained in n? time
where n is number of cubes in this expression.
ch3-32

Chang, Huang, Li, Lin, Liu
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e Theorem (Brayton & McMullen):

Common Divisor

f and g have a multiple-cube common divisor if and only if the

intersection of a kernel of f and a kernel of g has more than

one cube

f1 = X3 (XoX5 + X5'Xg) + X5
f2= X1 (XoXg+ X5'X5) + X4
K(f1) = {XoX5 + X3'X4,
X1(XoX3 + X5'Xy) + Xs}
K(f2) = {X2X3+ X5'Xs,
X1(XoX5 + X5'Xs) + X}

Ky Ky = {XoXg, XXX}

— f, and f, have no multiple-
cube common divisor

f1 = XX, + XgX, + Xg

f, = X X, + X5'X, + Xg

K(fy) = { X5 + X3X4 + X}
K(f2) = { X153 + X5'X4 + X5}
Kin Ky ={X;X; + Xs}

— f, and f, have multiple-
cube common divisor

Chang, Huang, Li, Lin, Liu

ch3-33

Cube-Literal Matrix

e Cube-literal matrix

f = X1 XoX3X4X7 + X XoX3X 4 Xg + XXX X5 + X1 XXX g + X1 XoXg

Literals
X1 Xo Xz Xqa Xs Xe X7 Xg Xog
X1 XoX3XaX7 |1 1 1 1 (@) (@) 1 (@) (@)
X1 XoX3XaXg |1 1 1 1 (@) (@) (@) 1 (@)
Cubes X1Xo>Xz3Xs 1 1 1 (0] 1 (0] (0] (0] (0]
X1 X2X3Xe 1 1 1 (@) (@) 1 (@) (@) (@)
X1X2Xg 1 1 (0] (0) (0] (0] (0] (0] 1

Chang, Huang, Li, Lin, Liu

ch3-34
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Cube-Literal Matrix & Rectangles

* A Rectangle (R, C) of a matrix A
— Ris asubset of rows, and C is a subset of columns, such that
A;j=1,forallieR,jeC
— Rows and columns need not be continuous
e A Prime Rectangle
— lIs arectangle not contained in any other rectangle
— A prime rectangle indicates a co-kernel kernel pair

Rectangle = {R, C} ={{1, 2, 3, 4},{1, 2, 3}}
= co-kernel: x;X,X5 , kernel: X,x; + X,Xg + X5 + Xg

X1 X X3 xXq X5 X6 X7 X8 Xo
X1XoXzXaX7 |1 1 1 a1 (@) () 1 o o
X1 XoX3zXgyXg 1 1 1 1 (@] (@] (@] 1 (0]
Cubes . xoxsxs 1 1 1 o 1 o o o o
X1 XoX3z3Xe a1 1 1 (0] (0] a1 (0] (0] (0]
X1X2Xo 1 1 o o o o o o 1
Chang, Huang, Li, Lin, Liu Ch3-35
Prime Rectangles and Logic Synthesis
e Given functions
—ab bd (Co-kernels)
(Z:aa_b(]f+a e X =ab,Y =bd
B g (Minimized Functions)
H="bd + ef i
* Prime Rectangles ‘ F=Xc+XY+eg
({1,2,4},{1,2}) » c, = ab G = Xig
({2,5}.{2,4}) ¥ c, = bd H=Y +ef
a b Cc d e b (]
1 2 3 a4 5 6 7
abc 1 ([ @ 12 o o o o
abd > o @ o o o
eg 3|lo ©of o o, 12 o a1
abfg a @ o ol o 1 1
bd 5 o (1 o @ o o o
ef 6 O O O o a2 1 o
ch3-36

Chang, Huang, Li, Lin, Liu
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Outline

* RTL Synthesis
¢ Logic Optimization
mm) o Technology Mapping

ch3-37

Chang, Huang, Li, Lin, Liu

Technology Mapping

e General approach:
— Choose a set of base functions for canonical representation
= EX: 2-input NAND and Inverter
— Represent optimized Boolean network using base functions
= Subject graph (for entire Boolean network)
— Represent each library cell using base functions
= One Pattern graph for one library cell
— Each pattern is associated with a cost which is dependent
on the optimization criteria
® Goal:

— Finding a minimum-cost cover for a subject graph (l.e., a
Boolean network) using pattern graphs (l.e., cells)

ch3-38

Chang, Huang, Li, Lin, Liu
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Example Pattern Graph (1/3)

inv (1)

nor2 (2)
nand2 (1)
nand3 (3) nor3 (3)

I

nand4 (4) nor4 (4)

N

Chang, Huang, Li, Lin, Liu ch3-39
Example Pattern Graph (2/3)
nand4 (4) nor4 (4)
a0i21 (3) 0ai2l (3)
a0i22 (4) 0ai22 (4)
ch3-40

Chang, Huang, Li, Lin, Liu
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Example Pattern Graph (3/3)

and2 (3) or2 (3)
Do Betns
xor (5) xnor (5)

=0

Chang, Huang, Li, Lin, Liu

ch3-41

Example Subject Graph

tl=d+e;
t2=b+h;
t3=at2+c;
t4=t1t3+fgh;
F=t4;

O VDT oD QW=
YYY Y

Chang, Huang, Li, Lin, Liu

ch3-42

21



Sample Covers (1/2)

Chang, Huang, Li, Lin, Liu

AND2
f o I
° e OR2 AOI22
d o
e D { F
h o OR2
b D NAND2
a o
C D _
SAND? Area =18
INV
Chang, Huang, Li, Lin, Liu ch3-43
Sample Covers (2/2)
NAND3
f o \
4o AND2
d o
e D F
h o OR2
b D NAND2
a OAI21
D
C D _
SAND? Area =15
INV
ch3-44
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DAGON Approach

e Partition a subject graph into trees
— Cut the graph at all multiple fanout points

e Optimally cover each tree using dynamic programming approach
® Piece the tree-covers into a cover for the subject graph

ch3-45

Chang, Huang, Li, Lin, Liu

Dynamic Programming for Minimum Area

® Principle of optimality:
— Optimal cover for the tree consists of a match at the root

plus the optimal cover for the sub-tree starting at each
input of the match

A(root) = m + A(ly) + A(ly) +A(l3) + A(ly)
costofaleaf =0

ch3-46

Chang, Huang, Li, Lin, Liu
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A Library Example

NV 2 o o o

NAND2 3 - (@b =D

NAND3 4 Ty (aboy %
NAND4 5 =

(abedy %MD—

AOI21L 4 :% (ab+c)’ g
AOI22 5 %D’ (ab+cd)’ g

Library Element Canonical Form

ch3-47

Chang, Huang, Li, Lin, Liu

DAGON in Action — Forward Pass (1)

NAND2(3)

1. Forward pass: find locally optimal solutions at each node
2. Backward pass: choose the globally optimal solution

NAND2(21)
INV(S) NAND2(16) 3

AOI21(9) heNDaAT)

3 NAND3(18) NAND4(19)

AOI21(22)
INV(18)

NAND2(8)
NAND3(4)

ch3-48

Chang, Huang, Li, Lin, Liu
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DAGON in Action — Forward Pass (2)

NAND2(3)

V)

NN/(2)

3 1. Forward pass: find locally optimal solutions at each node
2. Backward pass: choose the globally optimal solution

NAND2(21)
INV(15) NAND2(16) NAND3(17)
AOI21(9) NAND3(18) NANDA4(19)

NAND2(8)

AOI21 (cost=4)

AOI21(22)

D2(3T

INV(5) NAND2(8) INV(18)

NAND3(4)

ch3-49

Chang, Huang, Li, Lin, Liu

DAGON in Action — Forward Pass (3)

NAND2(3)

1. Forward pass: find locally optimal solutions at each node
2. Backward pass: choose the globally optimal solution

NAND2(16)
AOIZ1(9) NAND3(17)

17

NAND2(8) NAND2(13)

INV(18)

NAND3(4)

ch3-50

Chang, Huang, Li, Lin, Liu
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DAGON in Action — Backward Pass (1)

NAND2(3)

NAND2(3)

1. Forward pass: find locally optimal solutions at each node
2. Backward pass: choose the globally optimal solution

NAND2(16)
AOI21(9) NAND3S)

NAND2(8)

NAND2(13)

INV(18)

NAND3(4)

MDA
NAND3(17)

17

I INAVZENY

AeSianman
INV(18) 7

Not used

Chang, Huang, Li, Lin, Liu Ch3-52

Chang, Huang, Li, Lin, Liu Ch3-51
DAGON in Action — Backward Pass (1)
NAND2(3)
3 1. Forward pass: find locally optimal solutions at each node
2. Backward pass: choose the globally optimal solution
] Not used
V(2) AOIZ1(9) NAND2(16) / NAND3(17)
NANDSCE- IR0y~
— NAND2(8) NAND2(13) 17
2
N\/(2)

26



Concluding Remarks

¢ A Milestone Design Technology
— RTL coding =» Translation & Optimization =» Done !
¢ RTL Synthesis
— Control Data Flow Graph for component binding
— Storage Element Inference
¢ Logic Synthesis
— Division-Based Factorization
— Kernel-Based Factorization
— Common Sub-Expression Extraction
e Technology Mapping
— A pattern matching problem

Being A Million-Dollar Concept,

Synthesis Quantum-Jumps The Productivity.

ch3-53

Chang, Huang, Li, Lin, Liu
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Simulation

KT %
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Chang, Huang, Li, Lin, Liu
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Outline

¢ Introduction

e Gate-level simulation
— Compiled-Code Simulation
— Event-Driven Simulation

e Switch-Level Simulation

ch4-3

Chang, Huang, Li, Lin, Liu

Simulation

¢ Simulation
— is adesign validation process for checking a circuit’s functionality, power
dissipation and/or timing
* |nputs
— (1) A design model (e.g., RTL code or gate-level netlist)
— (2) A set of input signals (stimuli, patterns, or vectors)
— (3) A pre-characterized cell models when necessary

e OQOutputs
— The waveforms of output signals

l___Design Schematic

-. .
_Logic Graphical Results
Simulator
- JSLn___ r—
—_—
O

Graphsical stimuli

= s el

- L
nn n O Models

ch4-4
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Comparison of Simulation

Efficiency HW/SW Co-Simulation

s

Instruction Set Simulation

RTL Simulation

Gate-Level Simulation

Switch-Level Simulation

Transistor-Level Simulation

Circuit Simulation

v

Accuracy Process Simulation

Chang, Huang, Li, Lin, Liu

System-C or System-Verilog

Particularly for CPU design

Cycle-based simulation
No delay

With cell-based delay models
Treat transistor as a switch
Quick SPICE simulation
SPICE simulation

For device or interconnect modeling

ch4-5

Circuit Simulation

e Circuit simulators (e.g., SPICE)
— Determine time-domain or frequency domain behaviors
— Based on Kirchoff's voltage and current law (KVL and KCL)
— Numerical methods are needed for nonlinear transistors
— Need SPICE model (either functional or table) for devices

DC Analysis

— Finds the operating point of a circuit.

AC (Small-Signal) Analysis

— Finds the frequency response of a circuit.
— A transistor is linearized at its DC point.

Transient Analysis

— Finds the time domain response for a circuit when it is

excited by certain input stimuli.

* SPICE Home Page

— http://bwrc.eecs.berkeley.edu/Classes/IcBook/SPICE/

ch4-6
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Circuit Simulation of a CMOS Inverter (0.6 um)

M1 3 2 C 0 nch W=1.2u L=0.6u AS=2.16p PS=4.8u AD=2.16p PD=4.8u
M2 3 21 1 pch W=1.8u L=0.6u AS=3.24p PS=5.4u AD=3.24p PD=b.4u
CL 3 0 C.2pF
Yoo 1 0 3.3

3
VIN 2 0 DC © PULSE {0 3.3 Cns 100ps 100ps 2.4ns bns)
.LIB ’../mod 06’ typical

.OPTION NOMOD POST INGOLD=2 NUMDGT=6 BRIEF
.DC VIN OV 3.3V C.co1v

.PRINT DC V(3)

.TRAN ©O.001IN BN

.PRINT TRAN V(2) V(3)

.END

vDD
1

wa
n
<
=)
L
-
w

Chang, Huang, Li, Lin, Liu

Cell Delay and Interconnect Delay

Stage Delay: Cell delay + Interconnect delay
Path: (PI & PO, FF>PO, FF>FF)
Path delay: sum of stage delays along a path

. Path Delay -

4

Iq_. Stage Delay — e
A il |

12
B C
DFF 4—DC i ) [oFF
Fa\ A
Efell Delay | Interconnect Delay |

ch4-8
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Setup & Hold Time

D |
Comb. DQ

logic FFs —{O outl
|_,> —{> out2

clk

Setup time is due to D-to-Q delay: violated by long-paths

a L X X X
Chang, Huang, Li, Lin, Liu Ch4-9
Delay Modeling
—> Zero-Delay
. Cell Delay > Unit-Delay
> Variable-Delay
—> Inertial-Delay
—>  Cell Delay
Path Delay |
—>  Single-RC
—>| Interconnect Delay — T-Model
— Distributed-RC
" Without inertial delay "
“q With inertial delay ‘0
Short-duration glitches will get filtered out by the inertial delay model
ch4-10
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Propagation Delay

voltage

Input Signa

voltage

0.5 vad

ch4-11
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Rise Time and Fall Time

Rise Time t,;¢.: output to rise from Vo, to Vg,
Fall Time 14,,: output to fall from Vggo, to Vg,

Ttal : : T

rise |

Vm%- ............““........I...................... : P

ch4-12
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Timing Model for A Logic Cell

e Three Factors Affecting Cell Delays
— (1) Gate size (fixed for a given cell)
— (2) Loading capacitance
— (3) Input slope
e Three PVT Corners (Process + Operation)
— (1) Worst case delay

= Using T(emperature) = 125° C, supply voltage= 90% Vdd,
and worst case SPICE model for delay characterization.
— (2) Best case delay
= Using T =0°C, supply voltage= 110% Vdd, and best case
SPICE model for delay characterization.
— (3) Typical case delay
« Using T =27° C, supply voltage= 100% Vdd, and typical
case SPICE model for delay characterization.

ch4-13

Chang, Huang, Li, Lin, Liu

Pre-characterized Timing Table

e A timing table for each cell is provided by library vendor
— To look up propagation delay, rise time, fall time
— Based on load capacitance and input slope

e For unspecified input conditions
— Interpolation or extrapolation is used

Model {delayTemplateModel
(Spline
(Input_Slew Axis 0.050 0.200 1.000 4.000 20.000)
(Load Axis 0.0446 0.892 3.568 14.275)
datal()
3

3

Delay table for cellf...

some cell in Model({icDelayRiseModel delayTemplateModel

Cadence TLF {spline

format data{(0.7210 0.8471 1.2849 3.05673)

(0.8119 0.93230 1.3758 3.1475})
(0.9975 1.1236 1.5612 3.3322)
(1.4293 1.5552 1.9922 3.7609)
(3.3955 3.5204 3.9542 5.7101})

ch4-14
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Delay Model Example

Signal propagation delays =2
No rise or fall delay

j out’ 1’
{n—1:|>—out "0’

time F4———

| L
T 1
0123456789

|
|
7
in 2’ é propagation delay model
. Tl t|1’ —\—I—
m_T,O, ou 0
time f4+——+—+—+—+—+++  time (H———4—4—+4+—-+-1-
0123456789 01234567829
rise/fall delay model
Signal propagation delays =2
Fall delay =1
Rise delay =0

ch4-15
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Interconnect Delay Models

e Single RC Model
e T Model
e Distributed RC Model

RC Model T Model

R/2 R2

R
Vin VWAV _J_ Vout Vin —/‘/‘/_-[q/‘/‘/— Vout
T c

Tpen ~ 0.69 RC 1:

Distributed RC Model (ladder network) Total of N segments

R/N R/N R/N R/N

Vio ——AW AW
'J_ C/N J_ C/N

"]
g

:

}_
g

ch4-16
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Elmore Delay Calculation

Notation: Let TC, be the total loading capacitance seen at resistor R,

Time constant of N
the delay from - Tpi = Y (Ri . TCi)
source to node i : i=0

RC tree network with multiple branches Aa 3

ch4-17

Chang, Huang, Li, Lin, Liu

Outline

¢ Introduction

- e Gate-level simulation
— Compiled-Code Simulation
— Event-Driven Simulation

e Switch-Level Simulation

ch4-18
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Compiled-Code Simulation

e Strategy of Compiled-Code Simulation
— Convert the circuit into a sub-routine for repeated evaluation
e Advantages

— Could be computationally efficient because there is no need to
process complex data structure in circuit

— Especially suitable for zero-delay or unit-delay model
e Drawback
— Cannot process complex delay model easily

H] < A;

ny < B;

ny < C;

ng < D

ns < E;

‘ ng < OR(ip, n2);
ny < AND(ny, 15);
ng < AND(ng, 13);
ng <— OR(r7, ng):

Code Generation

F < ng;
Chang, Huang, Li, Lin, Liu Ch4-19
Unit-Delay Simulation
e Assumes that all gate time —f————t——+—
0 1 2 3 4
delays equal 1. e
13
e Provides some 1:2:
information about &y
signal evolution in time, "1’
especially to detect =
glitches. g |
rr
nl n’S,O,
A fl!
B nﬁror#
c ml
De > ’ By
n5 SIOI
E &—
fl!
ngf OI \—‘
ch4-20

Chang, Huang, Li, Lin, Liu
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Compiled Code for Unit-Delay Simulation

new[l] « A;

new[2] < B;

«— C;

«— [

«— E;

<« OR(old[1], old[2]);
new[7] «— AND(cld[4], old[5]);
new[8] < AND{old[6], old[3]);
new[9] < OR(ocld[7], old[8]);
F < new[Y];

old <« new;

new[3
new[4
new[s
new[6

—_ e e e

Chang, Huang, Li, Lin, Liu

for (t < tgagrist < tapg:t <+ 1) {

ch4-21

Event-Driven Simulation

e Event-driven simulation
— is awidely-used mechanism in gate-level and switch-level

simulators.
* An event

— is achange of a signal value that may trigger new changes.

® A queue of events
— Is needed

e Basic steps: initialization
_ (1) Initialize the input stimuli !
— (2) Process one event from the queue Process one event
— (3) Put newly born events into the queue 1
— (4) Go back to step 2 until queue is empty Update the queue
ch4-22

Chang, Huang, Li, Lin, Liu
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Data Structures For Event Queue

e Potential Data Structures for Event Queue
— (1) Timing wheel
— (2) Array of linked list
— (3) Priority queue (e.g., Heap)

Timing Wheel Array of linked list

it

NN AW -

t; is current time
A'is the time step

Chang, Huang, Li, Lin, Liu

ch4-23

Signal Modeling for Gate-Level Simulation

e Binary Value Simulation
— Each gate’s output can take on a value of either ‘0’ or ‘1".
® Three-Valued Simulation
— Signal value set is {'0’, ‘1’ and ‘X'}.
— ‘X’ means “‘unknown”.
¢ Nine-Valued Simulation
— |EEE std_logic data type with 9 values.
— mixture of level and strength.
= ‘U’ (uninitialized)
= ‘X' (forcing unknown)
= ‘0’ (forcing 0); ‘1’ (forcing 1)
= ‘Z’ (high impedance)
= ‘W' (weak unknown)
= ‘L’ (weak 0), ‘H’, (weak 1)
= ‘' (don’t care).

Chang, Huang, Li, Lin, Liu

ch4-24
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Example (1/10)

mo QW »

e Assumptions
— Propagation delay for two-input OR gate is 2 ns
— Propagation delay for two-input AND gate is 3ns
— Time resolution for simulation is 1 ns (i.e., A = 1ns).

¢ Input stimuli at time O:
—A:1->0,B:020, C: 0>1, D: 00, E: 00

ch4-25

Chang, Huang, Li, Lin, Liu

Example (2/10)

e Set up the timing-wheel I(xey) A scheduled
for the changes of input nl(l-)o n3(0-)1) event which

A and C. will make

_ ~ x>y
Current time t=0 ‘ ﬁ Al%()n1 1>0 transition.
n

n—anOn— 6

n,=0, ng=0, n6— B
n,=0, ng=0, ng= C
F
D
E .—‘

n3(0—)1)

Process event n,;(1->0) at t=0 ‘ ﬁ Schedule the triggered
n,;=1-0, n,=0, ny=0, n,= “ event ng(1->0)

n;=0, ng=1, n,=0, ng=0, ng— n5(1—)0)

ch4-26

Chang, Huang, Li, Lin, Liu

13



Exam p le (3/10)

Process event n;(0>1) at t= O
n,=0, n,=0, n;=0-2>1, n,= —>n6(190)

ns=0, ng=1, n,=0, ng=0, n9

Schedule the triggered
0->1
event ng (0>1)

ny 1

nw

Advance current time ‘»
onumt/.” S0\ DS

by one resolution unit
tot=1 b e

n,=0, n,=0, ng=1, n,= ‘qpa M

ns=0, ng=1, n,=0, ng=

Chang, Huang, Li, Lin, Liu Ch4-27
Example (4/10)
Advance current ‘b
time by one ‘ ﬁ
resolution unit to
n,=0, n,=0, ny=1,
n,=0, ns=0, ng=1, \
n,=0, ng=0, nyg=0
ch4-28

Chang, Huang, Li, Lin, Liu
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Example (5/10)

Process event ng(1>0) at t=2

n,=0, n,=0, n;=1, n,=0, n;=0,

ng=1>0, n,=0, ng=0, ng=0 3«‘3
Schedule triggered event ng(1->0) \.

Chang, Huang, Li, Lin, Liu Ch4-29
Example (6/10)
Advance time to t=3
n,=0, n,=0, n;=1, n,=0,
n;=0, ng=0, n,=0, ng=0,
ng=0
Chang, Huang, Li, Lin, Liu Ch4-30
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Example (7/10)

Process event ng(0>1) at t=3

n,=0, n,=0, n;=1, n,=0, n;=0,
ng=0, n;=0, ng=0->1, ny=0

ng(o->1)|<—

Schedule event ny(0>1)

Chang, Huang, Li, Lin, Liu Ch4-31
Example (s/10)

Advance time to t=4 and then

to t=5

n,=0, n,=0, n;=1, n,=0, nz=0,

ng=0, n;=0, ng=1, ny=0

ng(o-)1)|<— ng(1>0)
Chang, Huang, Li, Lin, Liu Ch4-32
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Example (s/10)

Schedule event ny(1>0)

Process event ng(1->0) at t=5

n,=0, n,=0, n;=1, n,=0, n;=0, a»

Ng=0, N,=0, Ny=130, ng=0 9’ﬁ
NG

Chang, Huang, Li, Lin, Liu Ch4-33
Example (9/10)
Process event ng(0>1) at t=5
n,=0, n,=0, n;=1, n,=0, n;=0, a»
ng=0, n,=0, Nng=0, ng=0->1 9 ﬁ
A n Not scheduling any
triggered event
B because ngis an
C output.
7 F
D e—
E e—2
ch4-34

Chang, Huang, Li, Lin, Liu
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Example (10/10)

Advance time to t=6, t=7 and then
process event ng(1->0) at t=7

n,=0, n,=0, n;=1, n,=0, n;=0, ng=0, ﬂ ﬁ
n,=0, ng=0, ng=1->0 B a

Not scheduling any
triggered event
because ngis an
output.

e There are hazards on n8(0>1->0) and n9 (0>1->0).

« It takes 7ns to propagate the input change to the output.

ch4-35

Chang, Huang, Li, Lin, Liu

Outline

¢ Introduction

e Gate-level simulation
— Compiled-Code Simulation
— Event-Driven Simulation
mm) ¢ Switch-Level Simulation
— Circuit Partitioning
— Evaluate each channel-connected component

ch4-36

Chang, Huang, Li, Lin, Liu
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Basics of Switch-Level Simulation

* Input

— A transistor schematic

Simulation Strategy

— (1) Treating transistors as bi-directional switches
— (2) Label each transistor by its on-resistance

— (3) Label each node by (strength, value) pair

— (4) Parasitic RC can be included

e Two types of nodes

— (1) input node and (2) charged node (or storage node)
Input node

— Could be vdd, GND, strong ‘0" or ‘1’

— The strength of an input node is the maximum one
Charged node

— Is associated with a capacitance

— The strength is proportional to its capacitance

Chang, Huang, Li, Lin, Liu Ch4-37
Strength Model Example
Input node with
strength 5 ~ Vdd ° Vdd no(5) Vdd
no(5) no(5) ) g
Ao—q 3) ﬂ@) 2y Qut
(e n) e\ o[
Ao [(3)\ Ao @ na(1)
Strengthofa ___,n,(1) Strength of (1) B .—{ 3)
storage node atransistor ns(1)
Be— (0~ Be | ® o
n3(5) n3(5)
ss ss N4(5) V
ss
ch4-38

Chang, Huang, Li, Lin, Liu
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Switch-Level Simulation Techniques

e Partitioning the circuit into subcircuits that can be treated as
unidirectional components.

— Static partitioning: Connections to the gate of a transistor
determine subcircuit boundaries irrespective of the signals
carried by the nets.

— Dynamic partitioning: Known signal values in the network
are taken into account such that further partitioning of
subcircuits is possible.

e Each subcircuit is then modeled as a channel-connected
component or a switch graph (multigraph) G=(V, E), where

— Vis aset of vertices representing input or storage nodes
labeled with node (net) names and strengths.

_ Eis aset of edges representing transistors labeled with a
transistor name and strength.

ch4-39

Chang, Huang, Li, Lin, Liu

Static Versus Dynamic Partitioning

ol
-

VSS

Static partitioning Dynamic partitioning

ch4-40

Chang, Huang, Li, Lin, Liu
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e A convenient

Multi-Graph

representation for switch-

level circuits is a (‘g‘)
multigraph.

e \Vertices represent nets A
and are labeled with the 3)
net name and strength.

e Edges represent B
transistors and are 3)

labeled with a transistor

ID and strength.

Chang, Huang, Li, Lin, Liu

1’10(5)

3
n1(1)

n>(1)

1’13(5)

ch4-41

Ex:Evaluate a Channel-Connected Component

* The table below
shows how input

lema

* ®

signal changes are n2(1) 3! na(1) o
propagated to the ._{ 4)
output. o (5)
VSS !
Propagate (from - to) State of n, State of n,
“Initial state” (X', 1) (X', 1)
Ny Ny (‘1,3) (X, 1)
n,s N, [ (0, 4) (X', 1)
Nosng | (0',4) (0, 3)
) / N\

ya
Winner takes all

Logic value Strength

Chang, Huang, Li, Lin, Liu

ch4-42
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Switch-Level Timing Simulation

¢ Need delay models to account for
— Transistor on-resistance and capacitance
— Interconnect resistance and capacitance

¢ Delay Models
— Lumped RC model (overestimating delay)
— Lumped RC model + input slope (slew rate)
— Distributed RC model + input slope

ch4-43

Chang, Huang, Li, Lin, Liu

Concluding Remarks

¢ Trade-off in simulation
— Behavior-level = Cycle-accurate = Timing-accurate
e Two major types of gate-level simulation
— Compiled-code simulation
— Event-driven simulation
e Switch-Level Simulation
— Partitioning of circuits into channel-connected components
— A fight-breaking scheme in terms of strength of signals

Simulation Is Not Real, It Is Just Almost Real.

ch4-44

Chang, Huang, Li, Lin, Liu

22
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H =< 5 :Formal Verification
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Overview

Formal Verification

7

Equivalence Property Many Other
Checking Checking Applications

Ordered Reduced Binary Decision Diagram
(1) State Space Traversal
(2) Boolean Reasoning

FELETP N Y ch5-2




Outline

=) - Fundamentals
— The roles of formal verification
— Binary Decision Diagram (BDD)
e Equivalence Checking
- Product Machine

- State Space Traversal
— Implicit State Enumeration

FELETP N FHH ch5-3

The Roles of Functional
Verification

Design Creation Design Verification

Design Validation
(Is what | specified
really what | want?)

abstract design specification

@r-ﬁansfer Level Model

Property Checking
(Does the RTL model
has desired properties?)

Equivalence Checking
(implementation verification)
(Is what | implemented
really what | specified?)

Schematic
(gate-level or transistor-level)

Physical verification
(LVS & DRC)

LVS: layout vs. schematic check, DRC: design rule check
FELETP N Y ch5-4




Functional Verification Paradigms

e Simulation
- not complete (i.e., may fail to catch bugs)

- very time-consuming, especially when at lower abstraction
levels such as the gate or transistor level

- still the most popular way for design validation

e Emulation
- (1) based on an FPGA-based emulation system, or

- (2) based on a massively parallel machine (e.g., with 8
boards, each having 128 processors)

— 2 to 3 orders of magnitude faster than software simulation
- costly and might not be very easy-to-use

e Formal verification
- arelatively new paradigm for property checking and
equivalence checking
— requires no input stimuli
- perform exhaustive proof through rigorous logical reasoning

FELETP N FHH ch5-5
Binary Decision Diagram (BDD)
e Basic Features
- BDD was proposed by [R.E. Bryant] in 1986
* “Graph-Based Algorithms for Boolean Function Manipulation”,
IEEE Trans. on Computers, vol. C-35, Aug. 1986, pp. 677-691.
- BDD is a Directed Acyclic Graph (DAG) used to
represent a Boolean function f: B">B
— each non-terminal node is a decision node associated
with an input variable with two branches - 0-branch
and 1-branch
- There are two terminal nodes - O-terminal and 1-
terminal
e Example:
X1 —
f ‘
X2 —D_
ch5-6
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Canonicity

e Canonicity Requirements

- The BDD representation is not canonical for a
given Boolean function unless the following
constraints are satisfied:

- (1) Simple BDD - each variable can appear only
once along each path from the root to a leaf

- (2) Ordered BDD - Boolean variables are ordered
in such a way that if the node labeled x; has a
child labeled x,, then order(x;) < order(x,)

- (3) Reduced BDD - no two nodes represent the
same function, l.e., redundancies are removed
by sharing isomorphic sub-graphs

FELETP N FHH ch5-7

Reduced Ordered BDD (ROBDD)

e Rules for ROBDD

— Rule 1: merge two children with the same terminal nodes
- Rule 2: merge two isomorphic sub-graphs

l%‘ - &‘A

x=0 cofactor x=1 cofactor
e Reduction Procedure
- Input: An arbitrary BDD
— Output: A canonical reduced ordered BDD

— Traverse the graph from the terminal nodes towards to
root node (l.e., in a bottom-up manner) and apply the
above reduction rules whenever possible

FELETP N Y ch5-8




Example: BDD Reduction (1)

e f=Xyz + X%z

Truth table

e variable order: x 2>y > z

Xyz f

not yet reduced BDD 000 0

001 0

0 1 010 1

Rule 1 }/) 011 0
0 1 0 1

— . 00| O

() | @ 01| 1

0 1 0 1 0 1 0 1 110 o

0] [o] 0] [o] 0] 111 | 1

FELETP N FHH ch5-9

Example: BDD Reduction (2)

FELETP N Y ch5-10




Example: BDD Reduction (3)

No more rules can be applied
- An ROBDD without isomorphic
sub-graphs is achieved

Rule ¢ @

FELETP N FHH ch5-11

The Influence of Variable Ordering

e Sijze of BDD

— can vary from linear to exponential in the number of
the variables, depending on the variable ordering

e Hard-to-Build BDD

- Data path components (e.g., multipliers) cannot be
represented in polynomial space, regardless of the
variable ordering

e Heuristics of Ordering

- (1) Put variables that influence most on the top of BDD

- (2) Minimize the distance between strongly related
variables

- (e.g., x1x2 + x2x3 + x3x4)
X12>X2>x3>x4 is better than x12>x4->x2->x3

FELETP N Y ch5-12




Example on Variable Ordering

z=(adb) - (cdd) - (edf)

good order bad order

oo

ofor”

others

o

FELETP N FHH ch5-13

Recursive BDD Operations

e Notations

- fand g are two BDDs representing two functions
— op is a Boolean operator (l.e., AND, OR, NOT, ...)

e BDD operation
— Problem: Construct the BDD of h=fop g
— A recursive procedure on each variable
e h=x:h,, +X - h,, where x is a variable
=X (fop g)u=n+ X - (fOP 9y
» For most operations, (f op 9),-; = (f,=1 OP Oy-1)
* Hence h = x - (f,; OP Gy=1) + X (fx=0 OP Gx=0)

0

FELETP N Y ch5-14




Existential Quantification

e Definition

03X [F(X,Y15-0Y0)] = (Y1500 Yn)
such that g(y,,..., V=1

iff f(O,y,,..., Yo)=1or f(1,y,,..., Yn)=1
e Example

f=(x1+x2) - x3

FELETP N FHH ch5-15

Universal Quantification

e Definition
0 VX [F(X0,Y1 50000 Yl =9V1,.s Yn)

iff f(O,y,,..., Y,)=1 and f(1,y,,..., Ya)=1
e Example

(37 = o et

FELETP N Y ch5-16




Translations Among Boolean
Function Representations

enumerate each root-to-1
path, (each representing
a product term)

recursive
Shannon
expansion
(RSE)

enumerate each root-to-1
path, (each representing

atranslation
a product term)

using MUXes

Boolean
Formula

incremental
construction
from PI's to PO’s

FEETP S F ch5-17

From Netlist to OBDD

Decide a good variable order

| x1 7] —z1
- - X2
Topologically sort the signhals X3 —22

(from PI's towards PO’s)
1 Boolean network C

more signal’s no

BDD tow

yes

each PO’s BDD

select the next signal based
on the topological order

!

construct the selected signal’s BDD
using its direct fanins’ BDD’s

FELE TR A ch5-18




Example: Constructing BDD

X1 ™ —12z1
X2

L ,> [ BDD(z2) = BDD(x3) - BDD(z1) |

X3

Boolean network C

A topological order: {x1,x2,x3,z1,z2}
variable order: x12>x2->x3

BDD(x1) BDD(x2) BDD(x3)

BDD of z1 BDD of z2

ch5-19

FEFTH SN

Summary of BDD

e Good Properties
— BDD is a compact representation for Boolean
functions
— Canonical, given a fixed variable ordering
— Polynomial time in BDD size for many Boolean
operations

e Bad Properties

- In the worst case, the size of a BDD is O(2") for n-
input Boolean functions

FELETP N Y ch5-20
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Outline

e Fundamentals
— The roles of formal verification
— Binary Decision Diagram (BDD)
=) - Equivalence Checking
- Product Machine

- State Space Traversal
— Implicit State Enumeration

FELETP N FHH ch5-21
The Problem of Equivalence
Checking
specification
(golden reference)
X; %~ S1
X, C1 e
Xm — Sn
implementation
o In
C2 e
In
(Question): Is every primary output pair equivalent
(i.e., S, =1, 1=k =n) for all possible input sequences?
ch5-22
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Product Machine

Assumption:
the no. of states in the specification machine: nl1

the no. of states in the implementation machine: n2
Then the product machine has (n1 x n2) states

Two machines are equivalent if and only if the product machine’s
outputs are tautology ‘0’ for all possible input sequences

—

specification

machine
primary inputs r | —I S
— i ﬁ‘ / @ t

I autology ‘0’ ?
1

» implementation

machine . .
_| product machine or miter
| M.

=

FELETP N FHH ch5-23

Overall Procedure for Symbolic
Equivalence Checking

e Sequential Equivalence Checking

- (Stepl): enumerate all possible reachable states of the
product machine - a process requires FSM traversal

- (Step 2): prove every output of the product machine for any

combination of primary inputs and reachable states is
tautology ‘0’ - a combinational checking problem

——

specification

—_— machine
; tautolo
primary present S, to ’)gy
inputs state lines j
—_—
Let T = (V;,V35e++5V) I,
be an input sequence

»implementation

> machine ]
present
state lines g:
FELETP N Y ch5-24

12



Reachable State Computation

assume the initial state is s0 l
SO
/
S1
/
S3
/
sS4
N\
S2

{S0, S1, S2, S3, S4} are
reachable states

the tree stops at
ever-visited state

FELETP N FHH ch5-25

Finite State Machine Traversal
(FSM Traversal)

e FSM Traversal
— aprocess to compute the set of reachable states
— can be a breadth-first or depth-first traversal
- Breadth-first traversal
1. Initial Ry = {sy}
2. Rj;; = Rj U {next states of R;}

3. Repeat step (2) until a fixed-point is found, i.e.,two
consecutive reachable state sets R,, R,,; are the same

| A breadth-first traversal process

initial @

State

R, represents the set of states reachable fixed-point if R=Ry.q

in j steps from the initial state in the STG

ch5-26
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Example: FSM-traversal

iteration j reachable states R,

0 {s0}

{s0, s1, s5}

{s0, s1, s2, s5}

{s0, s1, s2, s3, s5}

{s0, s1, s2, s3, s4, s5}

N| ] W] =

{s0, s1, s2, s3, s4, s5} (fixed point)

FEAETIH L F4H

ch5-27

Implicit State Enumeration

e Implicit state enumeration

FEAETHE KA

The reachable states are computed without
constructing the state transition graph explicitly
The state space is implicitly traversed
BDD is used to

* represent a set of states

* represent the state transition relation of a machine
More efficient than explicit state enumeration
based on the state transition graph

Capable of handling larger designs (e.g., one
with 1020 states)

ch5-28
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BDD for Set Representation

Vv is now represent a set of input vectors

N ©
000 1 ?/ \
001 0
0 ® @
011 0 / . \
100 0 (3)
101 0 ?/ \1
110 0 E E
111 1

Truth table BDD-representation

FELETP N FHH ch5-29

Input/Output Relation

e Definition
— Let C be a Boolean network from B™ to B"
— Let v be an input vector, w be an output vector
— The I/O relation of C is a relation R.: B™xB", and (v,w)
e Rcif C(V) = w
- A network’s I/O relation consists of every valid
input/output combinations

e Characteristic formula

Re(xy oo X [21r -0 2y) = (1= (X)) 0 (25 =0 JX))... 0 (2,24, (X)

A; is the Boolean function of output z,

n
= [[(z=h(X))  where (a=b) corresponds to (ab + ab)

FELETP N Y ch5-30
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Example: I/O Relation

Re = (4= +5)) 0 (5= (0 +1) 1))

x1 7] —z1
X2
X3 7] 22
Boolean network C
input/output
xl x2 x3 zl 22 relation comment
R¢
000 00 1
001 00 |
010 10 1 ,
01T | 11 ] valid
700 0 ] cm_nbu_m—
0T | 11 | hons
110 10 1
111 10 1
any other 0 invalid

BDD representing the 1/O relation

Finite State Machine

e Six-tuple Notation for a FSM

M=(, 0,8, sy, 8,2)
L is the input space defined by input variables {x,, x,, ...
O is the output space defined by output variables {z,, z,, ...

S is the state space defined by state variables {y;, y;, .., ¥}

s, is the known initial state

d is a set of transition functions

A is a set of output functions

next state line function
t = O;(Xq, e X Y1s---Yi)

FEAFTH L F

| specification
machine
[
Y1 t1
. L2
FAg
M

ch5-32
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Transition Relation

e Definition
- Let M=(l,0,S,s4,5,A) be a FSM

- The transition relation T: B™x Bkx Bk, m and k are
the dimensions of the input and state space

- (v,p,q) € T if machine M will transition from state
p to state q under the input vector v

e Characteristic formula

k
= []¢=8:% 1))

i=1

T(xl, ey xmlyl, erey ykltl’ ...t2, tk)= (tl 581) L] (t2582)... L (tkESk)

FELETP N FHH ch5-33
Example: Transition Relation
Example FSM
primary current next characteristic function of
inputs state state transition relation T
0 S0 S1 1
1 S0 S3 1
- S1 S2 1
- S2 S3 1
0 S3 S1 1
1 S3 S3 1
other combinations 0
ch5-34
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Existential Transition Relation

e Definition
- Let M=(1,0,S,s,,9,A) be a FSM

- The existential transition relation T B*x BX, where
k is the dimension of the state space

- (p.q) € T, if there exists an input vector that brings
the machine M from state p to state q

— Note that existential transition relation only concerns
about the connectivity of the FSM’s transition graph

e Characteristic formula

Texist (yb ey ykltb “'12’ tk)= (3x1x2"'xm)((tl E81) .(tZEaz)m ‘ (tkEBk))
k
= Gty [ (=80, 1)

i=1]

FELETP N FHH ch5-35

Example: T <t

Example FSM
current next characteristic function of
state state existential transition relation T,

SO S1 1
S0 S3
S1 S2 1
S2 S3 1
S3 S1 1
S3 S3 1

others combinations 0

FEAERP S F I ch5-36
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Reachable State Computation

e Existential Transition Relation

- defines a projection from present state space to the next
state space

- A state could reach multiple states
- Multiple states can reach the same next state
- Hence, T, is @ many-to-many mapping
e Reachable states R;,; in the breadth-first traversal

- Ri;1 = R; U N;, where N; is image of R;

present state space next state space

Ri
current reachable
set of states

Ni
image of R,

FELETP N FHH ch5-37

Symbolic Image Computation

e Definition B™ B"
—
- Let T be a projection, T:B™xB" " »
- Let A be a set of vectors in B™

- The image of A is a set in B"
image(T, A) ={w eB"| (v, w) e Tand v € A}

e Characteristic Function

— in the application of reachable next state computation

reachable next states N; = Image( T,

exist

» R)

= Iy YR Toie ) \

= (Iyyy.-p)| R;® (3x1x2...xm)n(ti56i(x, Y))

i=1

FELETP N Y ch5-38
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Ex: Next-State Computation

Example FSM

Transition Relation:

T= { (09 S()’ S])e (1’ So’ S3)9 (" Sp Sz)’ ('s st S3)9 (17 S39 S3)’ (0’ S3’ S])}
Texist= { Sos S1)s (Ss S3)5 (S15 S2)5 (S35 S3), (S35 S3)5 (S35 Sy)}

What is the set of the next states of R = {S,, S5}?

RN Tﬂist = {(Sla 52)9 (S37 S})a (S3a Sl)}

=> It implies that there are three transitions outgoing from {S,, S;}
And the destination states (i.e. the next states) include {S,, S;, S;}
So, final set of reachable next states from {S,, S;} is {S;, S,, S;}

FELETP N FHH ch5-39

Overall Flow of Sequential
Equivalence Checking

implementation

| construct the product machine | R=RUN

derive reachable next states
N = image(Teist R)

specification

derive the BDD of each
next state line function g,

check fixed-point ?
(if N is a subset of R)

derive existential transition
s EE L derive the BDD of each PO function ;
set initial reachable states R = {s;} [— PO is tautology ‘0’ for all
input vectors and reachable states ?
FELETP N Y ch5-40
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Tautology Checking

e Notation

- Let R be the reachable states derived from the FSM
traversal

e Theorem
- Two machines are equivalent if and only if
(A+A, +...+0) - Ris tautology ‘0’

spec.
primary 4 S A

s 1 1
Inputs tautology ‘0’ ?
Iy
.: 'ﬁ
reachable}’
states R

FELETP N FHH ch5-41

4

impl.

Why Incremental Verification ?

e Limitations of Symbolic Approaches

— Could be time-consuming

— Cannot handle larger design due to memory explosion
e In Practice

— The two circuits under equivalence checking have a
lot of structural similarity

e |dea of Incremental Verification

— Exploring the structural similarity between the two
circuits to speed up the verification process and to
handle real large designs (e.g., multi-million gate-
count design) [D. Brand 1993]

FELETP N Y ch5-42
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A Naive ATPG-based Verification

the miter’s output
g stuck-at-0 fault
is redundant

C, is equivalent to C,

can be checked by ATPG

Computational model called miter

”| specification
aeeet S g stuck-at-0

primary inputs 1
i1t fstructural B
Pt similarity

» implementation
G,

FELETP N FHH ch5-43

Terminology

e Signal pair
- (a;, &) is called a signal pair if a, is from C; and a, is
from C,, or vice versa
[ J

Equivalent signal pair

- (a4, &) is called an equivalent (signal) pair if the binary
value of a; and a, in response to any input vector are
identical

Permissible signal pair

- (a4, a,) is called a permissible (signal) pair if replacing a,
by a, in the miter does not alter the output’s
functionality

- Note that (a,, a,) is a permissible pair does not
necessarily imply that (a,, a,) is also a permissible pair

FELETP N Y ch5-44




Pruning Miter

= Given a candidate permissible pair (a, a,)
- (1) check the permissibility by the model in Fig (a)
— (2) If it sustains, replace al by a2

e The strategy is

- merging internal permissible pairs first before checking the
equivalence of an output pair (to improve efficiency)

>>‘le o1 o
“@ fstuck-at 0 I'4 merge i@ 2
point

\ o
ar 2

(a) model for checking if

(@) ay)is permissible. (b) replace a, by a.
FELETP N FHH ch5-45

Example: Incremental Verification

original miter after the merge of (a,a’)
x1
x2
x3
after the merge of (b,b’) after the merge of (c,c’)
x1 ol
2 —
x3
a o2
FELETP N F Y ch5-46
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Enhancement by Using Local BDD

e | ocal BDD

— is a BDD taking certain internal signals, instead of the
primary inputs, as the supporting variables

e The concept of dynamic support

X specification
X2 a)
X3 e

\ e pa—
implementation
ds

L | backward
expansion

\ dynamic support

The dynamic support expands towards the PI's
on demand as verifying the equivalence of (0,,0,)
FECETP L F AN ch5-47

Example: Incremental Verification
Using Local BDD

e First support A,={b’,c’}
- The local BDDs of 0, and o, in terms of A, is NOT equivalent
- expand the support towards PI’s
e Second support A,={X;,a’,X3}
- The local BDDs of 0, and o, in terms of A, is equivalent
- Conclude that (0,,0,) is equivalent

specification replaced
x placed
: wb 5 el
% o i) D=0 | 2D
. D x: O
3

implementation x
AR o
X2
X b *. 0,

X3 b
Sol-ol i
3 Aa={x.a.x}l A={b.c)

- RN ch5-48
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Routine of Equivalence Checking
Using Local BDD

A given pair (a), a) Notation: discrepancy functio
Discy(a,,8,) = Fy (2)®OF, (ay)

n

| find the first level support |
|

| compute Discy(a,, ay) I

| update the support A |

l

\

(a, ay) backward expand support I

is equivalent

False negative problem:
(a1, a3) the target pair is indeed equivalent
is not equivalent while claimed as in-equivalent
- harmless if the target pair is not PO

ch5-49
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Conclusions

Formal Method is fantastic when it works.

But it could fail badly when it does not.

It is all about Boolean reasoning

FEAETHE KA

Good luck on finding your own applications ...

ch5-50
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Floorplanning
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cUAXETE L Py
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Outline of Floorplanning

e Contents
— (1) Basics of Floorplanning
— (2) Slicing Floorplanning
— (3) Non-Slicing Floorplanning

PowerPC 604 Pentium 4

Chang, Huang, Li, Lin, Liu

ch6-3

Floorplanning

¢ Floorplanning leads to

— Well-defined blocks in terms of the physical structures
* Block Types

— Hard or rigid blocks: with defined areas and shapes

— Soft or flexible blocks: with approximate areas, undefined shapes
* Objectives

— Find locations for all blocks

— Report shapes of soft block and pin locations of all the blocks

Blocks w/ areas Block locations
(shapes) N
netlsi (, netlist
B2 k4TI
Partitioning Floorplanning/Placement Routing

(/Pin assignment)

Chang, Huang, Li, Lin, Liu

ch6-4




Why Floorplanning?

® Main Purpose of Floorplanning
— (1) To implement the top-down design strategy
— (2) To decide the shape and terminals of each soft block
— (3) For rough estimation of the wiring delays

=
T
in
- RB RC eng [——H——0
setl : % enc [ & gB—
eng b_out selz 1 p i o
en wl_out c_out endA [— R|]—3| I'{_(?
= =
enA sei2 (1 & []b our c_out
ot mIiour[] - B
m2_out Cont] w1 RA me
. — - =
= =t =]
[ﬁ selfun a_out m2_out
selfier
Cont. ALU alu_our
alie_out ALY =1

m

v

Chang, Huang, Li, Lin, Liu

ch6-5

Floorplanning Problem

¢ Inputs to the floorplanning problem:
— A set of blocks, hard or soft.
— Pin locations of hard blocks.
— A netlist.

¢ Objectives:

— minimize area, reduce wire length for (critical) nets,
maximize routability (minimize congestion), determine
shapes of soft blocks, etc.

1 3 1 2

An optimal floorplan,

in terms of ares A non—optimal floorplan

Chang, Huang, Li, Lin, Liu
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Floorplan Design

x
o Modules: ¥
® Area: A=xy
g = .
® Aspectratio: r <=vx <=3
d
® Rotation:
f
b ® Module connectiviry
a C

ch6-7

Chang, Huang, Li, Lin, Liu

Representing Floorplan As a Tree

(1) H-node: horizontal cut
e Left sub-tree is the bottom half
e Right sub-tree is the top half
Three Types (2) V-node: vertical cut
of Nodes « Left sub-tree is the left half
* Right sub-tree is the right half
(3) Leaf node: a basic block

=10

[ J¢ »Vv[IHI]
H\b\.

0 o0.8.00
(-

1

ch6-8
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Slicing Floorplan

e Slicing struct

ure:

— Arectangular dissection that can be obtained by repetitively
subdividing rectangles horizontally or vertically.

e Slicing tree:

— A binary tree, where each internal node represents a vertical
cut line or horizontal cut line, and each |leaf a basic rectangle.

B v wheel
T / AN structure
3 ..... H H
| 2 NN 3
. 415 ‘ 2 1 H 3 1 4 | 5 |
/\ /\
slicing 6 7 4 5 non-slicing
floorplan slicing tree floorplan
Chang, Huang, Li, Lin, Liu Ch6-9
Skewed Slicing Tree
e Problem: There might be multiple trees for a floorplan !
e Skewed slicing tree: (Desired)
— Onein which no node and its right child are the same.
\Y; \Y;
VRN N\,
H H H H
j 2/\ H/\3 /N AN
‘ 1 2 1 V e H:
4 15 LK
4 OR /\ 7N\
216 1|7 v V. 6 7V 3
/\ /\ /\
slicing 6 7 4 5 4 5
floorplan Aslicing tree Another slicing tree
(Skewed) (Non-Skewed)

Chang, Huang, Li, Lin, Liu
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Outline

¢ Basics of Floorplanning
‘ ¢ Slicing Floorplanning
— Normalized Polish Expression
— Simulated Annealing Formulation
— Block Shaping Problem
e Non-Slicing Floorplanning
— Simulated Annealing Formulation

ch6-11

Chang, Huang, Li, Lin, Liu

Slicing Floorplan Design by Simulated Annealing

e Related work

— (1) Wong & Liu, “A new algorithm for floorplan design,” DAC-86.
= Considers slicing floorplans.

— (2) Wong & Liu, “Floorplan design for rectangular and L-shaped
modules,” ICCAD'87.

= Also considers L-shaped modules.

— (3) Wong, Leong, Liu, Simulated Annealing for VLSI Design, pp. 31--
71, Kluwer Academic Publishers, 1988.

¢ Ingredients to simulated annealing
— solution space?
— neighborhood structure?
— cost function?
— annealing schedule?

ch6-12

Chang, Huang, Li, Lin, Liu




Overall Strategy

Slicing Tree . .
- Polish Expression Derive Representations

!

Define Perturbations

|

Cost calculation

|

Search Procedure
By Simulated Annealing

Perturb The Expression

Final
Floorplan

Chang, Huang, Li, Lin, Liu

ch6-13

Polish Expression

e Definition of Polish Expression

— AnexpressionE=e; e,... e,,,,Wwheree; e {1, 2, ...,n, H, V}, 1 <i
<2n-1

— (1) Every operand j, 1 <j <n, appears exactly once in E;

— (2) (The Balloting Property) For every sub-expression E; = e, ...
e, 1<i<2n-1, no. of operands > no. of operators

l16H3535V2HV74HY

# of operands = 4
# of operators = 2

\%
~ =
T s /H\ /H\ Post-order E 16H2V07?VH34HV
4
m) VOV 3 o4 Traversal  E_1gypu7pnsggsn

— N\ /N ‘

2 3 H 27 5 ijH: rectangle i on bottom of j
l/ \6 ijV: rectangle i on the left of j.

Chang, Huang, Li, Lin, Liu
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Why Balloting Property?

¢ Balloting property
— Operands should outnumber operators
— To guarantee a valid post-order traversal of a slicing tree

S has two sub-trees, S1 and S2,
Both S1 and S2 satisfy the balloting property
= Then, the entire tree satisfies the balloting property as well

The total number of operands: (k1 + k2) H

The total number of operators: (o1 + 02 + 1) / \

Since (k1 >= 01+1) and (k2 >= 02+1)
So, (k1 + k2) >= (01 + 02 + 2) s1 S2
= le, (k1 +Kk2)>(01+02+1)

=>» Operands outnumber operators k1 operands k2 operands

01 operators 02 operators

Chang, Huang, Li, Lin, Liu Ch6-15

Redundant Representations

* Problem:

— Onefloorplan could correspond to multiple slicing tree representations !
e Solution: Give specific orders to consecutive cuts

— (1) Consecutive H-cuts: ordered from right to left

— (2) Consecutive V-cuts: ordered from top to bottom

2ndcut  1stcut

Vv
3 ! PN A N
1 4 /N
2 3
2 E = I23H4VY E = I23HVAV
non—skewed! skewed!
H
N

Non-skewed i

cases A A

Chang, Huang, Li, Lin, Liu Ch6-16




Normalized Polish Expression

¢ Definition of Normalized Polish Expression

— A Polish expression E=e; e, ... e,,, is called normalized iff
E has no consecutive operators of the same type (H or V)

¢ A Normalized Polish Expression
— Corresponds to an unique rectangular slicing structure

vV
7 5 I—[/ \\TI
4 N /\
V V 3 4
6 VANVAN
9) l/ \6
1 3 E = I6H2V7SVH34HV

A nommalized Polish expression

ch6-17

Chang, Huang, Li, Lin, Liu

Neighborhood Structure and Perturbation

e Chain: HVHVH ... or VHVHYV ...

1 6H35VI2HV 7 4H V

A

chain

e Adjacency Relations
— 1land 6 are adjacent operands; 2 and 7 are adjacent
operands; 5 and V are adjacent operand and operator
e Three Types of Perturbations
— M1 (Operand Swap):
= Swap two adjacent operands
— M2 (Chain Invert):
=« Complement some chain (V=H, H=V)
— M3 (Operator/Operand Swap):
= Swap two adjacent operand and operator

ch6-18

Chang, Huang, Li, Lin, Liu




Effects of Perturbation

3
4
7 2

(3.4) 3 L [vom (H,4) 4

_ 4

- — —
L2 7 ] 2 o 1 w1
12ViH3Y 12Y3HIV 12H3HY I2H34HY

e Keep The balloting property during the moves
— (1) M1 and M2 moves are OK

— (2) Look out for the M3 moves!
= Reject illegal M3 moves if necessary

ch6-19

Chang, Huang, Li, Lin, Liu

Validation of Operand-Operator Swap (M3)

¢ Validation check of M3 moves:
— Assume the swapping of operand e; with the operator e;,;, 1 <i<k-1
— N, is no. of operators in Polish expression E=e; e, ... g, 1<k <2n-1
— Then, the swap will not violate the balloting property iff 2N,,, <i

Can we swap 2 & H?

(Polish Expression)
12H3H4V =—> 12H34HV 3 NO

(swapesandes) P i=5=> Ng,; =2 2N;,, =2*2 =4 <i=> legal move !

(Slicing Tree) v \4
Slic ee P A
H 4 H H
7\ —_— /N 7\
3 Swapping 1 2 3 4

H\
/
DS (4, H)

ch6-20

Chang, Huang, Li, Lin, Liu
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Cost Function

e Pp=A+AW
A: area of the smallest rectangle
W: overall wiring length
A : user-specified parameter
|

_ -
4 |
— 2 2
3 ; I | "] 4
“ = B e B
! M3 3

[
| |
|
| .
‘ 1 1 1| 2 M2
o
12V4H3Y TIHMHEY

12VIHV 13HIHAY
e Wire Length Estimation: W= Xjc; d
— ¢y #of connections between blocks i and j.
— d,;: center-to-center distance between basic rectangles i and j

1
Chang, Huang, Li, Lin, Liu Ch6-21
Area Computation for Hard Blocks
®* Take rotation into consideration
Note (6, 5) and (8, 5)
have been droppedI {@ B4 2 1 2
21 2 |5] 6

|.t3411 ﬁ3>| 6.4 1
e S
HOIEIR

SN
|.z3°:1|. / m)} [.}

Lo > Block ID
Hfl:l ___ maxfud, w2} VI—\
vy W VW L“/ /H%
VAN b/ P
72 i 2
. wi+u2 . 5
a1 SN L
w o v, w L e
ch6-22

Chang, Huang, Li, Lin, Liu
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Incremental Computation of Cost Function

e The cost change due to a move
— Can be estimated incrementally
— By updating at most two paths of the slicing tree

-
|¥/” Y ' >‘%
/l_ /\ A, /{_
- / LD - / N &
oot
E = 12H34VS6VHV E = 12H35V46VHV

|\ # Shape function of a soft block under area constraint

ch6-23

Chang, Huang, Li, Lin, Liu

Incremental Computation of Cost Function (cont'd)

vl H&
o T —
o H VL
Ce N NS
(S . Ii IL ¢
(N
E =12H34V56VHYV E =12H34V56HVH
b A
&H/ H L - \{L

L IR
N - Is;\ & L
E = 12H34V56VHV .

E =123H4V56VHY

ch6-24

Chang, Huang, Li, Lin, Liu
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Annealing Schedule

e |nitial solution: 12V3V ... nV.

e Temperature Cooling:
— Ti=rTy,i=1,2,3,...;r=0.85.
e Perturbations
— At each temperature, try kn moves (k = 5-10).
e Terminating Conditions
— (1) Number of accepted moves < 5%, or
— (2) Temperature is low enough, or
— (3) Run out of time

Chang, Huang, Li, Lin, Liu Ch6-25
Algorithm: Wong-Liu (P, g, r, k)
1 E « 12V3V4V ... nV; /[*initial solution */
2Best « E; Ty« 2Z45; M ¢« MT « uphill «~ 0; N =kn;
3repeat tn(P)
4 MT « uphill « reject « 0;
5 repeat
6 SelectMove(M);
7 Case M of
8 M;: Select two adjacent operands e; and e;; NE « Swap(E, e, g));
9 M,: Select a nonzero length chain C; NE <~ Complement(E, C);
10 Mj: done « FALSE;
11 while not (done) do
12 Select two adjacent operand e; and operator e;,,;
13 if (6.1 #e€;,,) and (2 N;,; <i) then done « TRUE;
14 Select two adjacent operator e; and operand e;,,;
15 if (e#e;,,) then done « TRUE;
16 NE « Swap(E, e, e;,,);
17 MT « MT+1; Acost « cost(NE\_-A?ﬂ%EE(E);
18 if (Acost<0) or (Random <
19 then €
20 if (Acost > 0) then uphill « uphill +1;
21 E « NE;
22 if cost(E) < cost(best) then best « E;
23 elsereject « reject + 1;
24 until (uphill > N) or (MT > 2N);
25 T« rT; /*reduce temperature */
26 until (reject/MT > 0.95) or (T < €) or OutOfTime;

ch6-26

Chang, Huang, Li, Lin, Liu
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Outline

¢ Basics of Floorplanning
e Slicing Floorplanning
— Normalized Polish Expression
— Simulated Annealing Formulation
‘ — Block Shaping Problem
e Non-Slicing Floorplanning
— Simulated Annealing Formulation

che-27

Chang, Huang, Li, Lin, Liu

Shape Curve

e Soft blocks could have different aspect ratios.
e The shape function is a hyperbola:
— xy=A, with the width x and the height y
* |n practice,
— Very thin blocks are often not feasible to design.
— The shape function is a hyperbola constrained by two lines
— Aspectratio: r <=y/x <=s.

= SX
! T
Yy shapes y
I' y=rx
-
X—> X >

ch6-28

Chang, Huang, Li, Lin, Liu
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Discrete Shape Curve

e Leaf cells are built from discrete transistors:

— itis not realistic to assume that the shape function follows

the hyperbola continuously.
¢ In an extreme case, a cell is rigid:

— it can only be rotated and mirrored during floorplanning or

placement.

REAEN
The shape function of a 2 x 4 inset cell.

Chang, Huang, Li, Lin, Liu

ch6-29

Piecewise Linear Shape Curve

® In general, a piecewise linear function can be used
to approximate any shape function.

¢ The points where the function changes its direction,
are called the corner (break) points of the piecewise

linear function.

T

h__

Chang, Huang, Li, Lin, Liu

ch6-30
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Composition Rules for Vertical Abutment

e Composition by vertical abutment = the addition of
shape functions.

s ho(w) = hy(w) + hy(w)

Chang, Huang, Li, Lin, Liu Ch6-31
Deriving Shapes of Children
¢ A choice for the minimal shape of composite cell
fixes the shapes of its children cells.
minimal area
1 of parent
1 consequences for
1 children’s shapes
1 I W
ch6-32

Chang, Huang, Li, Lin, Liu
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Shaping Procedure of Slicing Floorplans

Shaping procedure is performed on a slicing tree
=> To decide the shape of each basic block.

Represent shape functions of each basic block
As piecewise linear functions

To derive the shape function of each composite block
(Bottom-up traversal)

Decide the shape of the top block
(only break points of shape function need to be evaluated)

!

Propagate the consequences down to the leaf blocks
(Top-down propagation)

Derive the final shape of each block

ch6-33

Chang, Huang, Li, Lin, Liu

Outline

¢ Basics of Floorplanning
¢ Slicing Floorplanning
— Normalized Polish Expression
— Simulated Annealing Formulation
— Block Shaping Problem
‘ ¢ Non-Slicing Floorplanning

— Simulated Annealing Formulation

ch6-34

Chang, Huang, Li, Lin, Liu
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Order-of-5 Floorplan Examples

Wheel (or spiral) floorplan include a wheel structure as a basic block
=> Could lead to an even better result than a pure slicing floorplan
=>» an order-of-5 floorplan, l.e., a node could have five children in the tree

ch6-35

Chang, Huang, Li, Lin, Liu

General Floorplan Representation: Polar Graphs

e vertex: channel segment (or boundary)
¢ edge (weight): cell/block/module (dimension)

hy C
vertical
hsy  polar
graph

F

v, mmp horizontal polar graph

ch6-36

Chang, Huang, Li, Lin, Liu

18



Concluding Remarks

¢ Floorplanning Strategy

— Representation = Cost Calculation = Perturbation Scheme

e Slicing Tree

— Normalized Polish Expression
® Non-Slicing Tree

— Polar Graph

It Is The Floorplan That
Shapes The Landscape of Your IC.

Chang, Huang, Li, Lin, Liu

ch6-37

19



HA T

Placement and Partitioning
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Outline of Placement

e Course contents:
— Placement metrics
— Placement

=« Clustering-Based, Partitioning-Based, Force-Directed,
Simulated-Annealing, Genetic Algorithm

— Partitioning
= Kernighang-Lin Partitioning Algorithm
= Simulated-Annealing Based Partitioning

2

COmpOonents ° IE' E IE' z
€ <E| IE‘ .« o o - slots

luyout suifuce
Chang, Huang, Li, Lin, Liu Ch7-3
Placement
* Placement
— is to automatically assign pre-designed cells to correct
positions on the chip, so as to minimize certain criteria
¢ Inputs: A set of fixed cells/modules, a netlist.
® Quality metrics:
— Routability, Channel Density, Wire-Length, cut size,
performance, thermal issues, I/O pads.
Blocks w/ areas Block locations
(shapes) .
netlst K netlist
—_— —_—
S =
Partitioning Floorplanning/Placement Routing
(/Pin assignment)
ch7-4

Chang, Huang, Li, Lin, Liu




Placement Objectives and Constraints

e What does a placement algorithm try to optimize?
— thetotal area
— the total wire length
— the number of horizontal/vertical wire segments crossing a
line
e Constraints:

— the placement should be routable (no cell overlaps; no
density overflow).

— timing constraints are met (some wires should always be
shorter than a given length).

el
| E—

Le) e Le) L)

Density = 2 (2 wacks reguired)

exleafeafex
L2d e Lel Ll

Shorrer wirelength, 3 tracks reguired.

wirelength = [0 wirelength = {2
ch7-5

Chang, Huang, Li, Lin, Liu

Placement Styles

¢ Building-Block Placement
— The cells to be placed have arbitrary shapes

e Standard-Cell Placement
— Cells are to be placed in rows

® Gate-Level Placement
— Cells are mapped into pre-fabricated logic blocks

—
Hin

= o

Chang, Huang, Li, Lin, Liu

Building-block placement

ch7-6




Standard-Cell Placement

e Standard cells are designed in such a way that

— power and clock connections run horizontally through the cell
and other I/O leaves the cell from the top or bottom sides.

e Sometimes feedthrough cells are added to ease wiring.

Routing of logistic signals
T IT T 1 T TI T T 1
Lfeedthrough 11 (|
TR ENEENTITE P Vb
CLK
T T T T 1T 1T T T 1 I I GND |
CELL 1 CELL 2
[ L 1 1 I I (.

Chang, Huang, Li, Lin, Liu

ch7-7

Consequences of Fabrication Method

¢ Full-custom fabrication (building block):

— Free selection of aspect ratio (quotient of height and width).

— Height of wiring channels can be adapted if necessary.

e Semi-custom fabrication (gate array, standard cell):
— Placement has to deal with fixed carrier dimensions.
— Placement should be able to deal with fixed channel

capacities. ——
gate | S5 | 1/0 Pads
array 'I_ !/P\ . _i/_\'l'
Prefabricated | =/ TS customized
Transistor array TaF ,3 N '--'-Ctjf gl Wiring
«Tal[A] .
" l om [ ]

Chang, Huang, Li, Lin, Liu
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Relation with Routing

e [deally,

— placement and routing should be performed simultaneously as
they depend on each other’s results. This is, however, too
complicated.

— P&R: placement and routing
¢ |n practice,

— placement is done prior to routing. The placement algorithm
estimates the wire length of a net using some metric.

(Wire Length Estimation) 1 D D
Input: the multiple pins of a net ;

Output: estimation of the length m .........

-

Chang, Huang, Li, Lin, Liu

ch7-9

Estimation of Wirelength

® Semi-perimeter method:

— Half the perimeter of the bounding rectangle that encloses all the
pins of the net to be connected. Most widely used approximation!

Squared Euclidean distance:

— Squares of all pairwise terminal distances in a net using a
guadratic cost function

%2 Z?’fj[(x; — )+ ;= 5)’]

i=1j=1

Steiner-tree approximation:

— Computationally expensive.

e Minimum spanning tree:

— Good approximation to Steiner trees.

ch7-10

Chang, Huang, Li, Lin, Liu




Estimation of Wirelength (cont'd)
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ch7-11
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Placement Algorithms

® The placement problem is NP-complete
e Popular placement algorithms:

— Constructive algorithms: once the position of a cell is fixed, it is not
modified anymore.

« Clustering-based, Partition-based

— lterative algorithms: intermediate placements are modified in an
attempt to improve the cost function.

= Force-directed method, etc
— Non-deterministic approaches:
= Simulated annealing, genetic algorithm, etc.
* Most approaches combine multiple elements:
— (1) Constructive algorithms are used to obtain an initial placement.
— (2) The initial placement is refined by an iterative improvement phase.
— (3) The results can further be improved by simulated annealing.

ch7-12

Chang, Huang, Li, Lin, Liu




Outline

e Placement metrics
e Placement

- — Clustering-Based
— Partitioning-Based
— Force-Directed
— Simulated-Annealing
— Genetic Algorithm
¢ Partitioning
— Kernighang-Lin Partitioning Algorithm
— Simulated-Annealing Based Partitioning

ch7-13

Chang, Huang, Li, Lin, Liu

Bottom-Up Placement: Clustering

e Starts with a single cell and finds more cells that
share nets with it.

ch7-14

Chang, Huang, Li, Lin, Liu




Clustering-Based Placement

e Greedy method: Selects unplaced components and places
them in available slots.

— (1) SELECT: Choose the unplaced component that is most
strongly connected to all of the placed components (or
most strongly connected to any single placed component).

— (2) PLACE: Place the selected component at a slot such
that a certain “cost” of the partial placement is minimized.

HIFE o o
.IEIIEI.../SJMJ

COMPONEnts

layout surfuce
ch7-15

Chang, Huang, Li, Lin, Liu

Example: Clustering-Based Placement

e Connectivity degree of each cell
— €473, ¢,=1, ¢.=1, ¢4 =1, c.=4, ¢=3, and c =3
— =» e has the most connectivity.
e Place ein the center, slot 4. a, b, g are connected to e
= Place a next to e (say, slot 3). Continue with other cells

e Further improve the placement by swapping the gates.

connectivity

e R

density =4
wirelength = 16
longest path = 6

Il

density = 2
 — B — wire length=8
longest path =2

Chang, Huang, Li, Lin, Liu ch7-16




Top-down Placement: Partitioning-Based

e Starts with the whole circuit and ends with small circuits.
e Recursive Bi-partitioning of a circuit leads to a min-cut
placement.

Chang, Huang, Li, Lin, Liu Ch7-17
Partitioning-Based (or Min-Cut) Placement
* Breuer
— "A class of min-cut placement algorithms,” DAC-77.
e Partition-Based Placement
— Quadrature
— Bisection
— Slice/ Bisection
Su é
ks 2a 2
3B 3
i 1 4
3 5
35 2B &
3d 7
da 2 B BaSabk 4 8 5b64 100 Qud0B& 10098 {64
no 1C2 .
@ '_: In/4 " li.i nk @ nk
sy Erm G e
! (k= ik .;':_- -2k
quadrature bisection slice/bisection
ch7-18
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Algorithm for Min-Cut Placement

Algorithm: Min_Cut_Placement(N, n, C)
/* N: the layout surface */

/* n : no. of cells to be placed */

* ny: no. of cells in a slot */

[* C: the connectivity matrix */

1 begin

2 if (n £ ny) then PlaceCells(N, n, C)
3else

4 (N4, N,) « CutSurface(N);

5 (ny,Cy), (n, C,) « Partition(n, C);
6 Call Min_Cut_Placement(N,, n,, C));
7 Call Min_Cut_Placement(N,, n,, C,);
8 end

ch7-19

Chang, Huang, Li, Lin, Liu

Quadrature Placement Example

e K-L heuristic to partition + Quadrature Placement:
CostC,=4,C, =C,r =2, etc.

- of

e ol e i 08
2457 |8,22,13,14 \—E.?D{ F@*J—@"j
il

2 C2
13,69 0141516 [¢8
Cdb

ci c?fg%i@“——“

Cla (&) C3b

ch7-20

Chang, Huang, Li, Lin, Liu
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Outline

e Placement metrics

e Placement
— Clustering-Based
— Partitioning-Based

‘ — Force-Directed

— Simulated-Annealing
— Genetic Algorithm
¢ Partitioning
— Kernighang-Lin Partitioning Algorithm
— Simulated-Annealing Based Partitioning

Chang, Huang, Li, Lin, Liu

ch7-21

General Procedure for Iterative Improvement

Algorithm: Iterative_Improvement()
begin
S « initial_configuration();
C < cost(s);
while (not stop()) do
S’ « perturb(s); «=———
C <« cost(s’);
if (accept(c, ¢")
then s« s;
end

O©Coo~NOOULhWNEPE

Chang, Huang, Li, Lin, Liu

A mechanism that affect
the results only slightly

ch7-22
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Placement by the Force-Directed Method

Hanan & Kurtzberg,

— “Placement techniques,” in Design Automation of Digital Systems,
Breuer, Ed, 1972.

Quinn, Jr. & Breuer,

— “Aforce directed component placement procedure for printed
circuit boards,” IEEE Trans. Circuits and Systems, June 1979.

Force-Directed Method:

— Reduce the placement problem to solving a set of simultaneous
linear equations to determine equilibrium locations for cells.

Analogy to Hooke's law:
— F=kd, F: force, k: spring constant, d: distance.

o0 & 0 0
resulting " ER
force s e 00
\* se 00 0
e TEREE

layout surface

ch7-23

Chang, Huang, Li, Lin, Liu

Finding the Zero-Force Location

* Cell i connects to several cells j's at distances d;'s by wires of
weights w;'s. Total force: F; = 2w;d;

e The zero-force location ( #, % ) can be determined by
equating the x- and y-components of the forces to zero:

Y wgeg
Zwij-(w;‘*m‘i)=0 = m‘i=J—”
7 i
ZAw_iAyA
sz‘j'(yj*!ﬂl)=0 = = Ej‘w{‘:’
F] 714
8x0+410x2+4+3x0+3x2 N
[ ) fi= = 1.083 T =
In the example, & 51104343 and w; =1.50.
o [t o
@2 Vidd out
(0.1}
00) ® .
0.0 in Gad
(1,0) {2,0)

ch7-24

Chang, Huang, Li, Lin, Liu
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Force-Directed Placement

e Can be constructive or iterative:
— Start with an initial placement.

— Select a “most profitable” cell p (e.g., maximum F, critical
cells) and place it in its zero-force location.

— “Fix” placement if the zero-location has been occupied by
another cell qg.
¢ Popular options to fix:

— Ripple move: place p in the occupied location, compute a
new zero-force location for q, ...

— Chain move: place p in the occupied location, move q to an
adjacent location, ...

— Proximity Move: place p to a free location close to q.

Chang, Huang, Li, Lin, Liu Ch7-25
Algorithm: Force-Directed_Placement
1 begin
2 Compute the connectivity for each cell;
3 Sort the cells in decreasing order of their connectivities into list L;
4 while (terationCount < Iterationlimit) do
5 Seed + hext module from L; seed
6 Declare the position of the seed vacant;
7 while (EndRipple = FALSE) do \
8 Compute target location of the seed;
9 case the target location Target
10 VACANT: location
11 Move seed to the target location and lock; Vacant
12 EndRipple « TRUFE, AbortCount +— 0, Occupied,
13 SAME AS PRESENT LOCATION: Locked,
14 EndRipple « TRUE, AbortCount +— 0,
15 LOCKED:
16 Move selected cell to thelnearest vacant Iocation;l
17 EndRipple +— TRUE,; AbortCount + AbortCount 4+ 1,
18 if (AbortCount > AbortLimit) then : P : :
18 Unlock all cell locations. |Stopp|ng criterion of an iteration
19 DerationCount +— IterationCount + 1,
20 OQCCUPIED AND NOT LOCKED:
21 Select cell as the target location for next mowve;
22 Move seed cell to target location and lock the target location;
23 EndRipple «— FALSE,; AbortCount « 0;
26 end
Chang, Huang, Li, Lin, Liu ch7-26
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TimberWolf: Placement by Simulated Annealing

e Sechen and Sangiovanni-Vincentelli,
— “The TimberWolf placement and routing package,” IEEE J.
Solid-State Circuits, Feb. 1985;
— “TimberWolf 3.2: A new standard cell placement and global
routing package,” DAC-86.

Stage 1: High-Temperature Phase

(1) Re-location Overlapping
(2) Swapping is allowed
(3) Re-orientation
Final
placement

Questions: What are the moving scheme and cost function?

Stage 2: Low-Temperature Phase
(1) Intra-Row Swapping
(2) Overlapping resolving

Chang, Huang, Li, Lin, Liu Ch7-27
TimberWolf: Moving Type
¢ Solution Space:
— All possible arrangements of the modules into rows,
possibly with overlaps.
e Moving Types
— M;: Displace a module to a new location.
— M,: Interchange two modules.
— Mj: Change the orientation of a module.
Cw - ¥ | C#-[ 7 | C Bl 4 ] &1 1F |
T el CL#E-11 @ T & ]
E@\I!I\\W- (E .07 1 1 (B 3%
[ 4 3
overlap
M1 M2 M3
re-location swapping re-orientation

ch7-28

Chang, Huang, Li, Lin, Liu
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TimberWolf: Moving Scheme

¢ Neighborhood Window: Range Limiter
— The neighborhood window shrinks as temperature decreases.
— At the beginning, (W5, Hy) is big enough to contain the whole chip.
— Window height & width is proportional to log(T).

* Moving Scheme

— (1) Pick an M1 or M2 type of move. The probabilities of M1 is 0.8,
while that of M2 is 0.2.

— (2) Check acceptance or rejection by cost function and temperature
— (3) If M1 is picked while rejected = Try M3 with probability of 0.1.

-

L W /' | 2——» neighborhood

Fi
2 KV . ),
P [
Chang, Huang, Li, Lin, Liu Ch7-29
TimberWolf: Cost Function
Cost of a move
C =C1+C2+C3
Wire Length Penalty
Estimation (C1) Costs
C=% 1 nela W, + B h) Penalty Type 1 Penalty Type 2
o;is a horizontal weight, (C2) (C3)
B is avertical weight, l l
szyzi;ejozij C3=082 crowslLr - Dil,
y: penalty factor & : penalty factor
Bounding Oj;: amount of overlaps D,: Desired row length
hi Rectangle in the x-dimension L,: sum of cells’ widths
between cell i and j. inrow r
ch7-30

Chang, Huang, Li, Lin, Liu
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TimberWolf: Annealing Schedule

Set initial temperature T,
Or update temperature T, = T, ; * r

/ r.:08->094->038
Terminating
condition IfT, <0.1

yes \?o

Try nP attempts
n: the total number of cells
P: user specified constant

ch7-31

Chang, Huang, Li, Lin, Liu

Placement by the Genetic Algorithm

e Cohoon & Paris, “Genetic placement,” ICCAD-86.

¢ Genetic Ingredients:
— (1) Encoding (or Chromosome) of feasible solutions
— (2) No. of populations in each generation: e.g., 50
— (3) Fitness Function: for offspring selection
— (4) Operators: Crossover, Mutation, Inversion

A connectivity graph Space to be ]
For a netlist filled in Encoding
6 | 7| & d|e | f
3 4 5 c b i
4 i 2 a | g h

string: aghcbidef

ch7-32

Chang, Huang, Li, Lin, Liu
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Genetic Operator: Crossover

* Main genetic operator:
— Operate on two individuals and generates an offspring.
_ [bideflaghd] (é) + [bde fil gchal (Tlo) — [bide fgcha](é).
— Need to avoid repeated symbols in the solution string!
¢ Partially mapped crossover
— for avoiding repeated symbols:
_ [bidef|gchal (S%) + [aghcblideS] (é) — [bgchalidef].

— Copy idef to the offspring; scan [bidef|gcha] from the left,
and then copy all unrepeated genes.

Note: Cost of each placement’s encoding

1
Cost =

(Weighted Sum of Wire Lengths)

ch7-33

Chang, Huang, Li, Lin, Liu

Two More Crossover Operations

¢ Cut-and-paste + Chain moves

— The cells that earlier occupied the neighboring locations in
parent 2 are shifted outwards.

¢ Cut-and-paste + Swapping
— Copy k X k square modules

Common squares:

— Swap cells not in both square modules. {BHIG}

Parent 1 Parent 2 Parent 1 Parent 2
o _

w ABC & BEHX|—™ F

a N\ b iR

d =« b ; € E\\ k \C

D
; /‘ ., :
Cut-and-paste + chain moves Cut-and-paste + Swapping

ch7-34

Chang, Huang, Li, Lin, Liu
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Genetic Operators: Mutation & Inversion

e Mutation:
— Prevents loss of diversity by introducing new solutions.
— A commonly used mutation: pairwise interchange.
¢ Inversion: [bid|efgch|a] — [bid|hcgfela].
¢ Probabilities of mutation and inversion:
— probability P, and P, respectively.

ch7-35

Chang, Huang, Li, Lin, Liu

Pseudo-Code of Genetic Algorithm

Algorithm: Genetic_Placement(Ny, Ny, N, P;, Pu)

[*N,: population size; */ * Ng: number of generation; */
/* N,: number of offspring; */

/* Pi : inversion probability; */ /* Py : mutation probability; */
1 begin

2 ConstructPopulation(N,); /* randomly generate the initial population */
3forj<«1toN,

4 Evaluate Fitness(population(Np));

5fori<« 1to Ny /* produce one generation at a time */

6 forj<1toN,

7 (X, y) « ChooseParents; /* choose parents with probability « fitness value */
8 offspring(j) « GenerateOffspring(x, y); /* crossover to generate offspring */
9 forh<1toN,

10 With probability Py, apply Mutation(population(h));

11 forh<«1toN,

12 With probability P;, apply Inversion(population(h));

13 Evaluate Fitness(offspring(j));

14 population <« Select(population, offspring, N,);

15 return the highest scoring configuration in population;

Chang, Huang, Li, Lin, Liu

ch7-36
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Outline

e Placement metrics

e Placement
— Clustering-Based
— Partitioning-Based
— Force-Directed
— Simulated-Annealing
— Genetic Algorithm
‘ e Partitioning
— Kernighang-Lin Partitioning Algorithm
— Simulated-Annealing Based Partitioning

Chang, Huang, Li, Lin, Liu

ch7-37

Example: Circuit Partitioning

Chang, Huang, Li, Lin, Liu

ch7-38
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Partitioning

system design

s Decomposition of a complex systein into smaller subsystems.

« Each subsystem can be designed independently speeding up
the design process.

® Decomposition scheme has to minimize the interconnections
among the subsystemns.

# Decomposition is carried out hierarchically until each
subsystem is of managable size.

L Y Y ¥

Module 1 @ L @ Interface

ch7-39

Chang, Huang, Li, Lin, Liu

Kernighan-Lin Algorithm

e Kernighan and Lin,

— “An efficient heuristic procedure for partitioning graphs,”
The Bell System Technical Journal, vol. 49, no. 2, Feb. 1970.

¢ Basic Strategy

— An iterative, 2-way, balanced partitioning heuristic
* Basic Procedure

— (1) Start with an initial solution S = (A | B)

— (2) Find a subset from A and B for swapping

— () lterate until there is no gain

9 Questions:
(1) What is the cost function?
9 (2) How to find best swapping pairs?
A B

ch7-40

Chang, Huang, Li, Lin, Liu
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Internal Cost vs. External Cost

For vertex a: For vertex b:
Internal cost: (1+2) =3 Internal cost: (1+1+2) =4
External cost: (2+4) =6 External cost: 5

What if we swap a and b?

=> Internal cost and external cost swaps as well.

=>» External Cost Change = (3+4) - (6+5) = -4 (reduction).
=>» Looks like a good swap.

2
PN
5

A B

Chang, Huang, Li, Lin, Liu Ch7-41
K-L Algorithm: A Simple Example
e Each edge has a unit weight.
Step # Vertex pair Cost reduction Cut cost
0 - 0 5
1 {d, g} 3 2
2 {c, T} 1 1
3 {b, h} -2 3
4 {a, e} -2 5
ch7-42

Chang, Huang, Li, Lin, Liu
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Terminology

Two sets A and B such that |A|=n=|Bland AnB = .
External costofae At E; = 2, ;Cqa-

Internal costofae Al l,= Y c,.

D-value of avertex a: D, = E, - I, (cost reduction for moving a).

Cost reduction (gain) for swapping a and b:
— Qap = Da + Db - 2Cab

Watch out for the edge connecting the swapping pair (a, b) !

)

ch7-43
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K-L Algorithm: A Weighted Example

pu]
b
r
Y

By S B b b
ool VTR

£} d

o R, m b D
b b g B
By e
By o
by b by b | Ry

costs associated with o

Initicl cut cost = (342444 (44241 |4+ 34241) = 22

e |teration 1:

I.=142=3, E,=34+244=29; Do=E,—-1,=9-3=6
Ih=141=2, E,=44241=7; Dpy=Ey—Iz1)=7-2=5
Ie=241=3, E:=3424+1=¢6; De=Es—Io=6—-3=3
I4g=44+3=7, E4g=34+44+3=10, Dy=E;—I;4j=10-7=3
fe=44+2=6, E,=24242=06; De=E,—Io=6—-6=0
If=3+2=5: Ef=4+1+1=6: Df:Ef—If=6—5=1

ch7-44

Chang, Huang, Li, Lin, Liu

22



(Step 1): Computing the g Value

® |teration 1:
In=142=3; Ea=34244=29, Dy =Fq—-In=9-3=606
fb=1+1=2; Eb=4+2+1=7; Dpy=Fy—Ip=7-2=5
Ioe=241=23; Fr=3424+1=06; De=Fe—Tc=6-3=3
Ij=a4+3=7: By;=3+4+3=10; Dy=F;-I;=10-7=3
le=442=6;, Ee=2+4+2+2=6; De=Es—Ie=6-6=0
If=3+2=5; Ef=4+1+1=6.'. Df=Ef—ff=6—5=l

= Do+Dj—2¢,;=6+3-2x3=3
gae = 64+0-2x2=2

= 6+1-2x4=-1

= 5+3-2x4=0
Ghe = B+0-—-2x2=1

Gos BE+1—2x%1=4 (mazimum)

Sg = 3+3-2%x3=0 T

Gea = 34+0D—2%x2=-1 T, . )
gf = 3+1-2x1=2 Best pick

e Swapbandf. (g1 =4)

Chang, Huang, Li, Lin, Liu Ch7-45
(Step 2): Lock and Update
After locking (b, f) @ @
b e
c f
A B A B
Update the D-value of each unlocked vertices:
(1) For unlocked vertex, x, in A: D, = D, + 2C,, — 2Cy
(2) For unlocked vertex, y, in B: D’ =D, + 2c,;— 2c,
=> Update the g-value of each unlocked vertex pairs
Oyy = D, + Dy’ - 2ny
=>» Find the next candidate pair to lock ...
ch7-46
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(Step 3): Determining Swapping Pairs

At the end of the locking process: each vertex is paired up with another one
Locked pairs: (b, f) = (c, e) = (a, d)

Gain of each pair Accumulated gain
4

4
e c

: 2 @ best
V2V 2 4

A B

=>» Best swapping pairs {(b, f), (c, e)}

f b

[<}]

Candidate pairs before this peak
Accumulated index are selected for swapping

Gain

Index of
candidate pairs
ch7-47
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Pseudo-Code of Kernighan-Lin Algorithm

Algorithm: Kernighan-Lin{(G)
Input: G =(V,E),|V| = 2n.
Quitput: Balanced bi-partition A and B with “small” cut cost.

1 begin
2 Bipartition (& into A and B such that |V| = |Vg|, VanVg =8,
and VauvVg=V.
__H1 3 repeat
4  Compute Dy, Yo e V.
5 —for:=11ton do
G Find a pair of unlocked vertices vs; € Va4 and vy € Vg whose
exchange makes the largest decrease or smallest increase in
cut cost; (Find next candidate pair)
Mark v4; and vy as locked, store the gain g, and compute
the new D, for all unlocked » € V; (Lock & update)
8 Find k, such that G, = Y%, §; is maximized; (Peak in gain curve)
9 ifGg >0 then
10 Move vg1,...,1q, from V4 to Vg and vg,..., v from Vg to Vy;
N 11 Unlock o, Yo € V.
12 until G, £ 0;
13 end

~

ch7-48

Chang, Huang, Li, Lin, Liu
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Time Complexity

e Line 4: Initial computation of D: O(n?)
e Line 5: The for-loop: O(n)
e The body of the loop: O(n?).
— Lines 6--7: Step i takes (n —i + 1)? time.
e Lines 4--11: Each pass of the repeat loop: O(n3).
e Suppose the repeat loop terminates after r passes.
e The total running time: O(rn3).
— Polynomial-time algorithm?

ch7-49

Chang, Huang, Li, Lin, Liu

Extensions of K-L Algorithm

¢ Unequally sized subsets (assume n, <n,)
+ Partition: |A| =n,and |B| =n,.
2. Add n,-n, dummy vertices to set A. Dummy vertices have
no connections to the original graph.
3. Apply the Kernighan-Lin algorithm.
4. Remove all dummy vertices.
¢ Unequally sized “vertices”
1. Assume that the smallest “vertex" has unit size.

2. Replace each vertex of size s with s vertices which are fully
connected with edges of infinite weight.

3. Apply the Kernighan-Lin algorithm.
e K-way partition
1. Partition the graph into k equally sized sets.
2. Apply the Kernighan-Lin algorithm for each pair of subsets.
3. Time complexity? Can be reduced by recursive bi-partition.

ch7-50

Chang, Huang, Li, Lin, Liu
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Concluding Remarks

* Placement

— (1) Top-Down, Bottom-Up, or Hybrid

— (2) A Good Heuristic: Force-Directed Algorithm

— (3) Application of Simulated Annealing, Genetic Algorithm
¢ Partitioning

— An often encountered problem in EDA

— Kernighan-Lin algorithm is a classic algorithm

For Any Search Problem,
Evolution Works, But Just Takes Time ...

ch7-51
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Routing
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Classification of Routing Problems

Routing Problems

v

General-Purpose

Routing Global Routing

y

Maze routing Steiner Tree
Line search

Detailed Routing

|

Left-Edge
Robust Router

Chang, Huang, Li, Lin, Liu Ch8-3
Outline
e Course contents
— Basics of Routing
— General-Purpose Routing (Maze Routing, Line Search Routing)
— Global Routing
— Detailed Routing
¢ Readings
— Chapter 9
]
' ! = — H—
| — |
channel routing
7 o
T | BR
Detailed routing switchbox routing
ch8-4

Chang, Huang, Li, Lin, Liu




Routing

placement

I /D\l ]
+ Generates a "loose” route for each net. j"-|. y’f

* Assigns a list of routing regions to each net without

|
/ Vo
specifying the actual layout of wires. A l:l I ﬁ

=
global routing 1
Global routing
detailed routing -
¢ Finds the actual geometric layout of each net within
the assigned routing regions. %
compaction Detailed routing

Chang, Huang, Li, Lin, Liu

ch8-5

Routing Constraints

* Requirements of a valid routing
— 100% routing completion
— 100% layout rules compliance
— Use of assigned layers only
e Quality considerations of Routing
— (1) Area minimization
— (2) Performance-driven routing (critical wire length minimization)
— (3) Crosstalk alleviation
— (4) Resistance to process variations (Design for manufacturability)

—

A

[
.
A

_;__Q:E_ 208 W —

e ] o i et

Two—laver routinng Geometrical constraint

Chang, Huang, Li, Lin, Liu
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Lee Algorithm

e Basic Concept:

— Find a path from Sto T by “wave propagation”.
e Strength:

— Guarantee to find the best route
e Time and space complexities

— O(MxN) for MxN grid =» Huge!
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o en 5] o B en| [~
] 2] e M| g3 | ] o]~ ]
[ | =] M| | ) tnjen| ~d] On

[T
|
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|

o) | O tn| = ) B\ ta OB ~1
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Filling Retrace

o
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Improvements of Maze Routing

e Starting Point Selection:

— Choose the point farthest from the center of the grid as the
starting point.

¢ Double Fan-Out:
— Propagate waves from both the source and the target cell.
* Framing:
— Search inside arectangle area 10-20% larger than the bounding
box containing the source and target.

— Need to enlarge the rectangle and redo the search if it fails.

starting point selection double fan—out framing

. 8 T
o
| +5 1l
.
\
d Ll

ch8-8
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Connecting Multi-Terminal Nets

e Step 1: Propagate wave from the source s to the closest target.
e Step 2: Mark ALL cells on the path as s.

e Step 3: Propagate wave from ALL s cells to the other cells.

e Step 4: Continue until all cells are reached.

e Step 5: Apply heuristics to further reduce the tree cost.

D D
L ]
C
[& . —0 &
"B
B &
E 5 L] £ E E
s
Chang, Huang, Li, Lin, Liu Ch8-9
Routing on a Weighted Grid
¢ Motivation:
— To find a more desirable path (l.e., path of less weight)
— To achieve a more balanced routing
¢ Weight of a grid cell
— Defined as (the number of unblocked neighbor cells — 1)
! oeied | 2]212]2]2]2]2]2]2]3
| grid cefl ] 5
are )
T T T desirablz bfﬂﬁkfd&;”d (202121212113
Feghieh iy
I e | TN 11313 313]2[3] 2
R\shon‘esr ,,,/723?—‘23333 213
Pﬂfh Wﬂg‘!!‘j‘\.‘; 3 2 3 3 3 3 3 3 3
ch8-10
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Hightower — Line-Search Algorithm

e Hightower

— “A solution to line-routing problem on the continuous plane,”
DAC-69.

¢ Basic Concept:
— Avroute is searched by moving two crossing lines.
— One stride is determined at each step.
— Alternate the vertical and horizontal moves.
— Get around the obstacles and get closer to the target destination.

0 2

O]

0o QO g5 ——Q—TF—

®

|
|
® ®)
| b ®
| IS N —— S
0 0 2
Chang, Huang, Li, Lin, Liu Ch8-11
Net Ordering
¢ Net ordering greatly affects routing solutions.
i b b
; 5
route net o before net b
v 7 4 a b
i: ) b’
7] ; a’
route net b before net u
ch8-12
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Net Ordering Heuristics

¢ Ordering Criteria
— A net with more pins within their bounding boxes last
— A net with large length estimation first (or last?)
— A net with higher timing criticality first

- "

D A
[ =i [] a1

s

7l Gl
mL G

rouitng ordering: a(0) —>b{(1)—>d(2) —> c(6)

ch8-13
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Rip-Up and Re-Routing

¢ Rip-up and re-routing

— s required when arouter fails to connect all nets.
e Two steps in rip-up and re-routing

— (1) Identify bottleneck regions

— (2) Rip up some already routed nets

— (3) Route the blocked connections

— (4) Re-Route the ripped up connections
e Stopping criteria

— (1) All nets are routed successfully

— (2) Time limit is exceeded

ch8-14

Chang, Huang, Li, Lin, Liu




Outline

e Basics of Routing

e General-Purpose Routing
— Maze Routing
— Line Search Routing

‘ ¢ Global Routing

— Minimum Steiner Tree Problem
¢ Channel Routing

ch8-15

Chang, Huang, Li, Lin, Liu

Graph Models for Global Routing: Grid Graph

* Vertex
— Each cell is represented by a vertex.
e Edge
— Two vertices are joined by an edge if the corresponding cells are
adjacent to each other

e Occupation mark

— The occupied cells are marked as filled circles, whereas the
others are clear circles.

ch8-16
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Global Routing

¢ Global Routing

— is the process of roughly fixing the shapes of the
connections for each net.

— by distributing the wiring segments among channels.
— Each shape is arectilinear Steiner tree.

Possible shape Alternative shape

1 e o e
et O e e et

Chang, Huang, Li, Lin, Liu Ch8-17
Example Global Routing
Global routing
For Standard-Cell Design
Global routing
For Gate-Array
//’feedrhmughs . _
' 1
|
\ aile .
— \{J;e;'dl_ | I:J|_:I|§>2nacks

| =

Routing could fail due to
Inadequate feed-through channels

?

failed connection
Each channel has a capacity of 2 tracks.

ch8-18
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Global Routing in FPGA

® Routing constraints
— Depends on the switch box architecture.
¢ For performance-driven routing
— (1) Minimize the number of switches.
— (2) Minimize the maximum of the critical wire length.

-
?vr -

switch modiile

Jailed connection

Each channel has a capacity of 2 tracks.
ch8-19
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The Steiner Tree Problem

* Problem:
— Given a set of pins of a net, connect the pins by a routing tree.

T h Hﬂ

i 5o O

gate array standard cell building black

e Minimum Rectilinear Steiner Tree (MRST) Problem:
e Given n points in the plane, find a minimum-length tree of rectilinear
edges which connects the points.

e MRST(P) = MST(P U S), where P and S are the sets of original points
and Steiner points, respectively.

Steiner
points
miiRipium spanning tree MRST

MST
ch8-20

Chang, Huang, Li, Lin, Liu
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Theoretical Results for the MRST Problem

e Hanan's Theorem:
— There exists an MRST with all Steiner points (set S) chosen from the
points of horizontal and vertical lines crossing points in P.

e Hwang'‘s Theorem: For any point set P,  Cost(M8T(P)) <3

Cost(MRET(F)) — 2

1 I T I | [ I |
FTr 1T 1T 11 T T T T 11
. —— 0 ®e00 ©

° T 0 OO0O® O ananPoints
o 1 o o0eo0 o

ch8-21
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Coping with the MRST Problem

¢ Ho, Vijayan, Wong,
— “New algorithms for the rectilinear Steiner problem,”
— (1) Construct an MRST from an MST.
— (2) Each edge is straight or L-shaped.
— (3) Maximize overlaps by dynamic programming.
e About 8% smaller than Cost(MST).

Two L—shaped MRST of the given MST

\L\Trﬂr‘j

Two possible L—shaped layouts per edge

ch8-22

Chang, Huang, Li, Lin, Liu
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lterated 1-Steiner Heuristic for MRST

e Kahng & Robins (1990)

— “A new class of Steiner tree heuristics with good performance:
the iterated 1-Steiner approach,”

Algorithm: lterated_1-Steiner(P)
P: set of n points to be connected
1 begin
2S« G,
/*H(P u S): set of Hanan points */
/* AMST(A, B) = Cost(MST(A)) - Cost(MST(A LU B)) */
3 while (Cand < {x e HP US)|AMST(PUS, {x})>0}=9)do
4  Find x e C and which maximizes A MST(P U S), {x});
5 S« Suixh
6 Remove points in S which have degree <2 in MST(P U S);
7 Output MST(P U S);
8 end

T_" —— E— —
* -~
Remove

degree-2 node
Chang, Huang, Li, Lin, Liu ch8-23

Outline

e Basics of Routing
¢ General-Purpose Routing
¢ Global Routing

=) « Channel Routing
— Left-Edge Algorithm
— Robust Channel Router

ch8-24

Chang, Huang, Li, Lin, Liu
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Routing Area Partitioning

* Routing Area

— Is usually partitioned into smaller pieces before routing
¢ Types of routing area

— (1) Normal channel

— (2) L-shaped channel

— (3) Switchbox
¢ An L-shaped channel

— Can be divided into a normal channel + a switchbox

I switchbox
:3 254 f
2

Z
(© G)]
Chang, Huang, Li, Lin, Liu Ch8-25
A Few Parameters When Doing Routing
e Number of terminals
— Two-terminal nets vs. multi-terminal nets
* Net types
— Power / ground / clock wires vs. signal wires
e Number of layers
— Two vs. three, or more layers
e Signal types
— Critical nets vs. non-critical nets
ch8-26
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Routing Models

e Grid-based model:
— A grid is superimposed on the routing region.
— Wires follow paths along the grid lines.
— Pitch: distance between two grid lines.

¢ Gridless model: one without grid lines.

|
i
i
*
="

-
BT
i

i

i
@l

grid—based gridless
ch8-27
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Models for Multi-Layer Routing

e Unreserved layer model:
— Any net segment is allowed to be placed in any layer.
¢ Reserved layer model:
— Certain type of segments are restricted to particular layer(s).
— Two-layer:
= (HV): Layer 1> Horizontal, Layer 2> Vertical
= (VH): Layer 1= Vertical, Layer 2> Horizontal
— Three-layer: HVH, VHV

Layer 1 W=
Layer 2 =
Layer 3 mmmm

Unreserved HVH model VHV model
model

ch8-28

Chang, Huang, Li, Lin, Liu
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Channel Routing Problem

¢ Inputs for channel routing
— (1) Arectangle routing area
— (2) Fixed terminals at the top and bottom boundaries
— (3) Floating terminals at left and right boundaries
® Objective
— To minimize the channel height

| 1 1

@ } ®

- =
-+
4=

9 1=
[0 -
(5
[

—
(o)

Chang, Huang, Li, Lin, Liu

ch8-29

Terminology for Channel Routing

e Channel density: maximum local density
— Number of horizontal tracks required > channel density.

terntnals

01::/516

9 I
o— — upper boundary

4
.

nelist: 5 35352680987
I\ s | I 1 —— lower boundary

local 1 3 s s 4 3 3 3 4 3 2
density

rerminals

- = \‘ upper boundary
vias | é 5\
T %— dogleg [i?/ branches

—— lower boundary
trurks

Chang, Huang, Li, Lin, Liu

014516704910
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Horizontal Constraint Graph (HCG)

e HCG G = (V, E) is an undirected graph, where
— V={v;|v,represents a net n;}
— E={(v;, vyl a horizontal constraint exists between n;
and n;}.
¢ For graph G:

— vertices < nets; edge (i, j) © net i overlaps net j.

I 5 2 0 2 1 1 0 3 4 0 3
R o e S e T T o T o

- ————
3 0 1 2 5 3 4 0 06 2 3 2

A routing problem and its HCG. 3

Chang, Huang, Li, Lin, Liu

ch8-31

Vertical Constraint Graph (VCG)

e VCG G =(V, E)is adirected graph where
— V={v,;]|v,represents anet n}
— E={(v;, vj)| avertical constraint exists between n;
and n;}.
e For graph G:

— Vertices < nets; edge i —»j © net i must be above net j.
5 f

I 5 2 0 2 1 1 0 3 4 0
00— 00—

—r——r—r—r————0—0—0—
3 0 I 2 5 3 4 0 0 2 3 2

A routing problem and its VCG. 3

Chang, Huang, Li, Lin, Liu

ch8-32

16



Example: Vertical Constraint Graph

¢ Nets to be routed:
— Nets 1,2,3,4

¢ Columns of the channel
— Columns a, b,c,d, e, f,g,h

def gh

-T—w
-_T-rn T

iy

Chang, Huang, Li, Lin, Liu

;

— L ——

C
;ﬂ240®®0 52141 2

ch8-33

Example: Cyclic Vertical Constraints

e Cyclic vertical constraints
— Needs to be resolved by splitting horizontal segments
— That is, doglegs are necessary

2 1 (2a) 2 1
ool

@ (D Digl
EHm

12 (2) 12

Chang, Huang, Li, Lin, Liu
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2L Channel Routing: Basic Left-Edge Algorithm

* Hashimoto & Stevens
— “Wire Routing by Optimizing Channel Assignment within Large
Apertures,” DAC-71

— For problems without vertical constraint

— HV-layer model is used
— No doglegs are allowed

* Major operations
— (1) Treat each net as an interval
— (2) Intervals are sorted based on theirs left-end x-coordinates
— (3) Intervals are routed one at a time based on the above order
— (4) For anet, tracks are scanned from top to bottom. First

available track is assigned immediately for this net
® Results

— Simple left-edge algorithm produces minimal number of tracks
under the assumption that there are no vertical constraints

Chang, Huang, Li, Lin, Liu ch8-35
Basic Left-Edge Example
® List of nets to be routed, U={l, I, ..., Ig};
—1,=[1,3],1,=[2,6],1;=[4, 8], 1,=[5,10], Is = [7, 1], I = [9, 12].
o t=1:
— Route I;: watermark = 3;
— Route I; : watermark = 8;
— Route I watermark = 12;
e t=2:
— Route |, : watermark = 6;
— Route I : watermark = 11;
* t =3: Route |,
column: 1 2 3 4 5 78 9 10 11 12
I 0o 0 o0 4 0 3 9 4 0 6
| M QR SN
0213 005060 5 0
density: [ 2 2 3 3 3 3 3 2 1
ch8-36
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Basic Left-Edge Algorithm

Algorithm: Basic_Left-Edge(U, track]j])
U: set of unassigned intervals (nets) I, ..., I,;
I;i=[s;, &]: interval j with left-end x-coordinate s; and right-end e;;
track(j]: track to which net j is assigned.

1 begin

22U« {l, 1, ... I}
3t«0;

4 while (U=d) do
5 tet+1;

6 watermark < 0;

7 while (thereis an I; € U s.t. s; > watermark) do
8 Pick the interval I; e U with s; > watermark,
9 track[j] « t;

10 watermark < e;

11 U« U-{I}};

12 end

Chang, Huang, Li, Lin, Liu

ch8-37

Example: Left-Edge Under Vertical Constraints

i 0o 0 3 3 i 0 0 3 3
result from basic optimal ronting: 2 tracks
left—edge algorithm
3 tracks
i
2 3 5 1 4 5 vee o

Chang, Huang, Li, Lin, Liu

ch8-38
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Constrained Left-Edge Algorithm

Algorithm: Constrained_Left-Edge(U, track]j])
U: set of unassigned intervals (nets) I, ..., I,;
I=[s;, ¢j]: interval j with left-end x-coordinate s; and right-end ¢;;
track]j]: track to which net j is assigned.

1 begin

22U« {1, 1, ..., 1L}

31« 0;

4 while (U # &) do

tet+1;

watermark « 0;

while (there is an unconstrained I; € U s.t. s; > watermark) do

Pick the interval I; € U that is unconstrained,
with 5> watermark

9 track[j] «t;

10 watermark « e;;

11 U«U-{I};

()]

oo N O

12 end
Chang, Huang, Li, Lin, Liu Ch8-39
Constrained Left-Edge Example
e |,=01,3],1,=11,5],l;=[6, 8], I, =[10, 11], ;= [2, 6], Is = [7, 9].
* Track 1: Route I; (cannot route |;); Route I5; Route |,.
* Track 2: Route I,; cannot route I5.
® Track 3: Route Is.
e Track 4: Route I,. i1 22563040
! ' . *
& .I .I & e
2 50 5 5 3 3 06 0 4
% ©
track 2 track 3 track 4
ch8-40

Chang, Huang, Li, Lin, Liu
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Dogleg Channel Router

¢ Deutch

— “Adogleg channel router,” 13rd DAC, 1976.
e Motivation:

— Left-Edge algorithm cannot handle constraint cycles.
e Solution:

— Doglegs are used to resolve constraint cycle.

I 1 2
2 0 1
Chang, Huang, Li, Lin, Liu Ch8-41
lllustration of Dogleg
¢ L eft-Edge:
— The entire netis on a single track.
¢ Dogleg Strategy
— Doglegs are used to split the horizontal parts of a net into
different tracks to minimize the channel height.
® Penalty
— Additional vias might be needed.
2 0 3 0 4 save 2 tracks, with via penalty
m 3E3a8
12 0 3 3 4 40 ;] 2 0 3 3 4 4 0
no dogleg with dogleg
chg-42

Chang, Huang, Li, Lin, Liu
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Dogleg Channel Router

e Basic Idea:
— Each multi-pin net is broken down into a set of 2-pin nets.
e Two parameters are used to control routing:

— (1) Range: Determine the # of consecutive 2-terminal subnets of
the same net that can be placed on the same track.

— (2) Routing sequence: Specifies the starting position and the
direction of routing along the channel.
¢ Modified Left-Edge Algorithm is applied to each subnet.

o -4 o b 3a g7
4 2b @ 2a l Fi
—o—— 9o @ P — —I i . J,_J._
2 3 ¢ 3 4 4 (1) 2 3 ¢ 3 4 4

ch8-43

Chang, Huang, Li, Lin, Liu

Restricted vs. Unrestricted Doglegging

e Unrestricted doglegging:
— Allow adogleg even at a position where there is no pin.

¢ Restricted doglegging:
— Allow a dogleg only at a position where there is a pin belonging to
that net.
e The dogleg channel router
— does not allow unrestricted doglegging.

I 0 2 I 2 0 3 0 0
———0o—
1
————o—
2 0 1 2 0 1 6 1 0 2 3 3
channel router will faill  Solution exists! restricted doglegging

splits a net info subneis.

Chang, Huang, Li, Lin, Liu

ch8-44
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Channel Routing Strategies At A Glance

Approaches Features

Optimal if no

L ECR A vertical constraints

y

Modified Left-Edge Algorithm Feasible for
vertical constraints

y

Dogleg Channel Routing Doglegging
For cyclic V-constraints

A 4

Robust Channel Router Unrestricted Doglegging

ch8-45
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Robust Channel Router

Yoeli,
— “Arobust channel router,” IEEE TCAD, 1991.
Track assigning procedure
— (1) From top and bottom sides towards to the center of channel.
— (2) Alternates between top and bottom tracks towards center.
— Theworking side is called the current side.
Weights
— are used to guide the assignment of segments in a track, which
— (1) favor nets that contribute to the channel density;
— (2) favor nets with terminals at the current side;

— (3) penalize nets whose routing at the current side would
cause vertical constraint violations.

Allows unrestricted doglegs by rip-up and re-route.

' @ ©))
Track assignment procedure
t (2)

ch8-46

Chang, Huang, Li, Lin, Liu
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Outline of Robust Channel Router

—» Calculate the weight of each net

A 4

Set current side to “Top” or “Bottom”, alternatively

A 4

Select nets that are not routed yet for the current row
(by an approach based on dynamic programming)

y

Maze routing or Rip-up & Re-routing if necessary
(to resolve the unsolved vertical constraints)

ch8-47

Chang, Huang, Li, Lin, Liu

Interval Graphs

* Vertex:

— There is a vertex for each interval.
e Edge:

— Vertices corresponding to overlapping intervals are linked by an edge.
¢ The net selection problem (l.e., selecting nets to one row)

— is equivalent to finding a minimal vertex coloring of the graph.

ch8-48

Chang, Huang, Li, Lin, Liu
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Net Selection For One Row

® The nets to be put in one row of the current side
— Is done by selecting maximum weighted compatible set in the
interval graph.
— NP-complete for general graphs, but can be solved efficiently
for interval graphs using dynamic programming.
® Main ideas:
— Theinterval for net i is denoted by [Ximm' ximax]; its weight is w;.
— (1) Process each channel column from left to right column;
— The optimal bengefit for position c is denoted by total[c];

— (2) A net n with arightmost terminal at position c is taken into
the candidate set if w, + total[xnmin — 1] > total[c — 1]

1 2 3 4 3 What nets are 1 2 3 4 3
—o—o—o—o—o— selected —o—o——o—o—o—
for the 1%t row?
—O0—e—O0—eo—o— ‘ —0—e—0—0o—o—
1 2 4 1 2 4
ch8-49
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Candidate Selection Criterion

Net n is selected as a condidate if the following holds:

w,, + total [xnmin — 1] > total[c — 1]

/ l l

Benefit if Total benefits Total benefit if
Selecting net n up to Xnrnin Not selecting net n
E.g., at current position c =4
g P Assume:
5 3 1 3 W, =987, Total [1] = 0, Total [3] =0
4 & o o o W, + Total [1] > Total [3]
- — =>Net 2 is included as a candidate
—0—e O —
1 2 4

ch8-50
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Weight Computation

1 2 3 4 3 (Density at each column position)
—o—e—o—0—0— (1)=1
- d2) =2
- d@3) =2
—_—0—e o—o— d(4) = 3 (nets 2, 3, 4)
1 2 4 d) =2

e Computation of the weight w; for net i:
1. favor nets that contribute to the channel density: add a large B to w;.
2. favor nets with current side terminals at column x: add d(x) to w;.

3. penalize nets whose routing at the current side would cause vertical
constraint violations: subtract Kd(x) from w;, K =5~ 10.

— Assume B = 1000 and K =5 in the 1stiteration (top side):
« W, =(0)+(1)+(-5*2)=-9
= Net 1 does not contribute to the channel density
= One net 1 terminal on the top

= Routing net 1 causes a vertical constraint from net 2 at column
2 whose density is 2

ch8-51
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Weight Computation (cont’d)

1 2 3 4 3 _
—eo—eo—o0o—o—o— dD=1

JE— d2)=2
g di3) =2

e .—._ d(4) = 3 (nets 2, 3, 4)
1 2 4 i) =2

e Computation of the weight w; for net i:
1. favor nets that contribute to the channel density: add a large B to w;.
2. favor nets with current side terminals at column x: add d(x) to w;.

3. penalize nets whose routing at the current side would cause vertical
constraint violations: subtract Kd(x) from w;, K =5 ~ 10.

— Assume B =1000 and K =5 in the 1stiteration (top side):
s W, =(0)+ (1) +(-5%2)=-9

_ _ WE—&
= W, =(1000) +(2) + (-5*3) = 987 + Channel density contributor
= W5 =(1000) + (2+2) + (0) = 1004 + Current side terminals
= W, =(1000) + (3) + (-5 * 2) = 993 - Vertical constraint violator

ch8-52

Chang, Huang, Li, Lin, Liu
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1st [teration: Top-Row Net Selection

1 2 3 4 3 1 2 3 4 3
T T
—_— 0@ o——— 44 —O0—— 00—

1 2 4 1 2 4

* w;=-9, w,=987, w;=1004, w, = 993.
* A net n with arightmost terminal at position c is taken into
the candidate set if: w, + total[xnmin —1] > total[c — 1] . _#Column 1D

Column | total[1] = 0 selected_net[i] =0
ID |total[2] = max(0, 0-9) =0 selected_net[2] =0 Net ID
\QQ@[S] =0 selected_net[3] =0
total[4] = max(0, w,+total[1]) = 987 selected_net[4] :@/
total[5] = max(987, 0+1004, 0+993) = 1004 selected_net[5] =3\
e Select those nets not violating horizontal constraints )

backwards from right to left: Only net 3 is selected for the Enﬁfﬁg';f}m
top row. (Net 2 is not selected since it overlaps with net 3.

Chang, Huang, Li, Lin, Liu Ch8-53
2nd Jteration: Bottom-Row Net Selection
1 2 3 4 3 i 3 & & 3
—® O—0 OO
— 00— *—o—
1 2 4 1 2 4
e 2ndjteration: bottom-row selection (1) Forward scan
— w; =(1000) + (2) + (0) = 1002 - pick candidate nets
— w, =(1000) + (2) + (-5 * 2) =992 ) Baclfward scan .
— w, = (1000) + (1) + (-5 * 2) = 991 - decide max. compatible set
total[1] =0 selected_net[1] =0
total[2] = max(0, 0+1002) = 1002 selected_net[2] =1
total[3] = 1002 selected_net[3] =0
total[4] = max(1002, 0+992) = 1002 selected_net[4] =0
total[5] = max(1002, 1002+991) = 1993 | selected_net[5] = 4
e Nets 4 and 1 are selected for the bottom row.
ch8-54
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Maze Routing + Rip-up & Re-route

1 2 3 4
——o—o—o
—0—e ®

1 2

e 3rd jteration

— Routing net 2 in the middle row leads to an
infeasible solution.

— Apply maze routing and rip-up and re-route nets 2
and 4 to fix the solution.

Chang, Huang, Li, Lin, Liu

ch8-55

Concluding Remarks

Routing In One Shot

— Maze routing or line search routing
Routing In Stages (Divide-and-Conquer)
— (1) Routing Area Decomposition

— (2) Global Routing

— (3) Detailed Routing

Global Routing

— To find minimum rectilinear Steiner tree
— Good heuristics are available

Detailed Channel Routing

— Getting around vertical and horizontal constraints
— Modified left-edge, Robust router, etc.

Routing In A Maze,
It Is Important That All Mice Find Their Ways Out !

Chang, Huang, Li, Lin, Liu

ch8-56
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Outline

Overview
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History of Lex & Yacc

Lex & Yacc were both developed at Bell Lab. in
the 1970s.

Yacc was developed as the first of the two by
Stephen C. Johnson.

Lex was designed by Mike E. Lesk and Eric
Schmidt to work with Yacc.

Standard UNIX utilities

& Electrical Engineering
Natonal Tighua Unnersty,Taan
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Who Needs Lex & Yacc ?

* Lex & Yacc are programming tools designed for
— Writers of compiler and interpreters
— Non-compiler-writers

» Any application looking for patterns in its input
or having an input/command language is a
candidate for Lex/Yacc.

4 Electrical Engineering
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Why Lex & Yacc ?

* Lex & yacc help you write programs that
transform structured input

— Lex: generate a lexical analyzer
o (RFCEIY R — M —{E gk )
»Divide an input stream into tokens
»Pass the tokens to Yacc
— Yacc: generate a parser
o (B —E—(EErRAE R & HE T SUAN A T)
»Grammar checking

»Create an interpreter
Ex: {855 » ZraE 2N £ E

Al-5
Lex & Yacc Tutorial ) ElctricaiEngineering

Lex with Yacc

Lexical Rules Grammar Rules

l

l
e e
l

& BF AR l FFasUENEF
Input Token
) > >

Parsed Input
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A Simple Example

» Build a program that recognizes different types of
English words

» Extend it to handle multiword sentences that
conform to a simple English grammar

« Vocabulary set: B¥&

» Valid sentence grammar: subject + verb + object
Xk
Is “Mary hate dog” a valid sentence?

A1-7

0 Electrical Engineering
National Tinghua Unversity, Taw an
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Recognizing Word w/ Lex

Mary
hate
dog

Al-8

0 Electrical Engineering
National Tsinghua Unversity, Taw an
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Checking Grammar w/ Yacc

%{ object: NOUN
#include <stdio.h> :
%} %%

extern FILE *yyin;
%token NOUN PRONOUN VERB | | main ()

{ .
0% dof | Mary

sentence: subject VERB object y
{printf(“valid\n”);} p hate

; } sl Noun [ object
cubject: NOUN ) Noun J object

YYErro
| PRONOUN char *s;
; { fprintf(stderr,”%s\n",s);}
A1-9
Lex & Yacc Tutorial i Electrica) Engineering
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Outline

Overview

Lex: A Lexical Analyzer Generator

— Lex Source Format

— Lex Regular Expressions

— Lex Actions

— Usage

Yacc: Yet Another Compiler-Compiler
Case Study
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An Overview of Lex

Lex Source lex.yy.c (FHzfE$)
— —
lex.yy.c a.out
O >
Input Stream Tokens
> >

Lex & Yacc Tutorial d Electrical Engineering




Format of Lex Source

» Lex source consists of three parts:

{definitions section}

%%

{rules section}

%%

{user subroutines}

— Separated by lines consisting of %%
— The first two sections are required, can be empty

— The absolute minimum lex program is:

%% ==) Copy the input to the output
unchanged

AT-13

4 Electrical Engineering
Natonal Tighua Unnersty,Taan
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Definition Section

» Can include the included code, name translation,
start conditions and changes to internal setting

* An Example:

int count; /*<space> <code> */
%o{
int words_count; H%EEQ‘ code ﬂﬂ?ﬂ
int lines_count; SR
void foo( ); lex.yy.c B AITE
%0}
W [a-zA-Z]
D [0-9]
%Start statel state2

Al-14

4 Electrical Engineering
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Rules Section

» Contains regular expression and actions, program
fragments to be executed when expressions are
recognized

* Anexample:

%%
[\] ; /*no action*/
\n {lines_count++;}

apple {ECHO;} /*<regexp> <action>*/
{W}+ {printf(*find a word %s\n”, yytext);}
<statel>man  {printf(*a man in state1\n”);}
<state2>man  {printf(*aman in state2\n”);}

{D}+  {foo():}

4 Electrical Engir
NatonalTsinghua Universi

Lex & Yacc Tutorial
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User Subroutines Section

¢ Includes user-defined routines called from the rules,
and the redefined input(), output(), unput() or yywrap()

» The content in this section is copied verbatim to C file.

%%
main()
{
yylex();
printf (“word count = %d\n”, words_count);

}
void foo( {

}

§ Electrical Engi
Natlonal Tsinghua Uner
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One Simple Example

This program copies standard input to standard out!!

A1-17
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Another Example

Aword count program

A1-18
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Outline

Overview

Lex: A Lexical Analyzer Generator

— Lex Source Format

— Lex Regular Expressions

— Lex Actions

— Usage

Yacc: Yet Another Compiler-Compiler
Case Study

A1-19
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Lex Reqular Expressions

» Specify a set of strings to be matched
» Contain text characters and operator characters
— Operators
— Character classes
— Arbitrary character
— Optional expressions
— Repeated expressions
— Alternation and Grouping
— Context sensitivity
— Repetitions and Definitions

A1-20
Lex & Yacc Tutorial i ElcctricalEngineering
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Operators

The set of operator characters:
N2 -2. 24108/ {}%<> |
If used as text characters, an escape should be added.

XYZ “+ 47 = “xyz++T = xyzZ\+\+ _>

Any blank not contained within [ ] must be quoted.

Every character but blank, tab (\t), newline (\n), and
the list above is always a text character.

A1-21
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Character Classes

» Class of characters can be specified using the
operator pair [ ].
» Most operator meanings are ignored except
» \ (turninto ASCII character),
> — (indicate range),
> N (except)

[abc]=>aorborc

[a-z] =>fromatoz

[-+0-9] => all the digits and the two signs

[a-zA-Z] => any character which is not a letter
[\40-\176] => from octal 40 (blank) to octal 176 (tilde~)

Al-22
Lex & Yacc Tutorial 4§ Electrical Engincering
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Arbitrary Character

» The operator character . matches all characters
except newline,

» [\40-\176] matches all printable characters in
the ASCII character set.

Lex & Yacc Tutorial 4§ Electrical Engincering

Optional & Repeated Expressions

a? => zero or one instance of a
a* => zero, one, or more instances of a
a+ => one or more instances of a

ab?c =>ac or abc

[a-z]+ =>all strings of lower case letters

[A-Za-z][a-zA-Z0-9]* => all alphanumeric strings with
a leading alphabetic character

d923940 ?

Lex & Yacc Tutorial
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Alternation and Grouping

» The operator | indicates alternation.
» The parentheses () can be used for grouping.

(abjcd) = abjcd => aborcd
(ab|cd+)?(ef)* => abefef, efefef, cdef, or cddd
but not abc, abcd, or abcdef

7

cdcdef ?

Al-25
Lex & Yacc Tutorial i ElcctricalEngineering

Context Sensitivity

» The operator * means the expression is matched
from the beginning of the line.

» The operator $ means the expression is matched
from the end of the line.

~ab =>matches the string ab, but only if ab is at the start of the line J

ab$ => matches the string ab, but only if ab is at the end of the line

» The operator / indicates trailing context.

ab/cd => matches the string ab, but only if followed by cd
ab/An = ab$

A1-26
Lex & Yacc Tutorial i ElcctricalEngineering
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Repetitions and Definitions

» The operators { } specify
— Repetitions (if enclosing a number)
— Definition expansion (if enclosing a name)

a{l,5} => 1to 5 occurrences of a
{digit} => inserts a predefined string named digit
(The string is defined in definition section)

A1-27
Lex & Yacc Tutorial 4§ Electrical Engincering

Regular Expression Summary

Regexp Description Regexp Description

X the character “x” x$ an x at the end of a line
“x” an “x”, even if X is an Xx? an optional x
operator -
P — X* 0,1, 2, ... instances of x
\X an “x”, even if x is an
RENEIon X+ 1,2, 3, ... instances of x
[xy] the character x ory
x|y anxoray
[x-Z] the characters x, y or z ) an x
[™X] any character but x -
xly an x but only if followed
any character but newline by y
X an x at the beginning of a {xx} the translation of xx from
line the definitions section
<y>x |anxwhen Lex is in start x{m,n} | mthrough n occurrences
condition 'y of X

Lex & Yacc Tutorial
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Overview

Lex: A Lexical Analyzer Generator

— Lex Source Format

— Lex Regular Expressions

— Lex Actions

— Usage

Yacc: Yet Another Compiler-Compiler
Case Study
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Lex Actions

* When an expression is matched

— Lex executes the corresponding action, i.e.,a C
program fragment

e The action character | indicates the action for this
rule is the action for the next rule.

%%
regexp <one or more blanks> {action (C codes)}

-2(([0-91+)|([0-97*\.[0-9]+)([eE][-+]?[0-9]+)?) {printf(“number\n”):}

[\t\n] ; => ignore the three spacing characters
1] |

ll\tl! |

“\n”; => the same as [ \t\n]

%%

A1-30
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More Lex Actions

* Lex predefined variable yytext is the pointer to the
matched string.

 yyleng indicates the length of matched string.

» The action of ECHO is to print the matched string.

[a-z]+ printf(*%s”, yytext);
[a-z]+ ECHO; => the same
[a-zA-Z]+ {wordsCount++;charsCount+=yyleng;}

yytext[yyleng-1] =) The last character of the matched string

AT-31
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Ambiguous Source Rules

* When more than one expression can match the
current input,
— The longest match is preferred
— The rule given first is preferred

is|am|are  {printf(“Verb\n”);}
ambiguous {printf(*ADJ\n");}
[a-zA-Z]+ {printf(*Unknown\n”’;}

How does lex choose the action when the input is “ambiguous”?

=) ADJ

A1-32
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Lex Action REJECT

* The action REJECT means “go do the next

alternative” FHEBE: Recycle
— To override the rules Matched token
she S1++; she  {s2++,REJECT}

he hl++; he {h2++;REJECT}

y 3

\n ; \n ;

When the input is “she”

Lex & Yacc Tutorial 4§ Electrical Engincering

More Details — yymore

. yymore() 54 24l Matched tokens % yytext

— Append the next matched token to the end of
the current matched token

%%

hyper {yymore();}
text {printf(*““Token is %s\n”, yytext);}

Input: “hypertext” First match Second match

Output: “Token is hypertext”

Output one token

Al-34
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More Details — yyless

* yyless(n)

— Push back all but the first n characters of the
token

» Consider astring “=-a

=-[a-zA-Z] {printf(“Op: =-\n");

yyless(yyleng-1); _ =-
...action for =- ... ‘ =-I[A-Za-7]

}

=-[a-zA-Z] {printf(“Op: =\n");
yyless(yyleng-2); — I [A.T7A.
...action for = ... ‘ =I-[A-Za-7] -a
}

Lex & Yacc Tutorial 4§ Electrical Engincering

Start Conditions

* When only a few rules change from one
environment to another

— The start conditions can be used to explicitly
declare multiple states (in definition section)

%oStart statel state? ...

» Different rules are applied according to the
corresponding state.

<statel>man printf(*“a man in statel\n);
<state2>man printf(“a man in state2\n);

A1-36
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Example of Start Conditions

» Consider the following problem:
— copy the input to the output

— changing the word magic to first on every line
which began with the letter a,

— changing the word magic to second on every line
which began with the letter b,

— changing the word magic to third on every line
which began with the letter c.

amagic magic afirst first
b magic b second
cmagicmagic cthirdthird
A1-37
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Example of Start Conditions (Cont.)

Using flag Using Start Conditions

THFTER, %Start AA BB CC

%%

~a {flag="a’;ECHO;} %%

e {flag="b"ECHO'} a  {ECHO;BEGINAA}

e {flag="c’;ECHO;} b {ECHO,BEG'N BB,}

\n {flag=0 ; ECHO;} c {ECHO;BEGIN CC;}

magic  { <AA>magic printf(“first”);
switch(flag) <BB>magic printf(“second”)

<CC>magic printf(“third”)
case ‘a’: printf(“first”);break;
case ‘b’: printf(“second”);break;
case ‘c’: printf(“third”);break;
default: ECHO; break;

} :
} Equivalent

Lex & Yacc Tutorial 4§ Electrical Engincering
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Predefined Variables in LEX

Name Description

char *yytext pointer to matched string
int yyleng length of matched string
FILE *yyin input stream pointer
FILE *yyout output stream pointer
int yylex(void) call to invoke lexer, returns token
char* yymore(void) | return the next token
int yyless(int n) retain the first n characters in yytext
int yywrap(void) Wrap-up, return 1 if done, 0 if not done
ECHO write matched string
REJECT go to the next alternative rule
INITIAL initial start condition
BEGIN condition switch start condition
A1-39
Lex & Yacc Tutorial iy Eloctrica Sngineering
Qutline
e Overview

Lex: A Lexical Analyzer Generator

— Lex Source Format

— Lex Regular Expressions

— Lex Actions

— Usage
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How to Generate g¥&fEtT2s by LEX

Stepl: Turn the lex source into a C program

| lex test. |

— lex.yy.c is then produced, which is a C program for
lexical analyzer.

Step2: Compile lex.yy.c into an executable

| gcc lex.yy.c -1l |
Step3: Run the lexical analyzer program

| Ja.out < inputfile |

Al-41
Lex & Yacc Tutorial ) ElctricaiEngineering

Versions of Lex

AT&T - lex

— http://www.combo.org/lex_yacc_page/lex.ntml

GNU - flex

— http://www.gnu.org/manual/flex-2.5.4/flex.html

Win32 version of flex

— http://www.monmouth.com/~wstreett/lex-yacc/lex-yacc.html
Cygwin

— http://sources.redhat.com/cygwin/

A1-42
Lex & Yacc Tutorial ) ElctricaiEngineering
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What does Parser do ?

» Parser invokes scanner for token processing.
» Parser analyzes the syntactic structure.

* Parser executes the semantic routines.

Scanner Ftf2 Token Recognizer gt fTes
Parser Big SCEBTER

Syntactic: gEARY (B REA]FHI4EHE)
Semantic: FEEH (BRIAFHIER)

Al-44
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Introduction of Yacc

e Yacc source format

Declarations

%%
Rules (Grammar)
%%
Programs
A1-46
Lex & Yacc Tutorial i EloctricalSngineerine
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Declarations

* C source codes, include files, etc

* Token definition

A1-47
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Declarations

Example :
%o{

#include <stdio.h>
%0}

%token NOUN PRONOUN VERB ADVERB
ADJECTIVE PREPOSITION CONJUNCTION

Al1-48
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Rules

Example : KESFEHE Token
/NEZHYEE Non-Token

%token NAME NUMBER N

%% (F—Eie— SR

statement: NAME '=" expression
| expression { printf(**= %d\n", $1); }

/—-LHS / RHS

expression: expression '+' NUMBER {$$=$1+ $3;}
|  expression'-' NUMBER {$$=9$1 -$3;}
|  NUMBER {$$=91;}

Al-49
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Parse Tree (%11 f#E—{& =] F)

Non-Terminal Symbol R
exp (1) Compiler
Non-Terminal [y @ % Non-Terminal
Symbol Symbol
exp ‘+’ exp
@ token @
1 1
token token

Token is also called “terminal symbol”, EE A&

A1-50
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Programs

Example :

%%
void yyerror(char *s) {
fprintf(stderr, “%s\n”, s);

}
int main(void) {
yyparse();
return O;
}
Lex & Yacc Tutorial i E!ﬁi?ﬁ‘ﬁf!fﬂ%‘!.‘?;;ﬂ;;
Outline
e Overview
» Lex: A Lexical Analyzer Generator
* Yacc: Yet Another Compiler-Compiler
- What does Parser do?
- Introduction to YACC
- How does the Parser Work?
- Work with Lex
» Case Study
Lex & Yacc Tutorial i E!ﬁi&“"ﬁf!fﬂ%‘;‘?;;ﬂ;z
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How Does the Parser Work?

Calcuy | TR YACC f4ifE

d
Yacc MP y.tab.c

~_~

e Produce .

Executable program that will parse grammar given in
Calcu.y

a.out :

A1-53
Lex & Yacc Tutorial ) ElctricaiEngineering

How Does YACC Process An Article?

It can be done by scanning the tokens in the input file,
performing grammar reduction recursively with the aide of a stack..

-
Y
Y
s eXp Te,
. G
* e
R ‘e
LR L4
oF  pmunmnnEEEE ea, gunnnmEEEE "ra, .
A . . S
34 . . *
>y N s . *
08 . R * %
. G p CRC
exp . . ex 3

3
"
-
H
.
» -
- L
- L]
- €49 o
= | INTEGER (e.g.. 1) | 4 + . | INTEGER (e.g.. 1) |
‘zo l s ’.0.
Y 0 . 0
™ R ., R
. e
., R . o33
.’2- s’ .'.. avte®
L EEET us REETTTTY -"‘“‘
L] .
a, .
a, PRy
tay .
ay et
ll...... -----.-I
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How Does YACC Work?

» The parser produced by Yacc consists of a finite
state machine with a stack.

» The machine has only four actions available to it .
- SHIFT (move on to the next token — keep parsing...)
- REDUCE (a grammar has just matched)
- ACCEPT (the entire article has parsed successfully)
- ERROR (the article does not conform to the grammars)

A1-55

Lex & Yacc Tutorial

A shift and reduce action example

Part of Rule section:

exp : INTEGER {$$=9%1;}
lexp ‘“+’ exp {$$=%1+33;}
|exp ‘" exp {$$=9%1 -$3;}

Input : stack:
3+1 <empty=>
[Reduce and shift!!]

Lex & Yacc Tutorial

Al1-56
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A shift and reduce action example

Part of Rule section:

exp: INTEGER {$$=9%1;}
lexp ‘“+’exp {$$=%1+3%3;}
lexp ‘" exp {$$=$1 -$3;}

Input : stack:
+1 exp

matched no grammar..

& Electrical Engineering
ationalTsingia Uniersty,Tabwan

Lex & Yacc Tutorial

A shift and reduce action example

Part of Rule section:

exp : INTEGER {$$=9%1;}
lexp ‘“+’ exp {$$=%1+33;}
|exp ‘" exp {$$=9%1 -$3;}

Input : stack:
1 exp +
[ Reduce and Shift!! ]

Lex & Yacc Tutorial

& Electrical Engineering
ational Tsingtua Uniersty,Tavn
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A shift and reduce action example

Part of Rule section:

exp : INTEGER {$$=9%1;}
|exp ‘“+exp {$$=9%1+3$3;}
lexp ‘" exp {$$=9%1 -$3;}

Input : stack:
<empty> exp + exp
[Continue to Reduce]

Lex & Yacc Tutorial

Al1-59

A shift and reduce action example

Part of Rule section:

exp : INTEGER {$$=9%1;}
lexp ‘“+’ exp {$$=%1+33;}
|exp ‘" exp {$$=9%1 -$3;}

Input : stack:
<empty> =242

At the completion of parsing all the

input tokens, we conclude that it is an expression

Lex & Yacc Tutorial

## Electrical E
NatlonalTsingtua

ngineerin:

A1-60
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Associative — Left or Right

1-1-1

5-(2*2) (5-2)*2

Lex & Yacc Tutorial ) ElctricaiEngineering

Precedence & Association

Under “Declaration Section” :

%oleft "+ -

ﬂ Higher precedence
Yoleft *** */*

Association :
Ooleft :
A-B-C>(A-B)-C

%right :
A-B-C>A-(B-C)

Lex & Yacc Tutorial ) ElctricaiEngineering
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Left Association

exp: INTEGER {$$=9%1;}
lexp ‘“+’exp {$$=%1+3%3;}
lexp ‘- exp {$$=$%1 -$3;}

Desired!!!

A1-63

Lex & Yacc Tutorial

Outline

Overview

Lex: A Lexical Analyzer Generator
Yacc: Yet Another Compiler-Compiler
- What does Parser do

- Introduction to YACC

- How the Parser Works

- Work with Lex

Case Study

Al-64

Lex & Yacc Tutorial
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Work with Lex

BAYACC Bs% » DLLEX Ryt
YACC

Call yylex ‘
yyparse()
‘i urn a token

Input Data

A1-65
Lex & Yacc Tutorial ) ElctricaiEngineering

Outline

Overview

Lex: A Lexical Analyzer Generator
Yacc: Yet Another Compiler-Compiler
Case Study

— A calculator

Al1-66
Lex & Yacc Tutorial ) ElctricaiEngineering
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Example

* Try to realize a calculator by Lex & Yacc
* (Provided example files)

- calculator.h (F£[E]HY header file)

- calculator.l (LEX #E#lifE)

- calculator.y (YACC #iifE)
- exercise

Example: Parse Tree
Input : log(5)
log “(f )

Lex & Yacc Tutorial

4 Electrical Engineering
Natonal Tinghua Unve

34



Exercise of an Extension

 Please add the power function (e.g. pow(2,3)=8)
into the calculator.y

Lex & Yacc Tutorial i ElcctricalEngineering
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Outline

= = Brief Introduction of Verilog

= HDL stands for Hardware Description Language

n Cell-Based Design Flow
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Verilog HDL (Data-Flow)

7 4-10 Verilog HDL EW ¥

g A L g8

binary addition ! = i {¥ fo ik

binary subtraction ; = ik {& i %

+
& bit-wise AND | {f T 83 B E R
| bit-wise OR ; {x A wy & &KX

bit-wise XOR : e A ¢4 2 F K ER
~ bit-wise NOT : {t cnh R fa S X

== equality ; & %

> greater than | X #
< less than ; /v #

{1 concatenation ; if &
% conditional i # # &

Data-Flow for Adder

// Dataflow description of 4-bit adder

input [3:0] A,B;

input Cin; // carry input

output [3:0] SUM;

output Cout; // carry output

assign {Cout, SUM} =A + B + Cin;
endmodule

module binary_adder (A, B, Cin, SUM, Cout);




Data-Flow for Comparator

// Dataflow description of a 4-bit comparator.
module magcomp (A, B, ALTB, AGTB, AEQB);
input [3:0] A,B;
output ALTB,AGTB,AEQB;
assign ALTB = (A <B),

AGTB = (A > B),
AEQB = (A ==B);
endmodule

A2-5

Data-Flow for 2-To-1 MUX

/l Dataflow description of 2-to-1-line multiplexer
module mux_2x1 in_data_flow (A,B,select,OUT);

input A, B, select;

output OUT;

assign OUT =select? A : B;
endmodule

A2-6




Behavior Description for MUX

input A, B, select;
output OUT;
reg OUT,
always @ (select or A or B)
begin
if (select==1) OUT = A;
else OUT =B;
end
endmodule

/I Behavioral description of 2-to-1-line multiplexer
module behavior 2x1_mux(A, B, select, OUT);

Left-Hand-Side (LHS) variables
Of assignment statements in always block
has to be declared as reg type of variables
For example, variables OUT

; Y

¥

A2-7
Behavior Description for MUX
// Behavioral description of 4-to-1- line multiplexer
module behavior_4x1_mux (i0, i1, i2, i3, select, y);
input 10, i1, 12, i3;
input [1:0] select;
output v;
reg y;
always @ (i0 or il ori2 or i3 or select)
begin
case (select) )
2'h00: y = i0; !8 I
2'b01:y = il; ! o vux [y
2'b10: y = i2; '%:ﬁ
2'bll:y =i3; !
" endcase select
endmodule

A2-8




Simulation Testbench

Stimulus module Design module
(also called testbench)
module testeircuit module circuit (A, B, C);
reg TA, TB; > iuput A,B;
wireTC, |« output C;
circnit cr (TA, TB, TC);

Fig. 433 Stimulus and Design Modules Interaction

A2-9

Basics of a Testbench

= Initial block: executed once

= $display — dump variables’ values with the end-of-line

= $write — the same as $display but without the end-of-line
= $monitor — dump variables’ values when changed

= $time — dump simulation time

= $finish — terminate simulation

Syntax: Task_name(format specification, argument list);
Example: $display(%od, %ob, %b, C, A, B)
=» Display C in decimal and A, B in binary

A2-10




Testbench for Adder

module test_circuit;

/I Stimulus for 3-input 2-output circuit analysis

reg [2:0] D;
wire F1, F2; Simulation log:

. ] ABC=000 F1=0 F2=0
analysis fig42(D[2], D[1], D[0], F1, F2); ABC=001 F1=1 F2=0
. ABC=010 F1=1 F2=0
Inltlii| ' . ABC=011 F1=0 F2=1

D = 3'h000; ABC=100 F1=1 F2=0
repeat(7) - ABC=101 F1=0 F2=1
#10D =D + 1'b1; ABC=110 F1=0 F2=1
end ABC=111 F1=1 F2=1
initial
$monitor ("ABC = %b F1=%b F2=%b ",
D, F1, F2);
endmodule
A2-11
D Flip-Flop
/ID flip-flop /I D flip-flop with asynchronous reset.
module D-FF (Q,D,CLK) module DFF (Q, D, CLK, RST)
output Q ; output Q ;
input D, CLK ; input D, CLK, RST ;
reg Q; reg Q;
always @ (posedge CLK) always @ (posedge CLK or negedge RST)
Q=D; if (~RST) Q=1’b0;
endmodule /lsame as : if (RST ==0)
else Q=D ;
endmodule

A2-12




Register-Transfer-Level (RTL)

» A digital system

= is represented at RTL when it is specified by the
following three components

= (1) The set of registers in the system
= (2) Operations performed on registers’ values
= (3) The control regulates the operations

Ex (sequence of RTL operations):
R1 € R1+ R2 //Add contents of R2 to R1

R3€R3+3

R4 € shr R4 // Shift right R4

R5 €0

/I ClearR5to 0

/I Increment R3 by 1 (count upwards)

A2-13

Different Ways of Reg

iIster-

Transfer Operations 1n Verilog

Register-Transfer Operations

/ AN

Continuous Assignment

Assign S=A+B;

Procedural Assignment

N

Blocking
Procedural Assignment

Non-Blocking
Procedural Assignment

/

Combinational logic

Always @(A, B)
S=A+B,;

!

Sequential logic

Always @(negedge clock)
begin
RA=RA+RB;
RD =RA;
end

!

Sequential logic

Always @(negedge clock)
begin
RA<=RA+RB;
RD <=RA;
end

A2-14




Sequential Circuit =
(Two always-blocks description)

module Circuit (x,y, CLK,RST)
input x, CLK, RST ;
output vy ;
reg y;
reg [ 1: 0] Prstate, Nxtstate ;
parameter SO0 =2’b00, S1=2"b01, S2 =2’b10, S3=2’b11 ;
always @ (posedge CLK or negedge RST)
if (~RST) Prstate=S0; // Initialize to state SO
else Prstate = Nxtstate ; // Clock operations

always @ (Prstateor x) //Determine next state
case (Prstate)
S0 : if (x) Nxtstate=S1;
else Nxtstate = SO ; // And other operations
S1:if (x) Nxtstate=S3;
else Nxtstate = SO ;
S2 ¢ if (~x) Nxtstate =S0 ;
else Nxtstate =S2 ;
S3 ¢ if (~x) Nxtstate =S2 ;
else Nxtstate = SO ;
endcase

""" A2-15

Outline

= HDL Verilog
= HDL stands for Hardware Description Langauge

m) = Cell-Based Design Flow

= Design a Greatest-Common-Divisor
= Simulation and Synthesis

A2-16




Cell-Based Synthesis Flow
High-Level Synthesis | A

......... >| RTL coding & simulation | fgggt
RTL code

synthesis view «'| RTL-synthesis (Design Compiler) | — X
* Place & Route (Apollo) |  SDF: standard back

physical view delay format  end

(e.9. cb350s142.db) T Lavour e

| Post-Layout Timing Check (Prime Time) | v
violation
A2-17
A Design Block
Two-way interactions often exist between
CONTROL and DATA
CONTROL @ @ @
Feedback signal f C >Contro| signal command
case (command):
"RESET: c=0;
DATA "NOP: c=c;
"INCREMENT: c=c + 1;
endcase

assignf=(c==6)?1:0;

A2-18




Why EFSM?

» Extended Finite State Machine (EFSM)
= is a high-level graphic representation of a
design
= combines the CONTROL and DATA in a
single model
= captures the design intensions easily
= Also called Algorithmic Finite State Machine

A2-19

Example of An EFSM

FSM: a transition is associated with Boolean input conditions
and a set of Boolean output operations.
Extended FSM: a transition is modeled by an “if statement”

counter !'= 6 is the trigger condition

If(counter != 6) counter++; —» ¢ €
counter++ is the operation

If(1) ; If(counter==16) ;

N\

1f(1) counter = 0;

A2-20
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Ex1l: Greatest Common Divisor

Inputs: two natural numbers x1 and x2
Output: the greatest common divisor of x1 and x2
Example: (9, 6) 2 (3, 6) = (3,3) 2 Found GCD =3

Flow-Chart of GCD

A2-21

From Flow-Chart To EFSM

if(! start ); if(u>v) u=u-v; EFSM model
if( start)

{u=x1; v=x2;} if(! (u>v)); if(u==v) if(1);

A2-22
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One-Module RTL Coding

case(state)
~S0:
if(start) begin
next_u <= x1; next_v <= x2; next_state <= "S1;
end
"S1:
if(u > v) next_u<=u-v;
else next_state <= ~S2;
~S2:
if(u==v) done<=1; GCD<=u; next_state <= ~S3;
else next_v = v — u; next_state <= ~S1;
~S3: begin end
endcase

if(! start );

if( start )

if(u>v ) u=u-v; EFSM model
if(u==v) if(1);

done=1;

{u=x1; v=x2;} Lusv) );

vV =v—u; -

GCD-=u;

A2-23
Three-Block Architecture
FSM-block: for controller
A-block: for data operation
E-block: for trigger evaluation
—] triggers O_%E)—O encoded .
- FSM-block command f—
o —
primary — |, primary
inputs ] L, outputs
—
] —
: regs u, v ::
A2-24
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Design Verification

outputs
C-model — y

Running C program )
equivalence ?

input
samples
X

outputs

RTL code |[— y

RTL simulation

A2-25

Sequential Divider - Algorithm

Function Specification: A/B=Q+R

Procedure of sequential divider (using shift-and-subtract)
Example : A =1011, B = 0010

Expected Result: A/B = (11/2)=5+1

> Quotient =5
0010 0001011
0000

0001011
0010

0000011
0000

0000011
0010

0000001 - » Remainder = 1

A2-26
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Flow Char — One Quotient Bit

B (5% R (Partial Remainder) Q (FEE)
lo]o[1]o]| [ofo[ofo]1]o]1]1] [o]2]~|~]

v f

Next_Q[i] = ‘0’ Next_Qli] =*

Next R=R’ Next R=R’-B
=1’

l

(:) R=R<<l computation of i-th iteration

®

A2-27
Complete Flow Chart & States
States = {Start, Y1, Y2}
If (Istart) If (start)
count = 4;
R' =R <<1;
count ++;
Next_R=R’ Next R=R’-B
Next_QIi] = ‘0’ Next_QIi] = ‘1’
I l = /YZ
If (count == 0)
A2-28
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Synthesis Script

design_dir = ../design

io_dir = /home/users/cic/CIC_CBDK35_V3/Synopsys
lib_dir = /home/users/cic/CIC_CBDK35_V3/Synopsys
search_path = search_path + lib_dir + io_dir + design_dir
define_design_lib Analyzed -path analyzed_dir
[*-me-- (1) Specify Target Libraries ----- */
target_library = ""'cb350s142_max.db **

link_library = "'cb350s142_max.db *

[*-me-- (2) Read in design ----- */

design_list = { m1.v, m2.v}

read -format verilog design_list

link

[*-me-- (3) Set constraints ----- */

create_clock -period 2 -waveform {0, 1} find(port *clk)
set_input_delay -max 0.0 -clock clk all_inputs()
set_input_delay -min 0.0 -clock clk all_inputs()
set_output_delay -max 0.0 -clock clk all_outputs()
set_output_delay -min 0.0 -clock clk all_outputs()
set_load 1 all_outputs()

[*-m--- (4) Compile ~ ------ */

uniquify

set_structure true -timing true

compile -map_effort low -boundary_optimization
[*-ee-- (5) Reportresults — ------ */

write -f verilog -output FIR.gate.v

report_timing -max 1> FIR.data

report_area >> FIR.data

report_power >> FIR.data

mz=29

Example of Time-Budgeting

Timing Constraints For Block B:

set_input_delay -max 2.0 -clock clk all_inputs() ~ THat A FIEE 1ns
set_output_delay -max 3.0 -clock clk all_outputs() ¥ 3ns45C

2ns 5ns 3ns
é \
—>
== — =
—| R1 A B C Rl —
_/ —> f—— \_)
—> —
CLK —p J J —P
CLK
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Synthesis Results

architecture
Direct Form TEIEREsEe
criteria Form
Area 1674 1212
(gate-count) (1573, 101) (1110, 101)
Timing
12.7 ns 10.37 ns
(ns)
Power
(mw) 35.03 nW 37.26 mW

(1) Gate count is in terms of equivalent 2-input NAND gate
(2) Timing is based on static timing analysis
(3) Power dissipation is only a very rough estimation

A2-31
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SystemC Tutorial

Author: Silvio Veloso
svfn@cin.ufpe.br

Contents

= Needed tools

= Starting example

» Introduction

= SystemC highlights
» Differences

= Modules, processes, ports, signals, clocks
and data types

A4-2
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Needed tools
SystemC library package v2.0.1
Download in www.systemc.orqg
Linux platform
GCC compiler
GTKWave — Waveform tool
some text editor
A4-3

Starting Example:Full Adder

FullAdder.h FullAdder.cpp

SC_MODULE( FullAdder ) {
\void FullAdder::dolt( void ) {
SC_in< sc_uint<16> > A; sc_int<16>tmp_A, tmp_B;
sC_in< sc_uint<16> > B; sc_int<17>tmp_R;
SC_out< sc_uint<17> > result;
tmp_A = (sc_int<16>) A.read();

void dolt( void ); tmp_B = (sc_int<16>) B.read();
SC_CTOR( FullAdder ) { tmp_R =tmp_A + tmp_B;
SC_METHOD( dolt); result.write( (sc_uint<16>) tmp_R.range(15,0) );
sensitive << A; }

sensitive << B;

A4-4
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SYSTEMCT

Introduction

What is SystemC ?

SystemC is a C++ class library and methodology
that can effectively be used to create a cycle-
accurate model of a system consisting of
software, hardware and their interfaces.

A4-5

SYSTEMCT

Introduction

Where can | use SystemC ?

In creating an executable specification of the
system to be developed.

What should | know to learn SystemC ?

Notions of C++ programming and VHDL helps
you a lot.

A4-6
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SYSTEMCT

SystemC highlights

Supports hardware and software co-design

Developing an executable specification
avoids inconsistency and errors

Avoids wrong interpretation of the
specification

SystemC has a rich set of data types for
you to model your systems

It allows multiple abstraction levels, from
high level design down to cycle-accurate
RTL level

A4-7

SYSTEMCT

Why is SystemC different ?

Current design methodology

- CiC++
7| System Level Model [~

e -
N
Refine
VHDLVerilog
— @

e Manual conversion creates errors
e The C model is not more used Synthesis
< Many tests are needed to validate

A4-8
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— e
SYSTEMC

Why is SystemC different ?

= SystemC design methodology Systemi: Made!

Simulation

Refinement

<Better methodology, translate is not necessary :
Written in only one language Synthesls

A4-Y

|| /'_\ N
SYSTEMC

Modules

= Modules are the basic building blocks to
partition a design

= Modules allow to partition complex
systems in smaller components

= Modules hide internal data representation,
use interfaces

= Modules are classes in C++
= Modules are similar to ,,entity” in VHDL

A4-10
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SYSTEMCT

Modules

SC_MODULE(module_name)
{

// Ports declaration

// Signals declaration

// Module constructor : SC_CTOR

// Process constructors and sensibility list
// SC_METHOD

// Sub-Modules creation and port mappings
// Signals initialization

They can contain ports, signals, local data,
other modules, processes and constructors.

A4-11

SYSTEMCT

Modules

Module constructor
Similar to ,,architecture in VHDL

Example: Full Adder constructor

SC_CTOR( FullAdder ) {

SC_METHOD( dolt );
sensitive << A;
sensitive << B;

A4-12




Modules
Sub-modules instantiation:
Instantiate module
Module_type Inst_module (“label”);
Instantiate module as a pointer
Module_type *plnst_module;
// Instantiate at the module constructor SC_CTOR
pInst_module = new module_type (“label”);
A4-13

Modules

How to connect sub-modules ?

Named Connection or

Positional Connection

A4-14
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Modules

Named Connection

Inst_module.a(s);
Inst_module.b(c);
Inst_module.q(q);

plnst_module -> a(s);
plnst_module -> b(c);
plnst_module -> q(q);

SYSTEMCT

A4-15

Modules

Positional Connection

Inst_module << s << c << q;
(*plInst_module)(s,c,q);

SYSTEMCT

A4-16




Modules

Internal Data Storage
Local variables: can not be used to
connect ports
Allowed data types
C++ types
SystemC types
User defined types

A4-17
SC_MODULE( Mux21 ) {
Objects of sc_in< sc_uint<8> > inl;
template class sc_in € —f—— SC_in< sc_uint<8> > in2;
. sc_in< bool > selection;

(8-bit unsigned integer input port) -
SC_out< sc_uint<8> > out;

Example: Mux 2:1 void dolt( void );
SC_CTOR( Mux21 ) {

SC_METHOD( dolt );
sensitive << selection;
sensitive << in1;
sensitive << in2;

2014/2/12
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SYSTEMCT

Modules

SC_MODULE(filter) {
// Sub-modules : “components”
sample *s1;
coeff *c1;

= Example: mult *m1;

sc_signal<sc_uint 32> q, s, c; // Signals

// Constructor : “architecture”
SC_CTOR(filter) {

di dout
" o // Sub-modules instantiation and mapping

Lsamgle

o sl = new sample (“s1”);

a s1->din(q); // named mapping
q s1->dout(s);

b
mi ¢l = new coeff(“cl1”);
cout [-&

cl->out(c); // named mapping

coeff

c1 m1l = new mult (“m1”);
fi (*m1)(s, c, q); // Positional mapping
ilter
H
}
A4-19

Processes

= Processes are functions that are identified to the
SystemC kernel. They are called if one signal of
the sensitivity list changes its value.

= Processes implement the funcionality of modules

m Processes can be Methods, Threads and CThreads

A4-20
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Methods
When activated, executes and returns
- SC_METHOD(process_name)
Threads
Can be suspended and reactivated
- wait() -> suspends
- one sensitivity list event -> activates
- SC_THREAD(process_name)
CThreads
Are activated in the clock pulse
- SC_CTHREAD(process_name, clock value);
A4-21
Type SC_METHOD SC_THREAD SC_CTHREAD
Activates Event in sensit. list Event in sensit. List Clock pulse
Exec.
Suspends NO YES YES
Execution
Infinite Loop NO YES YES
suspended/ N.D. wait() wait()
reactivated wait_until()
by -

Constructor & | SC_METHOD(call_back); | SC_THREAD(call_back);

Sensibility sensitive(signals); sensitive(signals);
definition sensitive_pos(signals); sensitive_pos(signals);
sensitive_neg(signals); sensitive_neg(signals);

SC_CTHREAD(
call_back,
clock.pos() );
SC_CTHREAD(
call_back,
clock.neg());

A4-22
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SYSTEMCT

Ports and Signals

Ports of a module are the external interfaces that
pass information to and from a module

In SystemC one port can be IN, OUT or INOUT

Signals are used to connect module ports
allowing modules to communicate

Very similar to ports and signals in VHDL

A4-23
Types of ports and signals:
All natives C/C++ types
All SystemC types
User defined types
How to declare
IN : sc_in<port_typ>
OUT : sc_out<port_type>
Bi-Directional : sc_inout<port_type>
A4-24
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SYSTEMCT

Ports and Signals

How to read and write a port ?

Methods read( ); and write( );

Examples:

in_tmp = in.read(); //reads the port in to in_tmp

out.write(out_temp); //writes out_temp in the out port

A4-25

Processes

Process Example

Into the .H file

SYSTEMCT

Into the .CPP file

\void dolt( void );
SC_CTOR( Mux21 ) {

SC_METHOD( dolt );
sensitive << selection;
sensitive << in1;
sensitive << in2;

void Mux21::dolt( void ) {
sc_uint<8> out_tmp;

if( selection.read() ) {
out_tmp = in2.read();

Yelse {
out_tmp = inl.read();

}

out.write( out_tmp );

A4-26
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SYSTEMCT

Clocks

Special object
How to create ?
sc_clock clock _name (

“clock_label”, period, duty_ratio, offset,
initial_value );
Clock connection

fl.clk( clk_signal ); //where fl is a
module

Clock example: sc_clock clockl ("clockl", 20, 0.5, 2, true);

H N

2 12 22 32 42

A4-27

SYSTEMCT

Data Types

SystemC supports:
C/C++ native types
SystemC types

SystemC types
Types for systems modelling
2 values (‘0’,’1")
4 values (‘0°,’1’,’2’,’X’)
Arbitrary size integer (Signed/Unsigned)
Fixed point types

A4-28
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fvstenc
Type Description
sc_logic Simple bit with 4 values(0/1/X/Z)
sc_int Signed Integer from 1-64 bits
sc_uint Unsigned Integer from 1-64 bits
sc_bigint Arbitrary size signed integer
sc_biguint Arbitrary size unsigned integer
sc_bv Arbitrary size 2-values vector
sc_lv Arbitrary size 4-values vector
sc_fixed templated signed fixed point
sc_ufixed templated unsigned fixed point
sc_fix untemplated signed fixed point
sc_ufix untemplated unsigned fixed point
A4-29
fvstenc
Simple bit type
Assignment similar to char
my_bit = ‘1’;
Declaration
bool my_bit;
Operators
Bitwise & (and) | (or) 7 (xor) ~ (not)
Assignment = &= |= A=
Equality == 1=
A4-30
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Operators of fixed precision types
Bitwise -~ & | N> <<
Arithmetics + - * !/ %
Assignement = += -= *= /= %= &= |= "=
Equality == I=
Relational < <= > >
Auto-Inc/Dec ++ -
Bit selection [x] ex) mybit = myint[7]
Part select range() ex) myrange = myint.range(7,4)
Concatenation (,) ex) intc = (inta, intb);
A4-31
Bit vector
sc_bv<n>
2-value vector (0/1)
Not used in arithmetics operations
Faster simulation than sc_Iv
Logic Vector
sc_lv<n>
Vector to the sc_logic type
Assignment operator (="
my_vector = “XZ01”
Conversion between vector and integer (int or uint)
Assignment between sc_bv and sc_Iv
Additional Operators
Reduction and_reduction() or_reduction() xor_reduction()
Conversion | to_string() | %
A4-32
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Examples:
sc_bit y, sc_bv<8> x;
y = x[6];
sc_bv<16> x, sc_bv<8>y;
y = x.range(0,7);
sc_bv<64> databus, sc_logic result;
result = databus.or_reduce();
sc_Ilv<32> bus2;
cout << “bus = “ << bus2.to_string();
A4-33

Ending Example:Full Adder

FullAdder.h FullAdder.cpp

SC_MODULE( FullAdder ) {
\void FullAdder::dolt( void ) {
SC_in< sc_uint<16> > A; sc_int<16>tmp_A, tmp_B;
sC_in< sc_uint<16> > B; sc_int<17>tmp_R;
SC_out< sc_uint<17> > result;
tmp_A = (sc_int<16>) A.read();

void dolt( void ); tmp_B = (sc_int<16>) B.read();
SC_CTOR( FullAdder ) { tmp_R =tmp_A + tmp_B;
SC_METHOD( dolt); result.write( (sc_uint<16>) tmp_R.range(15,0) );
sensitive << A; }
sensitive << B;
}
2

A4-34
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Outline

mm) ¢ What is FO-WLP?
- Evolution of packaging technology
- Processing steps
- Advantages
4 Example of application
- An RF test chip validated by TSMC
@ Discussion

A5-3

Classical Single-Die Package

Wire-Bond Package

Laminate
| (package substrate)

| Printed Circuit Board

Flip-Chip Package

Solder bump /]

e A A LA RN .
—— S e S Laminate

| (package substrate)

. Printed Circuit Board
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Classical SiP (System-In-Package)
(multi dies or components in a single package)

Structure Example
Side-by-Side
Structure
Wire Bonded
Package —
o | S5 e
Package
Stacked Stacking | wire Bonded Wire Bonded & o’
Structure Flip Chip PoP Flip-Chip Type
. [, A s s )
Die CrimrrEianie
Stacking AR ETTETO
Through Silicon Via

Easier to test (O)
Lengthy interconnects (X)
Substrate cost (X)

Another PoP example
A5-5

Evolution of Packaging Technologies

.
[ Board
-]
&
=
[
(=]
]
fri
E
&
]
®
E
“ -----
Circuit-to-Circuit Interconnect 'Dansitr inereasing

Source: Eric Mounier, Yole Development, Lyon, France, Global SMT & Packaging July 2007.
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Interposer-Based 2.5D-Ics
CoWoS (Chip-on-Wafer-on-Substrate) - TSMC 2012

Package substrate

2.50 Interposer BGA Interposer Top Die

2.5D silicon Interposer. Cross Section
(Courtesy of ASE)

AS5-7

Quest:
Can we have a low-cost 2.5D IC without
interposer?

= FO-WLP might be it (with adequate
performance)




Typical Wafer-Level Package (Fan-In WLP)

Three layers: (1) Silicon die, (2) Solder Ball, (3) PCB

Only one-layer of solder bump/ball > No Laminate, but larger 10 pitch

Silicon Die

Solder ball

P.S. One typical dimension of an 10 pad is roughly 60um x 60pum
P.S. ITRS roadmap: The 10 pad pitch will continue to shrink...

A5-9

Interconnect Pitch Gap Problem

Standard

Small A water Level BGA £

Chip Pitch

embedded Wafer Level BGA

The Interconnect Gap

Large
Customer
Board Pitch

Source: Infineon A5-10




INFO-WLP
(Integrated Fan-Out Wafer-Level Packaging)

Fanout: the extra area outside the die areas
Wafer-Level Package: Interconnects and ball-dropping on a re-constituted wafer

BGA: Ball-Grid Array 400 pins

A5-11

RDL (Re-Distribution Layer)

Exploit higher Flexibility provided by RDL (Re-Distribution Layer)
between bare dies and solder balls
= (1) package foot-print > chip foot-print, (2) multi-chip package

RDL: used to route the signal path from the die’s 10s to desired bump locations

A5-12




Detailed View of a Solder Joint

Solder ball sitting on top a die’s 10 ~
_—— — .

Solder Ball and a die’s 10
Connected by RDL

A5-13
Technology Steps for INFO-WLP
1: Wafer reconstruction original
(including wafer molding) wafer
2: Re-Distribution reconstructed

A 4
3. Ball Mount and Singulation

after thin-film
processing

\ 4

4. Test, Mark, Scan, Pack

Final package

AS5-14




Another View of Processing Steps

P wafer — se tray|tube /tapz ! package -
== pre — = = £
T P Ir-".f o ,-/.:_..'. —~ = %
10X ) Biteimd  famens] s = = b
S . N \\_/f ek — - 5
re  Wafer Pre- Recon ROL Ball Package  Fimal  pop <
Test assembly  Wafer 10pm Apply  Singulation Test
thin-film
technology

Original Wafer Reconstituted Wafer

"good tested" dies of a silicon wafer are placed
face-down onto a carrier with an adhesive tape.

AS5-15

Layers of a FO-WLP Package

Solder
- Ball
- Cu-RDL
- Sl Chip
| EMC

EMC: Encapsulated Molded Compound

Source: STMicroelectronics, SiRF 2012.
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A Specific WLP Technology
- Embedded Wafer-Level Ball-Grid Array (eWLB)

€ eWLB was a technology pioneered by Nanium
€ Siemens 2 Infineon (1999) 2 Qimonda (2006) = Nanium (2010)

€ With proven high-volume manufacturing capability, Nanium have
shipped more than 300 million eWLB components, achieving
industry-level yields and full JEDEC quality/reliability compliance.

MOTIVATION:

to address the growing mismatch in interconnect gap, higher levels
of integration, improved electrical performance and shorter vertical
interconnects.

AS5-17

Business Outlook of FO-WLP

FOWLP Revenues
Breakdown by application area (MS)

1200

Yole Developpement :-_ October 2012

:

956

B0O
B Medical

2010- 2020 CAGR=30%  g34
W Automotive

h =
‘/ 500
385

270

M Industrial

W Consumer

FO-WLP Revenues (M §)
g

m Mobile - Wireless

2010 2011 2012 201
We are here!=» 4.5X increase till 2020

Based on Yole Development, due to ramp-up of fabless wireless IC vendm;&s_l8

4 2015 2016 2017 2018 2019 2020




Features of eWLB

@ Flexibility to integrate die from diverse processes, manufacturing
sources & silicon wafer nodes for increased functionality

€ 2D solutions in single & multi-die configurations, down to 0.4mm

€ MCP versions with flip chip & IPD (integrated passive devices)
integration capability

€ 2.5D & 3D options offer lower overall cost than TSV integration with
increased process simplicity

@ Industry’s thinnest 3D PoP solutions (ultra thin z-height of 0.3mm with
stacked thickness down to 0.8mm height)

@ Ultra fine ball pitch (down to 0.3mm) & maximum I/O density

@ Thin film processing enables very fine lines for X,Y routing (line-
width/line-space ratios less than 10um/10um), very fine via pitches
and thin dielectrics

@ Bumpless thin film interconnection offers lowest cost structure over
competing manufacturing approaches

| Source: web site of STATS ChipPAC |5 19

Features of eWLB - Continued

@ Elimination of substrate results in a thinner package with lower
warpage, simplifying supply chain & reducing costs

@ Cost effective HVM batch processing (includes wafer level test)

€ Advanced dielectric materials for reliable, power-efficient solutions

@ Strong electrical performance (capable to beyond 60GHz)

@ Effective heat dissipation supports strong thermal performance

¥ KGD helps achieve strong yields (99.9%)

@ Cu/low-k (ELK) compatible packaging technology

@ Green packaging (Pb-free and Halogen-free)

Source: web site of STATS ChipPAC | 5.20

10



INFO-WLP for 2.5D and 3D Integration

w [ TMV (Through Mold Via) |
2D AR L2 / 3D Face-to-Face (25)

S

T L
eWLB-PoP I1 I eWLB-PoP (1.55
L T J( -( ll € l u‘;m-im.i_T.t L

2 .5D/Extended eWLB
2.5D | a— p— |

,, = R Rt

Single chiq Mulhi-chip

(S S R (AN AN SR em SR

Laminate substrate

A5-21

Multi-Chip Test Vehicle

Die-to-Die distance is 300 um in this case

Die 1 Die 2

{18mm?2}) (6mm?2)

A5-22
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TMV (Through Mold Via in z-Direction)
- also called TEV (Through Encapsulant Via)

(Via-Before-Molding)
The placement of pre-fabricated via bars
prior to the molding of the
Reconstituted Wafer.

(Via-After-Molding)
laser drilling and copper filling of vias in
the mold compound.

A5-23

ePOP Process Flow with Via Bars

2) Compression Moldin
PCE bar ) P g
with vias

Green parts
are solder stop

Ab5-24
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Defects

Potential manufacturing imperfections:
(1) Die shift (due to imprecision of pick-and-place equipment)
(2) Wafer warpage

Displacement (um)

Maximum Deflection = 8 microns

A5-25
Outline
€ What is FO-WLP?
‘ €4 Example of application
- RF test vehicles
4 Discussion
A5-26
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Integration of Passive Components

Why passive components matter:
(1) Wireless products are everywhere

(2) Passives (in particularly inductors) are key in RF circuits

- Low-Noise Amplifiers (LNA), Voltage Controlled Oscillators (VCO),

- Power Amplifiers (PA), filters, impedance matching networks...

Larger size

Higher performance Promising

Discrete
Passives
On Board

Smaller size
Lower performance

Silicon
Integrated
Passives

More integrated

A5-27

Q Factor of Inductance

Desired Parasitic
Inductance Resistance

0

L R

Smaller R - Higher Inductor’s Q Factor
(Less Energy Loss in the Tuned Circuit)

Typical Q-factor range:

(1) Around 10 for CMOS inductors
(2) Around 25 ~ 35 for eWLB inductors

A5-28
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2-RDL Based Inductor in FO-WLP

Minimum RDL width and space: 10um
Spiral inductor Symmetrical inductor

3D Spiral inductor 3D Symmetrical inductor

Silicon substrate |

A5-29

FO-WLP Package on Board

LEERE RN E R R EEREN K]
aaasssaas

FO-WLP

package
(Back Asmisecse
side)

package
(Front side)

A L L R Y AN

A5-30
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20-Bit DCO (Digitally Controlled Oscillator)
- using LC Tank Oscillator

Schematic

Thickness IND ! VDD

12 bits fine tuning bank

— TN

Resonant freq.
varactor

2 bits coarse muning bank f —

] — " oxJLC
M:E‘: :':lmz

Vbias l s Varactor: Variable Capacitor

A5-31

Q Factor of a Band-Pass Filter

0dB
-Jdb

E fo E Fraquency
e

A5-32
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DCO Performance Summary

InFO-WLP InFO-WLP
On-Chip (High (Low
Perf) Power)
Center Freq (GHz) 10.6
Technology (nm) 28

Supply Voltage (V) 0.85

Fower (mWV) 4.84 4.85 4.25

A :;"é;EH% -100 15 107

FOM (dBc/Hz) -174 -189 -181

A5-33

Peak Q Vale at Different Regions

a0

40

30

20

10

Quality Factor (Q) Peak Value

QOver molding compound

Partially over
molding and Si

Over Si

Inductor Location an InFO-WLP
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Thermal Analysis

BT i R T, T R T i PR e i TR e, S R
FC-BGA/S

MCM InNFO-WLP

Package Size (mm?) 8x8
Die Sizes (mm?) 155 dig, 2 2%1.25 dies

| Die Thickness (mm) 0.5 <0.3
Substrate Thickness (mm) 0.3 MR
Ball Count 400
Ball Diameter/Pitch (mm) 0.26/0.4
Total Power (W) 20
Ambient Temp (°C) 25
Max Ternp (°C) 90.5 81.5
Thermal Resistance (°C/\W) 325 280

A5-35
Thermal Map

Thinner package
better heat dissipation

Multi-Chip Module (MCM) InNFO-WLP

A5-36
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Concluding Remarks

Wafer-Level Packaging (WLP)
has great potential for future multi-chip packaging.

Impacts on Testing:
(1) Yield might be highly dependent on KGD test
(2) Solder ball could be a weak point of thermal reliability
(3) Testing & Delay characterization for die-to-die interconnects

Encapsulation Resin
Redistribution Layer

Po:

AlPads

Fatigue of solder ball
Ref: Coefficient of Thermal Expansion after intensive
(~2.6ppm/“C for silicon and 17ppm/°C for PCB) Temperature Cycling

A5-37
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