國立清華大學
 電機工程學系
 一○二學年度第二學期

EE－5265

『積體電路設計自動化』講義

Feb．－June， 2014

清華大學 EE 5265
 積體電路設計自動化

單元 1

Overview of Design Automation

致謝

本單元之教材主要取自於
教育部
超大型積體電路與系統設計教育改進計畫
EDA聯盟之課程發展成果
（教材編纂小組成員）
台灣大學電機系 張燿文
清華大學電機系 黄錫瑜
交通大學資科系李毅郎
中央大學電機系 劉建男
元智大學資工系 林榮彬

教育部顧問室
「超大型積體電路與系統設計」教育改進計畫
数需部
EDA聯盟－推廣課程

單元 1: Overview of Design Automation

- Course contents:
- Introduction to VLSI design flow
- Introduction to VLSI design automation tools
- Semiconductor technology roadmap
- Design styles
- CMOS technology
- Readings
- Chapters 1-2
- Appendix A

Milestones for IC Industry

- 1947: Bardeen, Brattain \& Shockley invented the transistor, the foundation of the IC industry.
- 1952: SONY introduced the first transistor-based radio.
- 1958: Kilby invented integrated circuits (ICs).
- 1965: Moore's law.
- 1968: Noyce and Moore founded Intel.
- 1970: Intel introduced 1 K DRAM.

Firs̄t transistor

First IC by Kilby

Milestones for IC Industry

- 1971: Intel announced 4-bit 4004 microprocessors (2250 transistors).
- 1976/81: Apple IIIIBM PC.
- 1985: Intel began focusing on microprocessor products.
- 1987: TSMC was founded (to support fabless IC design).
- 1991: ARM introduced its first embeddable RISC IP core (chipless IC design).

Chang, Huang, Li, Lin, Liu

Complexity Is Skyrocketing ...

- 1996: Samsung introduced IG DRAM.
- 1998: IBM announced 1GHz microprocessor.
- 1999/earlier:
- System-on-Chip (SOC) methodology gains popularity.
- Intel P4 processor: 42 million transistors
- Productivity:
- 30 million transistors per person today for ASIC chips
- 1 billion/person by 2008

Traditional VLSI Design Cycle

1. System specification
2. Functional design
3. Logic synthesis
4. Circuit design
5. Physical design and verification
6. Fabrication
7. Packaging

- Other tasks involved: simulation, testing, etc.
- Design metrics: area, speed, power dissipation, noise, design time, testability, etc.

Design Actions

- Synthesis:
increasing information about the design by providing more details (e.g., logic synthesis, physical synthesis)
- Optimization:
- increasing the quality of the design by restructuring a given description (e.g., logic optimizer, timing optimizer).
- Analysis:
- collecting information on the quality of the design (e.g., timing analysis, power analysis, etc).
- Verification:
- checking whether an implementation conforms to the desired specification
- Is what I get really what I want?
- Design Management:
- storage of design data, cooperation between tools, design flow, etc. (e.g., database).

Design Issues and Tools

- System-level design (taking a C code as the input)

Hardware/software partitioning, co-verification

- System-Verilog, System-C for co-simulation
- Silicon compilation (from C to layout) \rightarrow rarely used...
- Architecture-level design
- RTL simulation
- RTL synthesis (From RTL code to Gate-Level circuit)
- Logic-level design
- Logic optimization
- Gate-level simulation (functionality, timing, power, etc)
- Static timing analysis (STA), or statistical static timing analysis (SSTA)

Formal verification

- Transistor-Level Design

Schematic editor, circuit simulation (SPICE)

- Physical-level design
- Floorplanning, Placement, Routing, Compaction
- DRC for Design Rule Checking
- LVS for Layout vs. Schematic Check
- Parasitic RC extraction

Logic Synthesis

- Logic synthesis programs
- transform Boolean expressions into logic gate networks in a particular library.
- Optimization goals:
- minimize area, delay, power, etc
- Technology-independent optimization: logic optimization
- Optimizes Boolean expression.
- Technology-dependent optimization: technology mapping/library binding
- Maps Boolean expressions into a particular cell library.

Logic Optimization Examples

- Two-level: minimize the \# of product terms.
$-F=\overline{x_{1}} \overline{x_{2}} \overline{x_{3}}+\overline{x_{1}} \overline{x_{2}} x_{3}+x_{1} \overline{x_{2}} \overline{x_{3}}+x_{1} \overline{x_{2}} x_{3}+x_{1} x_{2} \overline{x_{3}} \Rightarrow F=\overline{x_{2}}+$ $x_{1} \overline{x_{3}}$.
- Multi-level: minimize the \#'s of literals, variables.
- E.g., equations are optimized using a smaller number of literals.

Circuit Simulation of a CMOS Inverter ($0.6 \mu \mathrm{~m}$)

M1 $3200 \mathrm{nch} \mathrm{W}=1.2 \mathrm{u} \mathrm{L}=0.6 \mathrm{u} \mathrm{AS}=2.16 \mathrm{p} \quad \mathrm{PS}=4.8 \mathrm{u} \mathrm{AD}=2.16 \mathrm{p} \quad \mathrm{PD}=4.8 \mathrm{u}$
M2 $3211 \mathrm{pch} \mathrm{N}=1.8 \mathrm{u} \mathrm{L}=0.6 \mathrm{u} \mathrm{AS}=3.24 \mathrm{p} \quad \mathrm{PS}=5.4 \mathrm{u} \mathrm{AD}=3.24 \mathrm{p} \quad \mathrm{PD}=5.4 \mathrm{u}$
CL 300.2 pF
VDD 103.3
$\begin{array}{llll}\mathbf{V}_{\mathrm{L}} & \mathbf{V}_{\mathrm{H}} & \mathbf{t}_{\mathrm{d}}\end{array}$
$t_{r} \quad t_{f} \quad$ Pulse Width
Period
VIN 20 DC O PULSE (0 3.3 Ons 100pa 100ps 2.4 ns 5ns)
.LIB '../mod_06' typical
.OPTION NOMOD POST INGOLD=2 NUMDGT=6 BRIEF .DC VIN OV 3.3V 0.001V
PRINT DC V(3)

.TRAN 0.001 N 5 N
.PRINT TRAN V(2) V(3)
.END

Chang, Huang, Li, Lin, Liu

Physical Design

- Physical design
- converts a circuit description into a geometric description.

The description is used to manufacture a chip.

- Physical design cycle:

1. Logic partitioning
2. Floorplanning and placement
3. Routing
4. Compaction

- Others:
- circuit extraction, timing verification and design rule checking

Logic Circuit (or Logic Netlist)

- Multi-level logic:
- A set of logic equations with no cyclic dependencies
- Example: $Z=(A B+C)(D+E+F G)+H$
- 4-level, 6 gates, 13 gate inputs

Routing Example

- 0.18um technology

IC Design Considerations

- Several conflicting considerations:
- Design Complexity: large number of devices/transistors
- Performance: optimization requirements for high performance
- Time-to-market: about a 15\% gain for early birds
- Cost: die area, packaging, testing, etc.
- Others: power, signal integrity (noise, etc), testability, reliability, manufacturability, etc.

"Moore's" Law: Driving Force of Technology

- Logic capacity doubles per IC at a regular interval.
- Moore:

Logic capacity doubles every two years (1975).

- D. House:

Computer performance doubles every 18 months (1975)

Technology Roadmap for Semiconductors

Year	1997	1999	2002	2005	2008	2011	2014
Technology node (nm)	250	180	130	100	70	50	35
On-chiplocal clock (GHz)	0.75	1.25	2.1	3.5	6.0	10	16.9
Microprocessor chip size (mm 2)	300	340	430	520	620	750	901
Microprocessor transistors/chip	11 M	21 M	76 M	200 M	520 M	1.40 B	3.62 B
Microprocessor cost/transistor (x10-8 USD)	3000	1735	580	255	110	49	22
DRAM bits per chip	256 M	1 G	4 G	16 G	64 G	256 G	1 T
Wiringlevel	6	$6-7$	7	$7-8$	$8-9$	9	10
Supply voltage (V)	$1.8-2.5$	$1.5-1.8$	$1.2-1.5$	$0.9-1.2$	$0.6-0.9$	$0.5-0.6$	$0.37-0.42$
Power (W/)	70	90	130	160	170	175	183

- Source:
- International Technology Roadmap for Semiconductors, Nov, 2002.
- Deep submicron technology: node (feature size) $<0.25 \mu \mathrm{~m}$.
- Nanometer Technology: node $<0.1 \mu \mathrm{~m}$.

Nanometer Design Challenges

- In 2005, feature size $\approx 0.1 \mu \mathrm{~m}, \mu \mathrm{P}$ frequency $\approx 3.5 \mathrm{GHz}$, die size ≈ 520 $\mathrm{mm}^{2}, \mu \mathrm{P}$ transistor count per chip $\approx 200 \mathrm{M}$, wiring level ≈ 8 layers, supply voltage $\approx 1 \mathrm{~V}$, power consumption $\approx 160 \mathrm{~W}$.
- Feature size $\downarrow \rightarrow$ sub-wavelength lithography (impacts of process variation)? noise? wire coupling? reliability?
- Frequency $\uparrow \rightarrow$ interconnect delay? electromagnetic field effects? timing closure?
- Chip complexity $\uparrow \rightarrow$ large-scale system design methodology?
- Supply voltage $\downarrow \rightarrow$ signal integrity (noise, IR drop, etc)?
- Wiring level $\uparrow \rightarrow$ manufacturability? 3D layout?
- Power consumption $\uparrow \rightarrow$ power \& thermal issues?

Chang, Huang, Li, Lin, Liu

Worsening Manufacturing Variability										
Year of Production	2005	2006	2007	2008	2009	2010	2011	2012	2013	Driver
DRAM 1/2 Pitch (nm) (contacted)	80	70	65	57	50	45	40	35	32	
Mask cost (\$m) from publicly available data	1.5	2.2	3.0	4.5	6.0	9.0	12.0	18.0	24.0	SOC
\% Vdd Variability \% variability seen at on-chip circuits	10\%	10\%	10\%	10\%	10\%	10\%	10\%	10\%	10\%	SOC
\% Vth variability Doping Variability impact on VTH	24\%	29\%	31\%	35%	40\%	40\%	40\%	58\%	58\%	SOC
\% Vth variability Indudes all sources	26\%	29\%	3\%	37\%	42\%	42\%	42\%	58\%	58\%	SOC
\% CD variability CD for now; might add doping later	10\%	10\%	10\%	10\%	10\%	10\%	10\%	10\%	10\%	SOC
\% cricuit performance variability circuit comprising gates and wires	41\%	42\%	45\%	46\%	49\%	50\%	53\%	54\%	57\%	SOC
\%ocircuit power variability circuit comprising gates and wires	55\%	55\%	56\%	57\%	57\%	58\%	58\%	59%	59\%	SOC
Teble 1. Design for Menufacturability: Near-Term Years										
http://www.future-fab.com/documents.asp?d_ID=3996										
Chang, Huang, Li, Lin, Liu Ch										

From Multi-Core to Many-Core Era
New Elements:
(1) (HW) Network on Chip (NoC) + Global-Local Memory Architecture
(2) (SW) Multi-thread programming

SiP: Stacked Dies with Wire Bonding

Solder balls

Ref: E. Beyne, "3D System Integration Technologies"

Circuit-to-Circuit Interconnect Density $\xrightarrow{\text { increasing }}$

Ref: R. E. Jones, R. Chatterjee, and S. Pozder,
"Technology and Application of 3D Interconnect"

Chang, Huang, Li, Lin, Liu

Benefits of 3D IC's

- Smaller form-factor
- Shorter Interconnect
- Lower Power
- Higher Yield?
- Heterogeneous Integration
- Fast and High-Bandwidth between logic and memory

Design-and-Test Challenges

- 3D IC Process / Manufacturing

Aligning, stacking, thinning, TSV's

- New Process / Memory Architecture
- Power Delivery
- 3D Design Flow
- Floor-plan \& Layout
- Thermal Modeling
- Yield Enhancement
- Design for Yield \& Resiliency
- Testing
- Electrical Characterization of TSV, Boundary Scan, Known-Good-Die (KGD)

Hierarchical Design

- Hierarchy: something is composed of simpler things.
- Design cannot be done in one step \Rightarrow partition the design hierarchically.

Abstraction

- Abstraction: when looking at a certain level, you don't need to know all details of the lower levels.

- Design domains:
- Behavioral: black box view
- Structural: interconnection of subblocks
- Physical: layout properties
- Each design domain has its own hierarchy.

Three Design Views		
Behavior		

Full Custom Design Style

- Designers can control the shape of all mask patterns.
- Designers can specify the design up to the level of individual transistors.

Chang, Huang, Li, Lin, Liu

Standard Cell Design Style

- Selects pre-designed cells (of same height) to implement logic

Example: Standard Cells

I nterconnections are routed over the cells.

Gate Array Design Style

- Prefabricates a transistor array
- Needs wiring customization to implement logic

FPGA Design Style

- Logic and interconnects are both prefabricated.
- Illustrated by a symmetric array-based FPGA

FPGA Design Process

- Illustrated by a symmetric array-based FPGA
- No fabrication is needed

Logic + Layout Synthesis

Basic CMOS Logic Library

Name		Dstinctive shape	Algebraic equation	Cost (\# of tratisistors)	Scaled gate delay (ps)	
AND			$\mathrm{F}=\mathrm{XY}$	6	24	
OR			$\mathrm{F}=\mathrm{X}+\mathrm{Y}$	6	24	
NOT (inverter) repeater)		5	$\mathrm{F}=\mathrm{X}$	2	10	
Buffer (driverd repeater)			$\mathrm{F}=\mathrm{X}$	4	20	
NAND			$\mathrm{F}=\overline{\mathrm{XY}}$	4	14	
NOR		2	$\mathrm{F}=\mathrm{X}+\mathrm{Y}$	4	14	
$\begin{aligned} & \text { Exclusive-OR } \\ & \text { (XOR) } \end{aligned}$		5	$\begin{gathered} \mathrm{F}=\mathrm{X} \bar{Y}+\bar{X} Y \\ =\mathrm{X} \oplus \mathrm{Y} \end{gathered}$	14	42	
Chang, Huang, Li, Lin, Liu						ch1-63

Stick Diagram

- Intermediate representation
- between the transistor level and the mask (layout) level.
- Gives topological information
- (identifies different layers and their relationship)
- Assumes that wires have no width.
- It is possible
- to translate stick diagram automatically to layout with correct design rules.
p-channel
switch \qquad

n-channel

Chang, Huang, Li, Lin, Liu

Stick Diagram (cont'd)

- When the same material (on the same layer) touch or cross, they are connected and belong to the same electrical node.

- When polysilicon crosses N or P diffusion, an N or P transistor is formed.
- Polysilicon is drawn on top of diffusion.
- Diffusion must be drawn connecting the source and the drain.
- Gate is automatically self-aligned during fabrication.

- When a metal line needs to be connected to one of the other three conductors, a contact cut (via) is required.

Ullarly, nuarly, LI, Lill, Liu

CMOS Inverter Stick Diagrams

- Basic layout

- More area efficient layout

Design Rules

- Layout rules are used for preparing the masks for fabrication.
- Fabrication processes have inherent limitations in accuracy.
- Design rules specify geometry of masks to optimize yield and reliability (trade-offs: area, yield, reliability).
- Three major rules:
- Wire width: Minimum dimension associated with a given feature.
- Wire separation: Allowable separation.
- Contact: overlap rules.
- Two major approaches:
- "Micron" rules: stated at micron resolution.
$-\lambda$ rules: simplified micron rules with limited scaling attributes.
- λ may be viewed as the size of minimum feature.
- Design rules represents a tolerance which insures very high probability of correct fabrication (not a hard boundary between correct and incorrect fabrication).
- Design rules are determined by experience.

MOSIS Layout Design Rules

- MOSIS design rules (SCMOS rules) are available at http://www.mosis.org.
- 3 basic design rules:
- Wire width
- Wire separation

Contact rule

- MOSIS design rule examples

R1	Min active area width	3λ
R3	Min poly width	2λ
R4	Min poly spacing	2λ
R5	Min gate extension of poly over active	2λ
R8	Min metal width	3λ
R9	Min metal spacing	3λ
R10	Poly contact size	2λ
R11	Min poly contact spacing	2λ

Concluding Remarks

- Milestones technology in silicon era
- Transistor \rightarrow Integrated Circuits \rightarrow CMOS Technology
- Key weapons in SOC era
- Design Automation
- Design Reuse
- Breakthrough techniques in design automation
- Simulation (e.g., SPICE, Verilog-XL, etc.)
- Automatic Placement and Routing (APR)
- Logic Synthesis (e.g., Design Compiler)
- Formal Verification
- Test Pattern Generation

It is EDA that
pushes the IC design technology forward!

Latest Design Automation - by Synopsys

- 10M Gate Routing in Under ½ Hour
- Complete Physical Verification Solution Through 45nm
- Design Compiler® Graphical: Congestion Prediction and Removal During Synthesis
- Get to Market Early with SystemC ${ }^{\text {™ }}$ TLM Virtual Platforms
- Hot Topics in Test: Power- and Timing-Aware DFT
- Low Power Verification
- Matching Moore's Law, PrimeTime® Performance, Capacity and QoR
- Mixed-Signal Circuit Design and Verification with Discovery ${ }^{\text {TM }}$-AMS and Synopsys' Custom Environment
- Synopsys Eclypse ${ }^{\text {TM }}$ Low Power Solution
- SystemVerilog Verification Solution with VCS®
- Transistor-Level Design Analysis and Sign-Off Using Star-RCXT®, HSIM $^{\text {M }}$ and HSPICE®

CAD Related Conferences/Journals

- Important Conferences:
- ACM/IEEE Design Automation Conference (DAC)
- IEEEIACM Int'I Conference on Computer-Aided Design (ICCAD)
- ACMIIEEE Asia and South Pacific Design Automation Conf. (ASPDAC)
- ACM/IEEE Design, Automation, and Test in Europe (DATE)
- IEEE Int'I Conference on Computer Design (ICCD)
- IEEE Custom Integrated Circuits Conference (CICC)
- IEEE Int'I Symposium on Circuits and Systems (ISCAS)
- ACM Int'I Symposium on Physical Design (ISPD)
- IEEE Int'I Test Conference (ITC)
- Others: VLSI Design/CAD Symposium/Taiwan
- Important Journals:
- IEEE Transactions on Computer-Aided Design (TCAD)
- ACM Transactions on Design Automation of Electronic Systems (TODAES)
- IEEE Transactions on VLSI Systems (TVLSI)
- IEEE Transactions on Computers (TC)
- IEE Proceedings - Circuits, Devices and Systems
- IEE Proceedings - Digital Systems
- INTEGRATION: The VLSI Journal

清華大學 EE 5265
 積體電路設計自動化

單元2
 Generic Algorithms

致謝

本單元之教材主要取自於
教育部
超大型積體電路與系統設計教育改進計畫
EDA聯盟之課程發展成果
（教材編纂小組成員）
台灣大學電機系 張燿文
清華大學電機系 黄錫瑜
交通大學資科系李毅郎
中央大學電機系 劉建男
元智大學資工系 林榮彬

教育部顧問室
「超大型積體電路與系統設計」教育改進計畫
EDA聯盟－推廣課程

Outline

- Complexity

- Common Problems in EDA
- Optimization Problem
- Decision Problem
- Satisfiability Problem
- General-Purpose Algorithms
- Exhaustive v.s. Branch-and-Bound
- Greedy v.s. Dynamic Programming
- Divide-and-Conquer v.s. Hierarchical
- Mathematical Programming
- Simulated Annealing
- Tabu Search
- Genetic Algorithm

O: Upper Bounding Function

- Def: $f(n)=O(g(n))$ if $\exists c>0$ and $n_{0}>0$ such that $0 \leq f(n)$ $\leq \boldsymbol{c g}(n)$ for all $n \geq n_{0}$.
- Examples: $2 n^{2}+3 n=O\left(n^{2}\right), 2 n^{2}=O\left(n^{3}\right), 3 n \log n=O\left(n^{2}\right)$
- Intuition: $f(n)$ " $\leq " g(n)$ when we ignore constant multiples and small values of n.

Chang, Huang, Li, Lin, Liu

Big-O Notation

- How to show O (Big-Oh) relationships?
$-f(n)=O(g(n))$ iff $\lim _{n \rightarrow \infty} \frac{f(n)}{g(n)}=c$ for some $c \geq 0$.
- "An algorithm has worst-case running time $O(f(n))$ ": there is a constant c such that (s.t.) for big enough value n, the execution on an input of size n takes at most $c f(n)$ time.

ᄂnang, ruang, ᄂı, цın, цıu

Computational Complexity

- Computational complexity:

- an abstract measure of the time and space necessary to execute an algorithm as a function of its "input size".
- Input size examples:
- (1) sort n words of bounded length $\Rightarrow n$
$-(2)$ the input is a graph $G(V, E) \Rightarrow|V|$ and $|E|$
- Time complexity
- is expressed in elementary computational steps (e.g., an addition, multiplication, pointer indirection).

- Space Complexity

- is expressed in memory locations (e.g. bits, bytes, words).

Asymptotic Functions

- Polynomial-time complexity:
- $O\left(n^{k}\right)$, where n is the input size and k is a constant.
- Example polynomial functions:
- 999: constant
- $\log n$: logarithmic (sub-linear)
- n : linear
$-n \log n: \log$-linear
$-n^{2}$: quadratic
$-n^{3}$: cubic
- Example non-polynomial functions
$-2^{n}, 3^{n}$: exponential
- n!: factorial

Optimization Problems

- Optimization problems:
- Those finding a legal configuration such that its cost is minimum (or maximum).
- An instance $\alpha=(F, c)$ where
- (1) Feasible solution space: F
- F is also referred to as search space
- (2) Cost function: $c: F \rightarrow R$
- Assigning a cost value to each feasible solution
- Example
- Minimum Spanning Tree (MST)
- Given a graph $G=(V, E)$, find the cost of a minimum spanning tree of G.

The Traveling Salesman Problem (TSP)

- Problem Definition of TSP:

Given a set of cities and the distance between each pair of cities.

- Find the distance of a "minimum tour" both starting and ending at a given city and visiting every city exactly once.

Graph
Space

Decision Problem

- Decision problems:
problem with "yes" or "no" answer
- Examples:
(1) MST: Given a graph $G=(V, E)$ and a bound K, is there a spanning tree with a cost at most K ?
- (2) TSP: Given a set of cities, distance between each pair of cities, and a bound B, is there a route that starts and ends at a given city, visits every city exactly once, and has total distance at most B ?
- A decision problem $\Pi=(F, c, k)$
- Solution Space $Y_{\text {п }}$:

no	yes
	Y_{Π}

- The input sub-space for which the answer is "yes"
- Solution Checking: (deciding if an input point is in Y_{Π})
- Checking whether the cost of a solution point, $f \in F$, is less than k.
- Could apply binary search on decision problems to obtain solutions for optimization problems.
- NP-completeness is associated with decision problems.

Boolean Satisfiability Problem (SAT)

- Given
- \boldsymbol{n} binary variables $\left\{\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}\right\}$
- A Boolean expression in Product-of-Sum (POS) form
- Boolean Satisfiability Problem
- Is a decision problem
- Decides if there is a variable assignment such that every term evaluates to true?
- Example: $(x 1+x 3+x 4)(x 1+x 2+x 5)(x 3+x 4+x 5)$

A Term or Clause

The Circuit-Satisfiability Problem (Circuit-SAT)

- The Circuit-Satisfiability Problem (Circuit-SAT):
- Instance: A combinational circuit C composed of AND, OR, and NOT gates.
- Question: Is there a set of input values (called input pattern or input vector) that makes the output of C to 1 ?
- A circuit is satisfiable
- if there exists an input pattern that makes the output of the circuit to be 1.
- Circuit (a) is satisfiable since $\left\langle x_{1}, x_{2}, x_{3}\right\rangle=\langle 1,1,0\rangle$ makes the output to be 1 , while circuit (b) is not satisfiable.

(a) satisfiable circuit

(b) unsatisfiable circuit

Complexity of Class-P Problems

- The Class-P problems
- Are problems that can be solved in polynomial time in terms of input size
- Problems in Class-P are considered tractable.
- Computational Model: deterministic Turing machine
(1) A Turing machine is a mathematical model of a generic computer (any computation that needs polynomial time on a Turing machine can also be performed in polynomial time on any other machine).
- (2) "Deterministic" means that each computational step is predictable.
- Example:
- Minimum Spanning Tree Problem is a class-P problem.

Complexity Class-NP

- Suppose that solution checking for a given problem can be done in polynomial time on a deterministic machine \Rightarrow Then, the problem can be solved in polynomial time on a nondeterministic Turing machine.
- Nondeterministic: in some sense the machine is able to evaluate all possibilities in parallel.
- The class-NP (Nondeterministic Polynomial):
- (1) Is a class of problems that can be verified in polynomial time in the size of input.
(2) NP is also a class of problems that can be solved in polynomial time on a nondeterministic machine.
- Is TSP \in NP?
- Need to check a solution in polynomial time.
- Guess a tour.
- Check if the tour visits every city exactly once.
- Check if the tour returns to the start.
- Check if the total distance $\leq B$.
- All can be done in $O(n)$ time, so TSP \in NP.

NP-Completeness

- An issue which is still unsettled:

$$
P \subset N P \text { or } P=N P ?
$$

- There is a strong belief that $P \neq N P$, due to the existence of NP-complete problems.
- The class NP-complete (NPC):
- Developed by S. Cook and R. Karp in early 1970.
- All problems in NPC have the same degree of difficulty: Any NPC problem can be solved in polynomial time \Rightarrow all problems in NP can be solved in polynomial time.

Reduction

- Given
- Two decision problems, L_{1} and L_{2}
- Reduction
(1) Is a mapping function between the input spaces of L_{1} and L_{2}
(2) The final yes/no answers are retained

$L_{1} \leqslant_{\mathrm{p}} L_{2}$

Polynomial-Time Reduction

- Motivation:
- Let L_{1} and L_{2} be two decision problems. Suppose algorithm A_{2} can solve L_{2}. Can we use A_{2} to solve L_{1} ?
- Polynomial-time reduction f
- from L_{1} to $L_{2}: L_{1} \leq_{p} L_{2}$
- f reduces an input for L_{1} into an input for L_{2} s.t. the reduced input is a "yes" input for L_{2} iff the original input is a "yes" input for L_{1}.
- $L_{1} \leq{ }_{p} L_{2}$ if \exists polynomial-time computable function $f:\{0,1\}^{*} \rightarrow\{0,1\}^{*}$ s.t. $x \in L_{1}$ iff $f(x) \in L_{2}, \forall x \in\{0,1\}^{*}$.
- L_{2} is at least as hard as L_{1}.
$-f$ is computable in polynomial time.

$L_{1} \leq{ }_{\mathrm{p}} L_{2}$

Example: Polynomial-time Reduction

- The Hamiltonian Circuit Problem (HC)
- Instance: an undirected graph $G=(V, E)$.
- Question: is there a cycle in G that includes every vertex exactly once?
- TSP (The Decision-version Traveling Salesman Problem)
- How to show HC \leq_{p} TSP?

1. Define a function f mapping any HC instance into a TSP instance, and show that f can be computed in polynomial time.
2. Prove that G has an HC iff the reduced instance has a TSP tour with distance $\leq B(x \in \mathrm{HC} \Leftrightarrow f(x) \in \mathrm{TSP})$

nonhamiltonian

HC \leq_{p} TSP: Step 1

1. Define a reduction function f for $\mathrm{HC} \leq_{p} T S P$.

- Given an arbitrary HC instance $G=(V, E)$ with n vertices
- Create a set of n cities labeled with names in V.
- Assign distance between u and v

$$
d(u, v)= \begin{cases}1, & \text { if }(u, v) \in E \\ 2, & \text { if }(u, v) \notin E\end{cases}
$$

- Set bound $B=n$.
- f can be computed in $O\left(V^{2}\right)$ time.

$\mathrm{HC}:\langle 1,5,2,3,4,1\rangle$

tour $<1,5,2,3,4,1>$ with distance bound $\mathrm{B}=5$

HC \leq_{p} TSP: Step 2

2. G has an HC iff the reduced instance has a TSP with distance $\leq B$. $x \in \mathrm{HC} \Rightarrow f(x) \in$ TSP.

Suppose the HC is $h=\left\langle v_{1}, v_{2}, \ldots, v_{n}, v_{1}\right\rangle$. Then, h is also a tour in the transformed TSP instance.
The distance of the tour \boldsymbol{h} is $\boldsymbol{n}=\boldsymbol{B}$ since there are \boldsymbol{n} consecutive edges in E, each having distance 1 in $f(x)$.
Thus, $f(x) \in \operatorname{TSP}(f(x)$ has a TSP tour with distance $\leq B$.

$\mathrm{HC} \leq_{p}$ TSP: Step 2 (cont'd)

2. G has an HC iff the reduced instance has a TSP with distance $\leq B$.
$-f(x) \in \mathrm{TSP} \Rightarrow x \in \mathrm{HC}$.
Suppose there is a TSP tour with distance $\leq n=B$. Let it be $\left\langle v_{1}, v_{2}, \ldots, v_{n}, v_{1}>\right.$..

- Since distance of the tour $\leq \boldsymbol{n}$ and there are n edges in the TSP tour, the tour contains only edges in E.
- Thus, $\left\langle v_{1}, v_{2}, \ldots, v_{n}, v_{1}\right\rangle$ is a Hamiltonian cycle ($x \in H C$).

HC instance

$\mathrm{HC}:<1,5,2,3,4, \mathrm{l}>$

tout $<1,5,2,3,4,1>$ with distance bound $B=5$

Summary of Proving NP-Completeness

- Five steps for proving that L is NP-complete:

1. Prove $L \in N P$.
2. Select a known NP-complete problem L'.
3. Construct a reduction f that can transform any arbitrary instance of L ' to an instance of L.
4. Prove that f is a polynomial-time transformation
5. Prove that $x \in L^{\prime}$ iff $f(x) \in L$ for all $x \in\{0,1\}^{*}$.

- We have shown that TSP is NP-complete, since HC is a proven NP-complete problem

NP-Completeness and NP-Hardness

- L is NP-complete if
- NP-Hard: L‘ $\leq_{P} L$ for every L' \in NPC.
$-\mathbf{L} \in \mathbf{N P}$
- NP-hard: If L satisfies the $1^{\text {st }}$ property, but not necessarily the $2^{\text {nd }}$ property, we say that L is NP-hard.

Coping with NP-hard problems

- Approximate algorithms
- The solution found is guaranteed to be a fixed percentage away from the optimum.
- E.g., MST for the minimum Steiner tree problem.
- Pseudo-polynomial time algorithms
- Has the form of a polynomial function for the complexity, but not in terms of the problem size.
- Restriction
- Work on some subset of the original problem.
- E.g., the longest path problem in Directed Acyclic Graphs (DAG).
- Exhaustive search/Branch and bound
- Is feasible only when the problem size is small.
- Local search:
- Simulated annealing (hill climbing), genetic algorithms, etc.
- Heuristics: No guarantee of performance.

Spanning Tree v.s. Steiner Tree

- Manhattan distance:
- If two points (nodes) are located at coordinates (x_{1}, y_{1}) and (x_{2}, y_{2}), the Manhattan distance between them is given by $d_{12}=\left|x_{1}-x_{2}\right|+\left|y_{1}-y_{2}\right|$.
- Rectilinear spanning tree:
- a spanning tree connected with Manhattan paths (Fig. (b) below).
- Steiner tree:
- a tree that connects its nodes, and additional points (Steiner points) are permitted to be used for the connections.

Complexities of Spanning and Steiner Trees

- The minimum rectilinear spanning tree problem is in \mathbf{P}
- The minimum rectilinear Steiner tree (Fig. (c)) problem is NPcomplete.
- The spanning tree algorithm can be an approximation for the Steiner tree problem (at most 50\% away from the optimum).

Outline

－Complexity

－Common Problems in EDA
－Optimization Problem
－Decision Problem
－Satisfiability Problem
－General－Purpose Algorithms
－Exhaustive v．s．Branch－and－Bound
－Greedy v．s．Dynamic Programming
－Divide－and－Conquer（Hierarchical）
－Mathematical Programming
－Simulated Annealing
－Tabu Search
－Genetic Algorithm

Search Paradigms

－Exhaustive search：Search the entire input space．
－Branch and bound：A search technique with pruning．
－Greedy method：Pick a locally optimal solution at each step．
－Dynamic programming：Partition a problem into a collection of sub－ problems，the sub－problems are solved first，and then the original problem is solved by combining the solutions．（Applicable when the sub－problems are NOT independent）．
－Hierarchical approach：Divide－and－conquer．
－Mathematical programming：A system of optimizing an objective function under constraints．
－Simulated annealing：An adaptive，iterative，non－deterministic algorithm that allows＂uphill＂moves to escape from local optima．
－Tabu search：Similar to simulated annealing，but does not decrease the chance of＂uphill＂moves throughout the search．
－Genetic algorithm：A population of solutions is stored and allowed to evolve through successive generations via mutation，crossover， etc．突變 交配

Dynamic Programming (DP) v.s. Divide-and-Conquer

- Both solve problems by combining the solutions of sub-problems.
- Divide-and-conquer algorithms
(1) Partition a problem into independent sub-problems
- (2) Solve the sub-problems recursively
- (3) Combine their solutions to derive the final answer
- Dynamic programming (DP)
- Defines optimal solutions in terms of optimal partial solutions
- Applicable when the sub-problems are mutually dependent
- Principle of Optimality
- Parts of the search space can be discarded without losing optimality if $D P$ is exact

DP-Example 1: Shortest-Path Problem

```
void ShortestPath( const int n, const int v) // Dijkstra's Algorithm
// dist[j], 0\leqqj<n, is set to the length of the shortest path from vertex v to vertex j
// in a graph G with n vertex and edge lengths given by length[i][j]
{
    for (int i=0; i<n; i++ ) { s[i] = FALSE; dist[i] = length[v][i]; } // initialize
    s[v] = TRUE;
    dist[v] = 0;
    for(i=0; i<n-2; i++) { // problem increases incrementally
            int u = choose(n); // routine 'choose' returns a value u such that
                                    // dist[u] = minimum dist[w], where s[w] = FALSE
            s[u] = TRUE;
            for (int w=0; w<n; w++) {
                if (! s[w])
                    if (dist[u] + length[u][w] < dist[w] )
                        dist[w] = dist[u] + length[u][w];
            }
    }
}
```


DP-Example 2: TSP Problem via DP

- Given
- A graph $G(V, E)$ with edge weights w
- Sub-Problem Formulation
- \mathbf{v}_{s} : the starting vertex of the tour
- C(S, v): the shortest tour length ($\mathrm{v}_{\mathrm{s}} \rightarrow \mathrm{v}$) passing through intermediate vertex set S
- Construction Rule (problem size from \mathbf{k} to $\mathbf{k + 1}$)

$$
C(S, v)=\min _{m \in S}[C(S-\{m\}, m)+w(m, v)]
$$

Every vertex in S Can be the last vertex m

DP-Example 2: TSP Problem Via DP (Details)

$$
C(S, v)=\min _{m \in S}[C(S-\{m\}, m)+w(m, v)]
$$

- Problem size $|\mathrm{S}|=0$

$$
-\mathbf{C}(\phi, \mathbf{B})=9, \mathbf{C}(\phi, \mathbf{C})=\infty, \mathbf{C}(\phi, \mathbf{D})=\infty, \mathbf{C}(\phi, E)=3, \mathbf{C}(\phi, F)=5
$$

- Problem Size $|S|=1$, there are 20 computation, e.g.,
$-\mathrm{C}(\{\mathrm{B}\}, \mathrm{C})=\mathrm{C}(\phi, \mathrm{B})+\mathrm{w}(\mathrm{B}, \mathrm{C})=9+5=14$
$-\mathrm{C}(\{\mathrm{B}\}, \mathrm{F})=\mathrm{C}(\phi, \mathrm{B})+\mathrm{w}(\mathrm{B}, \mathrm{F})=9+4=13$
$-\mathbf{C}(\{F\}, B)=C(\phi, F)+w(F, B)=5+4=9$
- Problem Size $=2$, there are 30 computations, e.g.,
$-C(\{B, F\}, C)=\min [C(\{B\}, F)+w(F, C), C(\{F\}, B)+w(B, C)$
$=\min [13+8,9+5]=14$
- Final solution: C(\{ B, C, D, E, F\}, A) = 18

Linear Programming (LP)

- Given :
- matrix \mathbf{A} and vectors \mathbf{b}, \mathbf{c}
- An unknown vector \mathbf{x}

Canonical form:

Minimize or maximize: $\mathbf{c}^{\mathbf{T}} \mathbf{x}$
Subject to: $\mathbf{A x} \leqq \mathbf{b}$ and $\mathbf{x} \geqq \mathbf{0}$

Standard form:

Minimize or maximize: $\mathbf{c}^{\mathbf{T}} \mathbf{x}$
Subject to: $\mathbf{A x}=\mathbf{b}$ and $\mathbf{x} \geqq \mathbf{0}$

1. The two forms are interchangeably

* (interception and/or adding dummy variables)

2. Algorithms for solving LP

* Polynomial, ellipsoid
* Exponential in worst-case, simplex
* In most cases, simplex is better than ellipsoid

Integer Linear Programming

- INTEGER LINEAR PROGRAMMING (ILP)
- ILP is a special form of linear programming
- Each variable takes on an integer value
- ILP is very common for solving combinatorial optimization
- ILP is NP-complete
- ILP-solvers are available at public domain
- Applications in VLSI Design Automation
- Often takes a special form: zero-one ILP
- (1) Exact solutions for problems with small input sizes
- (2) To know how good the other heuristics are
- (3) As a source of inspiration for developing new heuristics

Example: Bin Packing

- The Bin-Packing Problem :
- Items $U=\left\{u_{1}, u_{2}, \ldots, u_{n}\right\}$, where u_{i} has a size denoted as s_{i}
- A set of bins, each with a capacity denoted as b
- Goal:
- Pack all items, minimizing \# of bins used. (NP-hard!)

Algorithms for Bin Packing

- Greedy approximation algorithm
- First-Fit Decreasing (FFD)
- Dynamic Programming? Hierarchical Approach? Genetic Algorithm?
- Mathematical Programming: Use integer linear programming (ILP) to find a solution using |B| bins, then search for the smallest feasible $|B|$.

ILP Formulation

- Variables

- $0-1$ variable $x_{i j}=1$ if item u_{i} is placed in bin $b_{j}, 0$ otherwise
- There are n items, $\left\{u_{1}, u_{2}, \ldots, u_{n}\right\}$, and the size of u_{i} is w_{i}
- There are $|B|$ bins, $\left\{B_{1}, B_{2}, \ldots, B_{k}\right\}$, each having capacity of b
- ILP Formulation
- Three types of constraints for feasible solutions
(1) 0-1 variables $\quad x_{i j} \in\{0,1\}$
(2) Exactly once assignment $\quad \sum_{j=1}^{B} x_{i j}=1$
(3) Bin capacity constraint $\quad \sum_{i=1}^{n} w_{i} x_{i j} \leq b$

ch2-41

Flow of Solving Bin Packing By ILP

Simulated Annealing

- Inspiration

- The material's slow cooling-down process
- (1) Initially, molecules are free to move like liquid
- (2) Gradually, they lose their energy and take a fixed position
- Also called statistical cooling
- Analogy
- Energy \rightarrow cost function
- Molecule movement \rightarrow movement in search space
- Temperature \rightarrow Control parameter \mathbf{T}

Δ : cost increase of a move

Input space

Tabu Search

- Principles:

Moves to the cheapest neighbor, even when cost increases

- Side Effect
- There will be risk of cycling

- Cycle Prevention

- Store the last \boldsymbol{k} feasible solutions in a tabu list
- Any attempts getting into the tabu list is rejected

Genetic Algorithms

- Principles:
- Based on analogy with evolution process in nature
- Optimization based on survival-of-the-fittest principle
- Major elements
- (1) A population of feasible solutions
- (2) Encoding of each solution, called chromosome
- (3) Crossover: to produce children (or offsprings)
- (4) Mutation (突變): to escape from local minimum

Illustration of
Crossover

Concluding Remarks

- NP-Hard problems are everywhere in EDA
- Cannot be exactly solved
- However, many good heuristics still lead to good results
- When it comes to search problems ...
- Numerous paradigms exist
- Each has its own proper application domain
- A tug-of-war between space and time

Problem \rightarrow Formulation \rightarrow Algorithms
A problem is half solved when it is clearly formulated.

清華大學 EE 5265
 積體電路設計自動化

單元 3

Logic Synthesis

致謝

本單元之教材主要取自於
教育部
超大型積體電路與系統設計教育改進計畫
EDA聯盟之課程發展成果

- （教材編纂小組成員）
- 台灣大學電機系 張燿文
- 清華大學電機系黄錫瑜
- 交通大學資科系李毅郎
- 中央大學電機系 劉建男
- 元智大學資工系 林榮彬

Example of RTL Synthesis

Control Data Flow Graph

－CDFG（Control／Data Flow Graph）
－A representation for the cycle behavior of an RTL code
－Nodes：operation，decision，or merge point
－Edges：signal flow
－Used to resolve the data and control dependency
一個變數可能出現多次 \rightarrow 需加以編號
／＊d1＊／x＝a；
if（s）begin
／＊d2＊／$\quad \mathrm{x}=\mathrm{b}$ ；
／＊d3＊／$\quad y=x+a ;$
end
／＊d4＊／y＝x；

CDFG is used to decide where the input operands should come from．

Component Binding

\longrightarrow

Special Element Inferences

- Three special elements to be inferred

- Latch (D-type) inference
- Flip-Flop (D-type) inference
- Tri-state buffer inference

Latch inferred!!
reg \mathbf{Q};
always@(posedge clk)
Q = D;
reg Q;
always@(D or en)
if(en) $\mathbf{Q}=\mathrm{D}$;
else $Q=1$ 'bz;

Tri-state buffer inferred!!

Sequential Section vs. Combinational Section

- Sequential section
"Always statement" triggered by clock edges
- Combinational section
- All signals whose values are used in the "always statement" are included in the sensitivity list

```
reg Q;
always@(posedge clk) \(\mathbf{Q}=\mathbf{D}\);
```

Sequential section
Conduct flip-flop inference
reg Q;
always@(in or en)
if(en) $Q=$ in;
Combinational section
Conduct latch inference
(in dangling if-the-else)

Outline

- RTL Synthesis
- Logic Optimization
- Two-Level Logic Minimization
- Multi-Level Logic Minimization
- Technology Mapping

What can we do beyond Karnaugh Map [1953] and Quine-McCluskey [1956] ?

Prime Implicant

Essential Prime Implicant

- Essential Minterm
- Is a minterm covered by only one prime implicant
- Essential Prime Implicant
- Is a prime implicant that contains at least one essential minterms

Classical Logic Minimization

- Theorem:[Quine, McCluskey]
- There exists a minimum cover for F that is prime
- We only need to look at just primes (to reduce the search space)
- Classical methods: using a two-step process

1. Generate all prime implicants
2. Find a minimum cover (covering problem)

- A cover is a set of primes that covers every on-set minterm

Prime implicant generation

Primary Implicant Generation (3/4)

Column Covering (1/4)

Seven on-set elements								
Prime implicants	4	5	6	8	9	10	13	
0,4 (0-00)	\times							
0,8 (-000)	x							
8,9 (100-)	$x \quad x$							
8,10 (10-0)				\times	x			
9,13 (1-01)					\times		\times	
4,5,6,7 (01--)	$\times \times$							
5,7,13,15 (-1-1)	x						\times	
	rows $=$ prime implicants columns = ON-set elements place an " X " if ON-set element is covered by the prime implicant							
Note: minterms 0, 7, 11, 15 are don't-care terms are thus not shown in the table.								
Chang, Huang, Li, Lin, Liu ch3-18								

Petrick's Method

- Solve the Satisfiability problem of the following function
$\mathbf{P}=(\mathbf{P} 1+\mathbf{P 6})(\mathbf{P 6}+\mathbf{P} 7) \mathbf{P 6}(\mathbf{P} 2+\mathbf{P} 3+\mathbf{P} 4)(\mathbf{P} 3+\mathbf{P} 5) \mathbf{P} 4(\mathbf{P} 5+\mathbf{P} 7)=\mathbf{1}$
- Each clause represents a corresponding column
- Each column must be chosen at least once
- All columns must be covered

Brute Force Technique

- Brute force technique: Consider all possible elements

- Complete tree has $\mathbf{2}^{|\mathrm{P}|}$ leaves!!
- Need to prune it
- Complexity reduction
- Essential primes can be included right away
- If there is a row with a singleton " 1 " for the column
- Keep track of best solution seen so far
- Classical branch and bound

Heuristic Optimization

- Generation of all prime implicants is impractical
- Finding an exact minimum cover is NP-hard
- Cannot be finished in polynomial time
- Expansion-Based Heuristic:
- Avoid generation of all prime implicants

- Procedure

- (Step 1): An on-set minterm is selected, and expanded until it becomes a prime implicant
- (Step 2): The prime implicant is included in the final cover, and all minterms covered by this prime implicant are removed
- (Step 3): Iterate until all minterms of the ON(f) are covered
- "ESPRESSO" developed by UC Berkeley
- The kernel of synthesis tools

Outline

－RTL Synthesis

－Logic Optimization
－Two－Level Logic Minimization
－Multi－Level Logic Minimization
－Technology Mapping

Multi－Level v．s．Two－Level

－Two－level：
－Often used in control
$f_{1}=x_{1} x_{2}+x_{1} x_{3}+x_{1} x_{4}$ $f_{2}=x_{1}{ }^{\prime} x_{2}+x_{1}{ }^{\prime} x_{3}+x_{1} x_{4}$
－Only $x_{1} x_{4}$ shared
－Sharing restricted to common cube
－Multi－level：
－Datapath or control

- Can share $x_{2}+x_{3}$ between the two expressions
－Can use complex gates

$$
\begin{array}{lr}
g_{1}=x_{2}+x_{3} & \text { Common } \\
g_{2}=x_{1} x_{4} & \text { sub-functions } \\
f_{1}=x_{1} g_{1}+g_{2} & \\
f_{2}=x_{1}^{\prime} g_{1}+g_{2} &
\end{array}
$$

如何發現 common sub－functions 需要某種型式的【因式分解】

Minimization via Division

- Goal:
- Reduce the no. of literals in a given Boolean formula
- Two problems:
(1) Find good common sub-functions !
- (2) How to perform division?

(Minimization Via Division)

F: a Boolean function in SOP form
P: a good sub-function (kernel)

Example:
$\mathbf{F}=\mathbf{a c}+\mathbf{a d}+\mathbf{b c}+\mathbf{b d}+\mathbf{e}$ F $=(\mathbf{a}+\mathbf{b})(\mathbf{c}+\mathbf{d})+\mathbf{e}$ Literal count: $9 \rightarrow 5$

Terminology: Primary Divisors

- Cube-Free Expression

- An expression is cube-free if no cube divides the expression
- E.g., ab + c is cube-free
- E.g., $a b+a c=a(b+c)$ is not cube-free
- A cube-free expression must have more than one cube
- E.g., abc is not cube-free
- Primary Divisors
- The set of primary divisors of an expression f is defined as: $D(f)=\{f / c \mid c$ is a cube $\}$
- We are more interested in finding cube-free divisors

Terminology: Kernels and Co-Kernels

- Kernel
- The set of kernels of an expression f is defined as cube-free primary divisors, l.e.,

$$
K(f)=\{g \mid g \in D(f) \text { and } g \text { is cube-free }\}
$$

- Co-kernel
- The cubes used to obtain the kernels are co-kernels, $\mathrm{C}(\mathrm{f})$

Kernel:
Cube-free primary divisor f/c

Co-Kernels:
Cube c

Example: Factorization by Kernels

- Example:

$f=x_{1} x_{2} x_{3}+x_{1} x_{2} x_{4}+x_{3}{ }^{\prime} x_{2} \rightarrow 8$ literals
$K=\left\{x_{1} x_{3}+x_{1} x_{4}+x_{3}{ }^{\prime}, x_{3}+x_{4}\right\}$
$-x_{2}$ is the co-kernel for kernel ($\left.x_{1} x_{3}+x_{1} x_{4}+x_{3}{ }^{\prime}\right)$
$-x_{1} x_{2}$ is the co-kernel for kernel $x_{3}+x_{4}$

- Kernels can be used to factorize an expression
$f=\left(x_{3}+x_{4}\right)\left(x_{1} x_{2}\right)+x_{3}{ }^{\prime} x_{2}=x_{2}\left(x_{1}\left(x_{3}+x_{4}\right)+x_{3}{ }^{\prime}\right)$
5 literals
- For multiple-function minimization
- It is key to find common divisors between expressions

Find Out All Kernels (1/2)

Find Out All Kernels (2/2)

co-kernel	
$\mathbf{1}$	$\mathrm{a}((\mathrm{bc}+\mathrm{fg})(\mathrm{d}+\mathrm{e})+\mathrm{de}(\mathrm{b}+\mathrm{cf})))+\mathrm{beg}$
\boldsymbol{a}	$(\mathrm{bc}+\mathrm{fg})(\mathrm{d}+\mathrm{e})+\mathrm{de}(\mathrm{b}+\mathrm{cf})$
$\boldsymbol{a b}$	$\mathrm{c}(\mathrm{d}+\mathrm{e})+\mathrm{de}$
$\boldsymbol{a b c}$	$\mathrm{d}+\mathrm{e}$
-	-
$\boldsymbol{a c}$	$\mathrm{b}(\mathrm{d}+\mathrm{e})+\mathrm{def}$
$\boldsymbol{a c d}$	$\mathrm{b}+\mathrm{ef}$
.	.
$\boldsymbol{b c}$	$\mathrm{ad}+\mathrm{ae}$

They can be obtained in n^{2} time where \boldsymbol{n} is number of cubes in this expression.

Common Divisor

- Theorem (Brayton \& McMullen):
f and g have a multiple-cube common divisor if and only if the intersection of a kernel of f and a kernel of g has more than one cube

$$
\begin{array}{l|}
\hline f_{1}=x_{1}\left(x_{2} x_{3}+x_{2}{ }^{\prime} x_{4}\right)+x_{5} \\
f_{2}=x_{1}\left(x_{2} x_{3}+x_{2}{ }^{\prime} x_{5}\right)+x_{4} \\
K\left(f_{1}\right)=\left\{x_{2} x_{3}+x_{2}{ }^{\prime} x_{4},\right. \\
\left.\quad x_{1}\left(x_{2} x_{3}+x_{2}{ }^{\prime} x_{4}\right)+x_{5}\right\} \\
K\left(f_{2}\right)=\left\{x_{2} x_{3}+x_{2}{ }^{\prime} x_{5},\right. \\
\left.x_{1}\left(x_{2} x_{3}+x_{2}{ }^{\prime} x_{5}\right)+x_{4}\right\} \\
K_{1} \cap K_{2}=\left\{x_{2} x_{3}, x_{1} x_{2} x_{3}\right\} \\
-f_{1} \text { and } f_{2} \text { have no multiple- } \\
\quad \text { cube common divisor }
\end{array} \quad \begin{aligned}
& f_{1}=x_{1} x_{2}+x_{3} x_{4}+x_{5} \\
& f_{2}=x_{1} x_{2}+x_{3}{ }^{\prime} x_{4}+x_{5} \\
& K\left(f_{1}\right)=\left\{x_{1} x_{2}+x_{3} x_{4}+x_{5}\right\} \\
& \\
& K\left(f_{2}\right)=\left\{x_{1} x_{2}+x_{3}{ }^{\prime} x_{4}+x_{5}\right\} \\
& K_{1} \cap K_{2}=\left\{x_{1} x_{2}+x_{5}\right\} \\
& \\
& -f_{1} \text { and } f_{2} \text { have multiple- } \\
& \text { cube common divisor } \\
& \\
&
\end{aligned}
$$

Cube-Literal Matrix

- Cube-literal matrix

$$
f=x_{1} x_{2} x_{3} x_{4} x_{7}+x_{1} x_{2} x_{3} x_{4} x_{8}+x_{1} x_{2} x_{3} x_{5}+x_{1} x_{2} x_{3} x_{6}+x_{1} x_{2} x_{9}
$$

Literals

	x_{1}	x_{2}	x_{3}	x_{4}	x_{5}	x_{6}	x_{7}	x_{8}	x_{9}
$\boldsymbol{x}_{1} X_{2} X_{3} X_{4} X_{7}$	1	1	1	1	0	0	1	0	0
$\boldsymbol{X}_{1} X_{2} X_{3} X_{4} X_{8}$	1	1	1	1	0	0	0	1	0
$\boldsymbol{X}_{1} X_{2} X_{3} X_{5}$	1	1	1	0	1	0	0	0	0
$\boldsymbol{X}_{1} X_{2} X_{3} X_{6}$	1	1	1	0	0	1	0	0	0
$\boldsymbol{X}_{1} X_{2} X_{9}$	1	1	0	0	0	0	0	0	1

Cube-Literal Matrix \& Rectangles

- A Rectangle (R, C) of a matrix A
- R is a subset of rows, and C is a subset of columns, such that

$$
A_{i j}=1, \text { for all } i \in R, j \in C
$$

- Rows and columns need not be continuous
- A Prime Rectangle
- Is a rectangle not contained in any other rectangle
- A prime rectangle indicates a co-kernel kernel pair

Rectangle $=\{R, C\}=\{\{1,2,3,4\},\{1,2,3\}\}$
co-kernel: $x_{1} x_{2} x_{3}$, kernel: $x_{4} x_{7}+x_{4} x_{8}+x_{5}+x_{6}$

	x_{1}	X_{2}	X_{3}	X_{4}	$\times 5$	\times_{6}	X_{7}	\mathbf{X}_{8}	$\times 9$
$\mathrm{X}_{1} \times{ }_{2} \mathrm{X}_{3} \mathrm{X}_{4} \mathrm{X}_{7}$	1	1	1	1	O	0	1	O	0
$\mathrm{x}_{1} \times 2 \times 3 \times 4 \mathrm{X}_{3}$	1	1	1	1	0	0	O	1	O
$\mathrm{X}_{1} \mathrm{X}_{2} \mathrm{X}_{3} \mathrm{X}_{5}$		1	1	O	1	O	O	0	O
$\mathrm{X}_{1} \times 2 \times 3 \times 6$	1	1	1	O	0	1	O	O	O
$\mathrm{X}_{1} \mathrm{X}_{2} \mathrm{X}_{9}$	1	1	0	O	O	O	O	O	1

Prime Rectangles and Logic Synthesis

- Given functions
$F=a b c+a b d+e g$
G = abfg
H = bd + ef
- Prime Rectangles

$$
\begin{aligned}
& \text { (Co-kernels) } \\
& \text { X = ab, Y = bd } \\
& \text { (Minimized Functions) } \\
& \text { F = Xc + XY + eg } \\
& \text { G = Xfg } \\
& H=Y+\text { ef }
\end{aligned}
$$

		a	b	c	d	e	f	G
		1	2	3	4	5	6	7
$a b c$	1	1	1	1	0	0	0	0
abd	2	1	1	0	1	0	0	0
eg	3	0	0	0	0	1	0	1
abfg	4	1	1	0	0	0	1	1
bal	5	0	1	0	1	0	0	0
ef	6	0	0	0	0	1	1	0

Outline

- RTL Synthesis
- Logic Optimization
- Technology Mapping

Technology Mapping

- General approach:
- Choose a set of base functions for canonical representation
- Ex: 2-input NAND and Inverter
- Represent optimized Boolean network using base functions
- Subject graph (for entire Boolean network)
- Represent each library cell using base functions
- One Pattern graph for one library cell
- Each pattern is associated with a cost which is dependent on the optimization criteria
- Goal:

Finding a minimum-cost cover for a subject graph (I.e., a Boolean network) using pattern graphs (I.e., cells)

Example Pattern Graph (1/3)

$-\infty_{-}^{\operatorname{inv}(1)}$
$=D_{0}$ nand2 (1)

Example Pattern Graph (2/3)		
nand4 (4)		
	$\begin{aligned} & -\infty_{2} \\ & -\infty-\infty \\ & -\infty-\infty \\ & -\infty \end{aligned}$	
aoi21 (3)		
$\begin{aligned} & =D_{0}-D_{0}-D_{0} \\ & -\infty_{0} \end{aligned}$		
$\begin{aligned} & \operatorname{aoi} 22(4) \\ = & D^{0}-D_{0}-\infty^{\circ} \\ = & D_{0} \end{aligned}$	$\begin{aligned} & -\infty \\ & -\infty \\ & -\infty \\ & -\infty \end{aligned}$	
Chang, Huang, Li, Li, Li, Liu		ch3-40

Example Pattern Graph (3/3)	
Chang. Huang. Li.t.i. Liu	ch3-41

Example Subject Graph

$$
\begin{aligned}
& t 1=d+e ; \\
& t 2=b+h ; \\
& t 3=a t 2+c ; \\
& t 4=t 1 t 3+f g h ; \\
& F=t 4^{\prime} ;
\end{aligned}
$$

DAGON Approach

- Partition a subject graph into trees
- Cut the graph at all multiple fanout points

- Optimally cover each tree using dynamic programming approach
- Piece the tree-covers into a cover for the subject graph

Dynamic Programming for Minimum Area

- Principle of optimality:
- Optimal cover for the tree consists of a match at the root plus the optimal cover for the sub-tree starting at each input of the match

$$
\begin{gathered}
A(\text { root })=m+A\left(I_{1}\right)+A\left(I_{2}\right)+A\left(I_{3}\right)+A\left(I_{4}\right) \\
\text { cost of a leaf }=0
\end{gathered}
$$

A Library Example				
INV	2	$-\infty-$	$\rightarrow \infty$	
NAND2	3	$=D^{\circ}-$ (ab)	$=D^{0}$	
NAND3	4	=Do (abc)'	$=D_{0}-$	
NAND4	5	\#Do- (abcd)	$=D^{0}$	
AOI21	4	$\pm 0^{(a b+c)}$	$\begin{aligned} & =D_{0}^{0} \\ & =D_{0} \\ & =D_{0} \\ & -\infty^{-} \end{aligned}$	
AOI22	5	$=B^{0}{ }^{(a b+c d)^{\prime}}$	$\begin{aligned} & =D_{0}-4 \\ & =D_{0}-1 \end{aligned}$	
		Library Element	Canon	
		Chang, Huan, L		ch3-47

Concluding Remarks

- A Milestone Design Technology

RTL coding \rightarrow Translation \& Optimization \rightarrow Done !

- RTL Synthesis

Control Data Flow Graph for component binding

- Storage Element Inference
- Logic Synthesis
- Division-Based Factorization
- Kernel-Based Factorization
- Common Sub-Expression Extraction
- Technology Mapping
- A pattern matching problem

Being A Million-Dollar Concept,
Synthesis Quantum-Jumps The Productivity.

清華大學 EE 5265
 積體電路設計自動化

單元 4

Simulation

致謝

本單元之教材主要取自於
教育部
超大型積體電路與系統設計教育改進計畫
EDA聯盟之課程發展成果

- （教材編纂小組成員）
- 台灣大學電機系 張耀文
- 清華大學電機系黄錫瑜
- 交通大學資科系李毅郎
- 中央大學電機系 劉建男
- 元智大學資工系 林榮彬

Outline

- Introduction
- Gate-level simulation
- Compiled-Code Simulation
- Event-Driven Simulation
- Switch-Level Simulation

Simulation

- Simulation
- is a design validation process for checking a circuit's functionality, power dissipation and/or timing
- Inputs
- (1) A design model (e.g., RTL code or gate-level netlist)
- (2) A set of input signals (stimuli, patterns, or vectors)
- (3) A pre-characterized cell models when necessary
- Outputs
- The waveforms of output signals

Circuit Simulation

- Circuit simulators (e.g., SPICE)
- Determine time-domain or frequency domain behaviors
- Based on Kirchoff's voltage and current law (KVL and KCL)
- Numerical methods are needed for nonlinear transistors
- Need SPICE model (either functional or table) for devices
- DC Analysis
- Finds the operating point of a circuit.
- AC (Small-Signal) Analysis
- Finds the frequency response of a circuit.
- A transistor is linearized at its DC point.
- Transient Analysis
- Finds the time domain response for a circuit when it is excited by certain input stimuli.
- SPICE Home Page
- http://bwrc.eecs.berkeley.edu/Classes/lcBook/SPICE/

Circuit Simulation of a CMOS Inverter ($0.6 \mu \mathrm{~m}$)

```
M1 320 O nch W=1.2u L=0.6u AS=2.16p PS=4.8u AD=2.16p PD=4.8u
M2 3 2 1 1 peh WN=1.8u L=0.6u AS=3.24p PS=5.4u AD=3.24p PD=5.4u
CL 300.2pF
VDD 1 0 3.3
VIN 2 O DC O PULSE (0 3.3 Ons 100ps 100ps 2.4ns 5ns)
.LIB '../mod_06' typical
```

.OPTION NOMOD POST INGOLD=2 NUMDGT=6 BRIEF
.DC VIN OV 3.3V 0.001 V
.PRINT DC V(3)
.TRAN O.OO1N 5N
.PRINT TRAN V(2) V(3)
.END

Chang, Huang, Li, Lin, Liu

Cell Delay and Interconnect Delay

Stage Delay: Cell delay + Interconnect delay Path: $(\mathrm{PI} \rightarrow \mathrm{PO}, \mathrm{FF} \rightarrow \mathrm{PO}, \mathrm{FF} \rightarrow \mathrm{FF})$
Path delay: sum of stage delays along a path

Setup \& Hold Time

Setup time is due to D-to-Q delay: violated by long-paths Hold time is due to Clock-to-Q delay: violated by short-paths

Rise Time and Fall Time

Rise Time $\tau_{\text {rise }}$: output to rise from $\mathrm{V}_{10 \%}$ to $\mathrm{V}_{90 \%}$ Fall Time $\tau_{\text {fall }}$: output to fall from $\mathrm{V}_{\mathbf{9 0 \%}}$ to $\mathrm{V}_{\mathbf{1 0 \%}}$

Timing Model for A Logic Cell

- Three Factors Affecting Cell Delays
- (1) Gate size (fixed for a given cell)
- (2) Loading capacitance
- (3) Input slope
- Three PVT Corners (Process + Operation)
- (1) Worst case delay
- Using T (emperature) $=125^{\circ} \mathrm{C}$, supply voltage= 90% Vdd, and worst case SPICE model for delay characterization.
- (2) Best case delay
- Using $\mathrm{T}=0^{\circ} \mathrm{C}$, supply voltage $=110 \%$ Vdd, and best case SPICE model for delay characterization.
- (3) Typical case delay
- Using $T=27^{\circ} \mathrm{C}$, supply voltage $=100 \%$ Vdd, and typical case SPICE model for delay characterization.

Pre-characterized Timing Table

- A timing table for each cell is provided by library vendor
- To look up propagation delay, rise time, fall time
- Based on load capacitance and input slope
- For unspecified input conditions
- Interpolation or extrapolation is used

```
Model(delayTemplateModel
            Spline
            (Input_Slew_Axis 0.050 0.200 1.000 4.000 20.000)
            (Load_Axis 0.0446 0.892 3.568 14.275)
                data()
    )
    (Spline
        data((0.7210 0.8471 1.2849 3.05673)
                                    0.8119 0.9380 1.3758 3.1475)
                                    0.9975 1.1236 1.5612 3.3322)
                                    (1.4293 1.5552 1.9922 3.7609)
                                    (3.3955 3.5204 3.9542 5.7101))
;
```

Delay table for
some cell in
Cadence TLF
format

Elmore Delay Calculation

Notation: Let TC $_{i}$ be the total loading capacitance seen at resistor \mathbf{R}_{i}

$$
\begin{aligned}
& \text { Time constant of } \\
& \text { the delay from } \\
& \text { source to node } i:
\end{aligned} \quad \tau_{D i}=\sum_{i=0}^{N}\left(\mathbf{R}_{i} \cdot \mathbf{T C}_{i}\right)
$$

RC tree network with multiple branches \qquad

Outline

- Introduction
- Gate-level simulation
- Compiled-Code Simulation
- Event-Driven Simulation
- Switch-Level Simulation

Compiled-Code Simulation

- Strategy of Compiled-Code Simulation
- Convert the circuit into a sub-routine for repeated evaluation
- Advantages
- Could be computationally efficient because there is no need to process complex data structure in circuit
- Especially suitable for zero-delay or unit-delay model
- Drawback
- Cannot process complex delay model easily

Unit-Delay Simulation

- Assumes that all gate delays equal 1.
- Provides some information about signal evolution in time, especially to detect glitches.

Event-Driven Simulation

- Event-driven simulation

- is a widely-used mechanism in gate-level and switch-level simulators.
- An event
- is a change of a signal value that may trigger new changes.

- A queue of events

- Is needed

- Basic steps:
- (1) Initialize the input stimuli
- (2) Process one event from the queue
- (3) Put newly born events into the queue
- (4) Go back to step 2 until queue is empty

Data Structures For Event Queue

- Potential Data Structures for Event Queue
(1) Timing wheel
- (2) Array of linked list
- (3) Priority queue (e.g., Heap)

t_{j} is current time
Δ is the time step

Array of linked list

Signal Modeling for Gate-Level Simulation

- Binary Value Simulation
- Each gate's output can take on a value of either ' 0 ' or ' 1 '.
- Three-Valued Simulation
- Signal value set is $\{$ ' 0 ', ' 1 ' and ' X ' $\}$.
- 'X' means "unknown".
- Nine-Valued Simulation
- IEEE std_logic data type with 9 values.
- mixture of level and strength.
- 'U' (uninitialized)
- 'X' (forcing unknown)
- '0’ (forcing 0); ‘1’ (forcing 1)
- 'Z' (high impedance)
- 'W'(weak unknown)
- 'L’ (weak 0), 'H', (weak 1)
- '-' (don’t care).

Example (1/10)

- Assumptions

- Propagation delay for two-input OR gate is $2 \mathbf{n s}$
- Propagation delay for two-input AND gate is 3ns
- Time resolution for simulation is 1 ns (i.e., $\Delta=1 \mathrm{~ns}$).
- Input stimuli at time 0:
$-A: 1 \rightarrow 0, B: 0 \rightarrow 0, C: 0 \rightarrow 1, D: 0 \rightarrow 0, E: 0 \rightarrow 0$

Example (2/10)

Process event $\mathrm{n}_{1}(1 \rightarrow 0)$ at $\mathrm{t}=0$ $\mathbf{n}_{1}=1 \rightarrow 0, n_{2}=0, n_{3}=0, n_{4}=0$, $n_{5}=0, n_{6}=1, n_{7}=0, n_{8}=0, n_{9}=0$

Advance current time
by one resolution unit
to $\mathbf{t}=\mathbf{1}$
$\mathbf{n}_{\mathbf{1}}=\mathbf{0}, \mathbf{n}_{\mathbf{2}}=\mathbf{0}, \mathbf{n}_{\mathbf{n}}=\mathbf{1}, \mathbf{n}_{4}=\mathbf{0}, \ldots$,
$\mathbf{n}_{\mathbf{5}}=\mathbf{0}, \mathbf{n}_{\mathbf{6}}=\mathbf{1}, \mathbf{n}_{\mathbf{7}}=\mathbf{0}, \mathbf{n}_{\mathbf{8}}=\mathbf{0}$,
$\mathbf{n}_{\mathbf{9}}=\mathbf{0}$

Example (5/10)

Process event $n_{6}(1 \rightarrow 0)$ at $t=2$
$\mathrm{n}_{1}=0, \mathrm{n}_{2}=0, \mathrm{n}_{3}=1, \mathrm{n}_{4}=0, \mathrm{n}_{5}=0$, $n_{6}=1 \rightarrow 0, n_{7}=0, n_{8}=0, n_{9}=0$

Example (7/10)

Process event $n_{8}(0 \rightarrow 1)$ at $t=3$
$n_{1}=0, n_{2}=0, n_{3}=1, n_{4}=0, n_{5}=0$,
$\mathrm{n}_{6}=0, \mathrm{n}_{7}=0, \mathrm{n}_{8}=0 \rightarrow 1, \mathrm{n}_{9}=0$
$\mathrm{n}_{9}(0 \rightarrow 1) \longleftarrow \mathrm{n}_{8}(1 \rightarrow 0)$

Schedule event $\mathrm{n}_{\mathbf{9}}(\mathbf{0} \rightarrow \mathbf{1})$

Advance time to $t=4$ and then
to $\mathrm{t}=5$
$\mathrm{n}_{1}=0, \mathrm{n}_{2}=0, \mathrm{n}_{3}=1, \mathrm{n}_{4}=0, \mathrm{n}_{5}=0$,
$\mathrm{n}_{6}=0, \mathrm{n}_{7}=0, \mathrm{n}_{8}=1, \mathrm{n}_{9}=0$

Example (8/10)

Process event $n_{8}(1 \rightarrow 0)$ at $t=5$
$n_{1}=0, n_{2}=0, n_{3}=1, n_{4}=0, n_{5}=0$, $\mathrm{n}_{6}=0, \mathrm{n}_{7}=0, \mathrm{n}_{8}=1 \rightarrow 0, \mathrm{n}_{9}=0$

Example (9/10)

Process event $n_{9}(0 \rightarrow 1)$ at $t=5$
$n_{1}=0, n_{2}=0, n_{3}=1, n_{4}=0, n_{5}=0$,
$n_{6}=0, n_{7}=0, n_{8}=0, n_{9}=0 \rightarrow 1$

Example (10/10)

Advance time to $t=6, t=7$ and then process event $n_{9}(1 \rightarrow 0)$ at $t=7$
$n_{1}=0, n_{2}=0, n_{3}=1, n_{4}=0, n_{5}=0, n_{6}=0$, $\mathrm{n}_{7}=0, \mathrm{n}_{8}=0, \mathrm{n}_{9}=1->0$

Not scheduling any triggered event because n_{9} is an output.

- There are hazards on $\mathrm{n} 8(0 \rightarrow 1 \rightarrow 0)$ and $\mathrm{n} 9(0 \rightarrow 1 \rightarrow 0)$.
- It takes 7 ns to propagate the input change to the output.

Outline

- Introduction
- Gate-level simulation
- Compiled-Code Simulation
- Event-Driven Simulation
- Switch-Level Simulation
- Circuit Partitioning
- Evaluate each channel-connected component

Basics of Switch-Level Simulation

- Input

A transistor schematic

- Simulation Strategy
(1) Treating transistors as bi-directional switches
(2) Label each transistor by its on-resistance
(3) Label each node by (strength, value) pair
(4) Parasitic RC can be included
- Two types of nodes
(1) input node and (2) charged node (or storage node)
- Input node
- Could be Vdd, GND, strong ' 0 ' or ' 1 '
- The strength of an input node is the maximum one
- Charged node
- Is associated with a capacitance
- The strength is proportional to its capacitance

Strength Model Example

Switch-Level Simulation Techniques

- Partitioning the circuit into subcircuits that can be treated as unidirectional components.
- Static partitioning: Connections to the gate of a transistor determine subcircuit boundaries irrespective of the signals carried by the nets.
- Dynamic partitioning: Known signal values in the network are taken into account such that further partitioning of subcircuits is possible.
- Each subcircuit is then modeled as a channel-connected component or a switch graph (multigraph) $G=(V, E)$, where - \mathbf{V} is a set of vertices representing input or storage nodes labeled with node (net) names and strengths.
- E is a set of edges representing transistors labeled with a transistor name and strength.

Multi-Graph

- A convenient representation for switchlevel circuits is a multigraph.
- Vertices represent nets and are labeled with the net name and strength.
- Edges represent transistors and are labeled with a transistor ID and strength.

Ex:Evaluate a Channel-Connected Component

- The table below shows how input signal changes are propagated to the output.

Propagate (from \rightarrow to)	State of n_{2}	State of n_{3}
"Initial state"	('X', 1)	('X', 1)
$\mathrm{n}_{\mathrm{o} \rightarrow} \mathrm{n}_{\mathbf{2}}$	$\left({ }^{\prime} 1,3\right)$	(' $X^{\prime}, 1$)
$\mathrm{n}_{1 \rightarrow} \mathrm{n}_{2}$	('0', 4)	('X', 1)
$\mathrm{n}_{2 \rightarrow} \mathrm{n}_{3}$	('0, 4)	$\left({ }^{\prime} 0,3\right)$
Winner takes all Logic value Strength Chang. Huang. Li. Lin. Liu		

Switch-Level Timing Simulation

- Need delay models to account for
- Transistor on-resistance and capacitance
- Interconnect resistance and capacitance
- Delay Models
- Lumped RC model (overestimating delay)
- Lumped RC model + input slope (slew rate)
- Distributed RC model + input slope

Concluding Remarks

- Trade-off in simulation
- Behavior-level \rightarrow Cycle-accurate \rightarrow Timing-accurate
- Two major types of gate-level simulation
- Compiled-code simulation
- Event-driven simulation
- Switch-Level Simulation
- Partitioning of circuits into channel-connected components
- A fight-breaking scheme in terms of strength of signals

Simulation Is Not Real, It Is Just Almost Real.

Outline

\Longrightarrow • Fundamentals

－The roles of formal verification
－Binary Decision Diagram（BDD）
－Equivalence Checking
－Product Machine
－State Space Traversal
－Implicit State Enumeration

Functional Verification Paradigms

－Simulation

－not complete（i．e．，may fail to catch bugs）
－very time－consuming，especially when at lower abstraction levels such as the gate or transistor level
－still the most popular way for design validation
－Emulation
－（1）based on an FPGA－based emulation system，or
－（2）based on a massively parallel machine（e．g．，with 8 boards，each having 128 processors）
－ 2 to 3 orders of magnitude faster than software simulation
－costly and might not be very easy－to－use
－Formal verification
－a relatively new paradigm for property checking and equivalence checking
－requires no input stimuli
－perform exhaustive proof through rigorous logical reasoning

Binary Decision Diagram（BDD）

－Basic Features
－BDD was proposed by［R．E．Bryant］in 1986
－＂Graph－Based Algorithms for Boolean Function Manipulation＂， IEEE Trans．on Computers，vol．C－35，Aug．1986，pp．677－691．
－BDD is a Directed Acyclic Graph（DAG）used to represent a Boolean function $f: B^{n} \rightarrow B$
－each non－terminal node is a decision node associated with an input variable with two branches－0－branch and 1－branch
－There are two terminal nodes－0－terminal and 1－ terminal
－Example：

Canonicity

－Canonicity Requirements

－The BDD representation is not canonical for a given Boolean function unless the following constraints are satisfied：
－（1）Simple BDD－each variable can appear only once along each path from the root to a leaf
－（2）Ordered BDD－Boolean variables are ordered in such a way that if the node labeled x_{i} has a child labeled x_{k} ，then $\operatorname{order}\left(x_{i}\right)<\operatorname{order}\left(x_{k}\right)$
－（3）Reduced BDD－no two nodes represent the same function，l．e．，redundancies are removed by sharing isomorphic sub－graphs

Reduced Ordered BDD（ROBDD）

－Rules for ROBDD

－Rule 1：merge two children with the same terminal nodes
－Rule 2：merge two isomorphic sub－graphs

－Reduction Procedure
－Input：An arbitrary BDD
－Output：A canonical reduced ordered BDD
－Traverse the graph from the terminal nodes towards to root node（l．e．，in a bottom－up manner）and apply the above reduction rules whenever possible

Example：BDD Reduction（1）

－$f=x^{\prime} y z^{\prime}+x z$
－variable order：$x \rightarrow y \rightarrow z$
not yet reduced BDD

Truth table

$x y z$	f
000	0
001	0
010	1
011	0
100	0
101	1
110	0
111	1

Example：BDD Reduction（2）

Example：BDD Reduction（3）

 \rightarrow An ROBDD without isomorphic sub－graphs is achieved

The Influence of Variable Ordering

－Size of BDD
－can vary from linear to exponential in the number of the variables，depending on the variable ordering
－Hard－to－Build BDD
－Data path components（e．g．，multipliers）cannot be represented in polynomial space，regardless of the variable ordering
－Heuristics of Ordering
－（1）Put variables that influence most on the top of BDD
－（2）Minimize the distance between strongly related variables
－（e．g．，x1x2＋x $2 \times 3+x 3 \times 4$ ）
$\mathrm{x} 1 \rightarrow \mathrm{x} 2 \rightarrow \mathrm{x} 3 \rightarrow \mathrm{x} 4$ is better than $\mathrm{x} 1 \rightarrow \mathrm{x} 4 \rightarrow \mathrm{x} 2 \rightarrow \mathrm{x} 3$

Example on Variable Ordering

$$
z=(a \oplus b) \cdot(c \oplus d) \cdot(e \oplus f)
$$

華大學電機系 黄錫揄

Recursive BDD Operations

－Notations
－fand g are two BDDs representing two functions
－op is a Boolean operator（I．e．，AND，OR，NOT，．．．）
－BDD operation
－Problem：Construct the BDD of $h=f o p g$
－A recursive procedure on each variable
－$h=x \cdot h_{x=1}+x \cdot h_{x=0}$ ，where x is a variable $=x \cdot(f \text { op } g)_{x=1}+x$＇$(f \text { op } g)_{x=0}$
－For most operations，（fop $g)_{x=1}=\left(f_{x=1}\right.$ op $\left.g_{x=1}\right)$
－Hence $h=x \cdot\left(f_{x=1}\right.$ op $\left.g_{x=1}\right)+x^{\prime}\left(f_{x=0}\right.$ op $\left.g_{x=0}\right)$

Existential Quantification

－Definition

$$
\begin{aligned}
& \exists x_{1}\left[f\left(x_{1}, y_{1}, \ldots, y_{n}\right)\right]=g\left(y_{1}, \ldots, y_{n}\right) \\
& \text { such that } g\left(y_{1}, \ldots, y_{n}\right)=1 \\
& \text { iff } f\left(0, y_{1}, \ldots, y_{n}\right)=1 \text { or } f\left(1, y_{1}, \ldots, y_{n}\right)=1
\end{aligned}
$$

－Example

Universal Quantification

－Definition

$$
\begin{aligned}
& \forall x_{1}\left[f\left(x_{1}, y_{1}, \ldots, y_{n}\right)\right]=g\left(y_{1}, \ldots, y_{n}\right) \\
& \text { such that } g\left(y_{1}, \ldots, y_{n}\right)=1 \\
& \text { iff } f\left(0, y_{1}, \ldots, y_{n}\right)=1 \text { and } f\left(1, y_{1}, \ldots, y_{n}\right)=1
\end{aligned}
$$

－Example

$\exists x_{1} f=f_{x 1=0}+f_{x 1=1}$

From Netlist to OBDD

Example：Constructing BDD

Boolean network C
A topological order：$\{x 1, x 2, x 3, z 1, z 2\}$
variable order： $\mathrm{x} 1 \rightarrow \mathrm{x} 2 \rightarrow \mathrm{x} 3$

BDD（x1）

清龩大學電機系 黄锡瑜

BDD（x2）
BDD（x3）

$$
3
$$

Outline

－Fundamentals
－The roles of formal verification
－Binary Decision Diagram（BDD）
\Longrightarrow • Equivalence Checking
－Product Machine
－State Space Traversal
－Implicit State Enumeration

The Problem of Equivalence Checking

（Question）：Is every primary output pair equivalent （i．e．，$S_{k}=I_{k}, \mathbf{1} \leqq \mathrm{k} \leqq n$ ）for all possible input sequences？

Product Machine

Assumption

the no. of states in the specification machine: n1 the no. of states in the implementation machine: n2 Then the product machine has ($n 1 \times n 2$) states

Two machines are equivalent if and only if the product machine's outputs are tautology ' 0 ' for all possible input sequences

Overall Procedure for Symbolic Equivalence Checking

- Sequential Equivalence Checking
- (Step1): enumerate all possible reachable states of the product machine \rightarrow a process requires FSM traversal
- (Step 2): prove every output of the product machine for any combination of primary inputs and reachable states is tautology ' 0 ' \rightarrow a combinational checking problem

Reachable State Computation

Finite State Machine Traversal （FSM Traversal）

－FSM Traversal
－a process to compute the set of reachable states
－can be a breadth－first or depth－first traversal
－Breadth－first traversal
1．Initial $R_{0}=\left\{s_{0}\right\}$
2．$R_{j+1}=R_{j} \cup$ \｛next states of $\left.R_{j}\right\}$
3．Repeat step（2）until a fixed－point is found，i．e．，two consecutive reachable state sets R_{k}, R_{k+1} are the same

Example：FSM－traversal

iteration j	reachable states \mathbf{R}_{j}
0	\｛s0\}
1	\｛ $\mathrm{s} 0, \mathrm{~s} 1, \mathrm{~s} 5\}$
2	\｛s0，s1，s2，s5\}
3	\｛s0，s1，s2，s3，s5\}
4	\｛s0，s1，s2，s3，s4，s5\}
5	\｛s0，s1，s2，s3，s4，s5\} (fixed point)

Implicit State Enumeration

－Implicit state enumeration
－The reachable states are computed without constructing the state transition graph explicitly
－The state space is implicitly traversed
－BDD is used to
－represent a set of states
－represent the state transition relation of a machine
－More efficient than explicit state enumeration based on the state transition graph
－Capable of handling larger designs（e．g．，one with $\mathbf{1 0}^{\mathbf{2 0}}$ states）

BDD for Set Representation

v is now represent a set of input vectors

$\times 1 \times 2 \times 3$	characteristic function f_{v} where $v=\{(000),(111)\}$
000	1
001	0
010	0
011	0
100	0
101	0
110	0
111	1

Truth table

BDD－representation

Input／Output Relation

－Definition

－Let C be a Boolean network from B^{m} to B^{n}
－Let v be an input vector，w be an output vector
－The I／O relation of C is a relation $R_{C}: B^{m} \times B^{n}$ ，and（ v, w ） $\in R_{C}$ if $C(v)=w$
－A network＇s I／O relation consists of every valid input／output combinations
－Characteristic formula

$$
\begin{aligned}
& \left.R_{C}\left(x_{1}, \ldots, x_{m} \mid z_{1}, \ldots, z_{n}\right)=\left(z_{1} \equiv \lambda_{1}(X)\right) \bullet\left(z_{2} \equiv \lambda_{2} \dot{(} X\right)\right) \ldots \bullet\left(z_{n} \equiv \lambda_{n}(X)\right) \\
& =\prod_{i=1}^{n}\left(z_{i} \equiv \lambda_{i}(X)\right) \quad \lambda_{i} \text { is the Boolean function of output } z_{i} \quad \text { where }(a \equiv b) \text { corresponds to }(a b+\bar{a} \bar{b})
\end{aligned}
$$

Example：I／O Relation

x1 x2 x 3	z1 z2	$\begin{gathered} \hline \text { input/output } \\ \text { relation } \\ R_{\mathrm{C}} \\ \hline \end{gathered}$	comment
000	00	1	valid combina－ tions
001	00	1	
010	10	1	
011	11	1	
100	10	1	
101	11	1	
110	10	1	
111	10	1	
any other		0	invalid

Finite State Machine

－Six－tuple Notation for a FSM

$-\mathbf{M}=\left(\mathbf{I}, \mathbf{O}, \mathbf{S}, \mathbf{s}_{0}, \delta, \lambda\right)$
－I is the input space defined by input variables $\left\{\mathbf{x}_{1}, \mathbf{x}_{2}, \ldots, x_{m}\right\}$
－O is the output space defined by output variables $\left\{\mathbf{z}_{1}, z_{2}, \ldots, z_{n}\right\}$
$-S$ is the state space defined by state variables $\left\{\mathbf{y}_{1}, y_{1}, \ldots, y_{k}\right\}$
－ $\mathrm{s}_{\mathbf{0}}$ is the known initial state
－δ is a set of transition functions
－λ is a set of output functions
next state line function
$\mathrm{t}_{\mathrm{i}}=\delta_{\mathrm{i}}\left(\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{m}}, \mathrm{y}_{1}, \ldots, \mathrm{y}_{\mathrm{k}}\right)$

Transition Relation

－Definition
－Let $\mathrm{M}=\left(\mathrm{I}, \mathrm{O}, \mathrm{S}, \mathrm{s}_{0}, \delta, \lambda\right)$ be a FSM
－The transition relation T ：$B^{m} x B^{k} x B^{k}, m$ and k are the dimensions of the input and state space
－（ v, p, q ）$\in T$ if machine M will transition from state p to state q under the input vector v
－Characteristic formula

$$
\begin{aligned}
T\left(x_{1}, \ldots, x_{m}\left|y_{1}, \ldots, y_{k}\right| t_{1}, \ldots t_{2}, t_{k}\right) & =\left(t_{1} \equiv \delta_{1}\right) \bullet\left(t_{2} \equiv \delta_{2}\right) \ldots \bullet\left(t_{k} \equiv \delta_{k}\right) \\
& =\prod_{i=1}^{k}\left(t_{i} \equiv \delta_{i}(X, Y)\right)
\end{aligned}
$$

Example：Transition Relation

primary inputs current state next state characteristic function of transition relation T $\mathbf{0}$ S0 S1 $\mathbf{1}$ 1 S0 S3 $\mathbf{1}$ - S1 S2 $\mathbf{1}$ - S2 S3 $\mathbf{1}$ $\mathbf{0}$ S3 S1 $\mathbf{1}$ $\mathbf{1}$ S3 S3 $\mathbf{1}$ other combinations $\mathbf{0}$

Existential Transition Relation

－Definition
－Let $\mathbf{M}=\left(1,0, S, s_{0}, \delta, \lambda\right)$ be a FSM
－The existential transition relation $T_{\text {exist }}: B^{k} x B^{k}$ ，where k is the dimension of the state space
－$(p, q) \in T_{\text {exist }}$ if there exists an input vector that brings the machine M from state p to state q
－Note that existential transition relation only concerns about the connectivity of the FSM＇s transition graph
－Characteristic formula

$$
\begin{gathered}
\mathrm{T}_{\text {exist }}\left(y_{1}, \ldots, y_{k} \mid t_{1}, \ldots t_{2}, t_{k}\right)=\left(\exists x_{1} x_{2} \ldots x_{m}\right)\left(\left(t_{1} \equiv \delta_{1}\right) \cdot\left(t_{2} \equiv \delta_{2}\right) \ldots\left(t_{k} \equiv \delta_{k}\right)\right) \\
=\left(\exists x_{1} x_{2} \ldots x_{m}\right) \prod_{i=1}^{k}\left(t_{i} \equiv \delta_{i}(X, Y)\right)
\end{gathered}
$$

Example： $\mathrm{T}_{\text {exist }}$

current state	next state	characteristic function of existential transition relation $T_{\text {exist }}$
S0	S1	1
S0	S3	1
S1	S2	1
S2	S3	1
S3	S1	1
S3	S3	1
others combinations		0

Reachable State Computation

－Existential Transition Relation
－defines a projection from present state space to the next state space
－A state could reach multiple states
－Multiple states can reach the same next state
－Hence，$T_{\text {exist }}$ is a many－to－many mapping
－Reachable states $\mathrm{R}_{\mathrm{i}+1}$ in the breadth－first traversal
－$R_{i+1}=R_{i} \cup N_{i}$ ，where N_{i} is image of R_{i}

Symbolic Image Computation

－Definition
－Let T be a projection，$T: B^{m} \times B^{n}$
－Let A be a set of vectors in B^{m}
－The image of A is a set in B^{n}
 image $(T, A)=\left\{w \in B^{n} \mid(v, w) \in T\right.$ and $\left.v \in A\right\}$
－Characteristic Function
－in the application of reachable next state computation

$$
\begin{aligned}
& \text { reachable next states } N_{i}=\operatorname{Image}\left(\mathrm{T}_{\text {exist }}, R\right) \\
& =\left(\exists y_{1} y_{2} \ldots y_{k}\right)\left(R_{i} \bullet \mathrm{~T}_{\text {exist }}\right) \\
& =\left(\exists y_{1} y_{2} \ldots y_{k}\right)\left(R_{i} \cdot\left(\left(\exists x_{1} x_{2} \ldots x_{m}\right) \prod_{i=1}^{k}\left(t_{i} \equiv \delta_{i}(X, Y)\right)\right)\right)
\end{aligned}
$$

Ex：Next－State Computation

Example FSM

Transition Relation：
$T=\left\{\left(0, S_{0}, S_{1}\right),\left(1, S_{0}, S_{3}\right),\left(-, S_{1}, S_{2}\right),\left(-, S_{2}, S_{3}\right),\left(1, S_{3}, S_{3}\right),\left(0, S_{3}, S_{1}\right)\right\}$
$\mathbf{T}_{\text {exist }}=\left\{\left(\mathbf{S}_{0}, \mathbf{S}_{1}\right),\left(\mathbf{S}_{0}, \mathbf{S}_{3}\right),\left(\mathbf{S}_{1}, \mathbf{S}_{2}\right),\left(\mathbf{S}_{2}, \mathbf{S}_{3}\right),\left(\mathbf{S}_{3}, \mathbf{S}_{3}\right),\left(\mathbf{S}_{3}, \mathbf{S}_{1}\right)\right\}$
What is the set of the next states of $R=\left\{S_{1}, S_{3}\right\}$ ？
$R \cap T_{\text {exist }}=\left\{\left(\mathbf{S}_{1}, S_{2}\right),\left(\mathbf{S}_{3}, S_{3}\right),\left(\mathbf{S}_{3}, S_{1}\right)\right\}$
\rightarrow It implies that there are three transitions outgoing from $\left\{S_{1}, S_{3}\right\}$
And the destination states（i．e．the next states）include $\left\{S_{2}, S_{3}, \bar{S}_{1}\right\}$
So，final set of reachable next states from $\left\{S_{1}, S_{3}\right\}$ is $\left\{S_{1}, S_{2}, S_{3}\right\}$

Overall Flow of Sequential Equivalence Checking

Tautology Checking

－Notation
－Let R be the reachable states derived from the FSM traversal
－Theorem
－Two machines are equivalent if and only if $\left(\lambda_{1}+\lambda_{2}+\ldots+\lambda_{n}\right) \cdot R$ is tautology＇ 0 ，

Why Incremental Verification？

－Limitations of Symbolic Approaches
－Could be time－consuming
－Cannot handle larger design due to memory explosion
－In Practice
－The two circuits under equivalence checking have a lot of structural similarity
－Idea of Incremental Verification
－Exploring the structural similarity between the two circuits to speed up the verification process and to handle real large designs（e．g．，multi－million gate－ count design）［D．Brand 1993］

A Naïve ATPG－based Verification

Computational model called miter

Terminology

－Signal pair
－$\left(a_{1}, a_{2}\right)$ is called a signal pair if a_{1} is from C_{1} and a_{2} is from C_{2} ，or vice versa
－Equivalent signal pair
－（ a_{1}, a_{2} ）is called an equivalent（signal）pair if the binary value of a_{1} and a_{2} in response to any input vector are identical
－Permissible signal pair
－（ a_{1}, a_{2} ）is called a permissible（signal）pair if replacing a_{1} by a_{2} in the miter does not alter the output＇s functionality
－Note that $\left(a_{1}, a_{2}\right)$ is a permissible pair does not necessarily imply that $\left(a_{2}, a_{1}\right)$ is also a permissible pair

Pruning Miter

－Given a candidate permissible pair（ a_{1}, a_{2} ）
－（1）check the permissibility by the model in Fig（a）
－（2）If it sustains，replace a1 by a2
－The strategy is
－merging internal permissible pairs first before checking the equivalence of an output pair（to improve efficiency）

（a）model for checking if （ a_{1}, a_{2} ）is permissible．

（b）replace a_{1} by a_{2} ．

Example：Incremental Verification

Enhancement by Using Local BDD

－Local BDD

－is a BDD taking certain internal signals，instead of the primary inputs，as the supporting variables
－The concept of dynamic support

The dynamic support expands towards the Pl＇s

Example：Incremental Verification Using Local BDD

－First support $\lambda_{1}=\left\{b^{\prime}, c^{\prime}\right\}$
\rightarrow The local BDDs of o_{1} and o_{2} in terms of λ_{1} is NOT equivalent
\rightarrow expand the support towards PI＇s
－Second support $\lambda_{2}=\left\{x_{1}, a^{\prime}, x_{3}\right\}$
\rightarrow The local BDDs of o_{1} and o_{2} in terms of λ_{2} is equivalent
\rightarrow Conclude that $\left(o_{1}, o_{2}\right)$ is equivalent

Conclusions

Formal Method is fantastic when it works．

But it could fail badly when it does not．

It is all about Boolean reasoning

Good luck on finding your own applications ．．

References

1. R. E. Bryant, "Graph-Based Algorithms for Boolean Function Manipulation", IEEE Trans. on Computers, vol. C-35, Aug. 1986, pp. 677-691.
2. E.M. Clark, O. Grumberg, and D. Peled, "Model Checking", 2000
3. S.-Y. Huang and K.-T. Cheng, "Formal Equivalence Checking and Design Debugging," Kluwer Academic Publishers, 1998.

清華大學 EE 5265
 積體電路設計自動化

單元 6
 Floorplanning

教育部顧問室
「超大型積體電路與系統設計」教育改進計畫
EDA聯盟－推廣課程

Outline of Floorplanning

- Contents

(1) Basics of Floorplanning
(2) Slicing Floorplanning
(3) Non-Slicing Floorplanning

PowerPC 604

Pentium 4

Floorplanning

- Floorplanning leads to
- Well-defined blocks in terms of the physical structures
- Block Types
- Hard or rigid blocks: with defined areas and shapes
- Soft or flexible blocks: with approximate areas, undefined shapes
- Objectives
- Find locations for all blocks
- Report shapes of soft block and pin locations of all the blocks
 (/Pin assignment)

Why Floorplanning?

- Main Purpose of Floorplanning
- (1) To implement the top-down design strategy
- (2) To decide the shape and terminals of each soft block
- (3) For rough estimation of the wiring delays

Floorplanning Problem

- Inputs to the floorplanning problem:
- A set of blocks, hard or soft.
- Pin locations of hard blocks.
- A netlist.
- Objectives:
minimize area, reduce wire length for (critical) nets, maximize routability (minimize congestion), determine shapes of soft blocks, etc.

An optimal floorplan, in terms of area

A non-optimal floorplan

Floorplan Design

- Modules:

- Area: $A=x y$
- Aspect ratio: $r<=v / x<=s$
- Rotation.

- Module connectivity

Representing Floorplan As a Tree

(1) H-node: horizontal cut

- Left sub-tree is the bottom half

Three Types

- Right sub-tree is the top half
(2) V-node: vertical cut
- Left sub-tree is the left half
- Right sub-tree is the right half
(3) Leaf node: a basic block

Slicing Floorplan

- Slicing structure:
- A rectangular dissection that can be obtained by repetitively subdividing rectangles horizontally or vertically.
- Slicing tree:
- A binary tree, where each internal node represents a vertical cut line or horizontal cut line, and each leaf a basic rectangle.

non-slicing floorplan

Skewed Slicing Tree

- Problem: There might be multiple trees for a floorplan !
- Skewed slicing tree: (Desired)
- One in which no node and its right child are the same.
slicing
floorplan

OR

Another slicing tree (Non-Skewed)

Outline

- Basics of Floorplanning

- Slicing Floorplanning
- Normalized Polish Expression
- Simulated Annealing Formulation
- Block Shaping Problem
- Non-Slicing Floorplanning
- Simulated Annealing Formulation

Slicing Floorplan Design by Simulated Annealing

- Related work
(1) Wong \& Liu, "A new algorithm for floorplan design," DAC-86.
- Considers slicing floorplans.
(2) Wong \& Liu, "Floorplan design for rectangular and L-shaped modules," ICCAD'87.
- Also considers L-shaped modules.
(3) Wong, Leong, Liu, Simulated Annealing for VLSI Design, pp. 31-71, Kluwer Academic Publishers, 1988.
- Ingredients to simulated annealing
- solution space?
- neighborhood structure?
- cost function?
- annealing schedule?

Polish Expression

- Definition of Polish Expression

- An expression $E=e_{1} e_{2} \ldots e_{2 n-1}$, where $e_{i} \in\{1,2, \ldots, n, H, V\}, 1 \leq i$ $\leq 2 n-1$
- (1) Every operand $j, 1 \leq \mathrm{j} \leq n$, appears exactly once in E;
(2) (The Balloting Property) For every sub-expression $E_{i}=e_{1} \ldots$ $e_{i}, 1 \leq i \leq 2 n-1$, no. of operands $>$ no. of operators

Why Balloting Property?

- Balloting property

- Operands should outnumber operators
- To guarantee a valid post-order traversal of a slicing tree

S has two sub-trees, S1 and S2,
Both S1 and S2 satisfy the balloting property
\rightarrow Then, the entire tree satisfies the balloting property as well

The total number of operands: (k1 + k2) The total number of operators: $(01+o 2+1)$

Since (k1 >= o1+1) and (k2 >= o2+1)
So, $(k 1+k 2)>=(01+02+2)$
\rightarrow I.e., $(k 1+k 2)>(01+o 2+1)$
\rightarrow Operands outnumber operators

Redundant Representations

- Problem:

One floorplan could correspond to multiple slicing tree representations !

- Solution: Give specific orders to consecutive cuts
(1) Consecutive H-cuts: ordered from right to left
- (2) Consecutive V-cuts: ordered from top to bottom

Normalized Polish Expression

- Definition of Normalized Polish Expression
- A Polish expression $E=e_{1} e_{2} \ldots e_{2 n-1}$ is called normalized iff E has no consecutive operators of the same type (H or V)
- A Normalized Polish Expression
- Corresponds to an unique rectangular slicing structure

7	5	4
6		4
1	2	3

Neighborhood Structure and Perturbation

- Chain: HVHVH ... or VHVHV ...

- Adjacency Relations
- 1 and 6 are adjacent operands; 2 and 7 are adjacent operands; 5 and V are adjacent operand and operator
- Three Types of Perturbations
- M1 (Operand Swap):
- Swap two adjacent operands
- M2 (Chain Invert):
- Complement some chain (V = H, H = V)
- M3 (Operator/Operand Swap):
- Swap two adjacent operand and operator

Effects of Perturbation

- Keep The balloting property during the moves
(1) M1 and M2 moves are OK
(2) Look out for the M3 moves!
- Reject illegal M3 moves if necessary

Validation of Operand-Operator Swap (M3)

- Validation check of M3 moves:
- Assume the swapping of operand e_{i} with the operator $e_{i+1}, 1 \leq i \leq k-1$
- N_{k} is no. of operators in Polish expression $E=e_{1} e_{2} \ldots e_{k}, 1 \leq k \leq 2 n-1$
- Then, the swap will not violate the balloting property iff $2 N_{i+1}<i$

(swap e_{5} and e_{6}) $\rightarrow \mathrm{i}=5 \rightarrow \mathrm{~N}_{5+1}=2 \rightarrow 2 \mathrm{~N}_{5+1}=2 * 2=4\langle\mathrm{i} \rightarrow$ legal move !
(Slicing Tree)

Cost Function

- $\phi=\mathbf{A}+\lambda W$
- A: area of the smallest rectangle
- W : overall wiring length
- λ : user-specified parameter

- Wire Length Estimation: $\mathbf{W}=\sum_{i j} c_{i j} d_{i j}$
- $c_{i j}$: \# of connections between blocks i and j.
$-\boldsymbol{d}_{i j}$: center-to-center distance between basic rectangles i and j.

Area Computation for Hard Blocks

- Take rotation into consideration

Note $(6,5)$ and $(8,5)$
have been dropped! \qquad $1(5,5)(9,4)$

Incremental Computation of Cost Function

- The cost change due to a move
- Can be estimated incrementally
- By updating at most two paths of the slicing tree

$\mathrm{E}=12 \mathrm{H} 34 \mathrm{~V} 56 \mathrm{VHV}$

$$
\mathrm{E}=123 \mathrm{H} 4 \mathrm{~V} 56 \mathrm{VHV}
$$

Annealing Schedule

- Initial solution: 12V3V ... nV.

- Temperature Cooling:
$-T i=r^{i} T_{0}, i=1,2,3, \ldots ; r=0.85$.
- Perturbations
- At each temperature, try kn moves ($k=5-10$).
- Terminating Conditions
- (1) Number of accepted moves < 5\%, or
- (2) Temperature is low enough, or
- (3) Run out of time

Algorithm: Wong-Liu (P, ε, r, k)

```
\(1 E \leftarrow 12 \mathrm{~V} 3 \mathrm{~V} 4 \mathrm{~V} . . \mathrm{nV}\); /* initial solution */
```



```
3 repeat
    \(M T \leftarrow\) uphill \(\leftarrow\) reject \(\leftarrow 0\);
        repeat
        SelectMove \((M)\);
        Case Mof
        \(M_{1}\) : Select two adjacent operands \(e_{i}\) and \(e_{i} ; N E \leftarrow \operatorname{Swap}\left(E, e_{i} e_{j}\right)\);
        \(M_{2}\) : Select a nonzero length chain \(C ; N E \leftarrow C\) Complement \((E, C)\);
        \(M_{3}\) : done \(\leftarrow\) FALSE;
            while not (done) do
                    Select two adjacent operand \(e_{i}\) and operator \(e_{i+1}\)
                    if \(\left(e_{i-1} \neq e_{i+1}\right)\) and \(\left(2 N_{i+1}<i\right)\) then done \(\leftarrow\) TRUE;
                    Select two adjacent operator \(e_{i}\) and operand \(e_{i+1}\);
                    if \(\left(e_{i} \neq \boldsymbol{e}_{i+2}\right)\) then done \(\leftarrow\) TRUE;
            \(N E \leftarrow \operatorname{Swap}\left(E, e_{i}, e_{i+1}\right)\);
        \(M T \leftarrow M T+1 ; \Delta \operatorname{cost} \leftarrow \operatorname{cost}(N E)-\operatorname{cost}(E) ;\)
        if \((\Delta \cos t \leq 0)\) or (Random \(<e^{\frac{-\Delta c o s}{T}}\) )
        then
            if \((\Delta \cos t>0)\) then uphill \(\leftarrow\) uphill +1 ;
            \(E \leftarrow N E ;\)
            if \(\operatorname{cost}(E)<\operatorname{cost}(\) best \()\) then best \(\leftarrow E\);
        else reject \(\leftarrow\) reject +1 ;
    until (uphill \(>N\) ) or ( \(M T>2 N\) );
    \(T \leftarrow r T\); \({ }^{*}\) reduce temperature *।
26 until (reject/MT >0.95) or ( \(T<\varepsilon\) ) or OutOfTime;
```


Outline

- Basics of Floorplanning
- Slicing Floorplanning
- Normalized Polish Expression
- Simulated Annealing Formulation
- Block Shaping Problem
- Non-Slicing Floorplanning
- Simulated Annealing Formulation

Shape Curve

- Soft blocks could have different aspect ratios.
- The shape function is a hyperbola:
$x y=A$, with the width x and the height y
- In practice,
- Very thin blocks are often not feasible to design.
- The shape function is a hyperbola constrained by two lines
- Aspect ratio: $r<=y / x<=s$.

Discrete Shape Curve

- Leaf cells are built from discrete transistors:
- it is not realistic to assume that the shape function follows the hyperbola continuously.
- In an extreme case, a cell is rigid:
- it can only be rotated and mirrored during floorplanning or placement.

The shape function of a 2×4 inset cell.

Piecewise Linear Shape Curve

- In general, a piecewise linear function can be used to approximate any shape function.
- The points where the function changes its direction, are called the corner (break) points of the piecewise linear function.

Deriving Shapes of Children

- A choice for the minimal shape of composite cell fixes the shapes of its children cells.

Shaping Procedure of Slicing Floorplans

Shaping procedure is performed on a slicing tree
\rightarrow To decide the shape of each basic block.

Outline

- Basics of Floorplanning
- Slicing Floorplanning
- Normalized Polish Expression
- Simulated Annealing Formulation
- Block Shaping Problem
- Non-Slicing Floorplanning
- Simulated Annealing Formulation

Order-of-5 Floorplan Examples

Wheel (or spiral) floorplan include a wheel structure as a basic block
\rightarrow Could lead to an even better result than a pure slicing floorplan
\rightarrow an order-of-5 floorplan, I.e., a node could have five children in the tree

General Floorplan Representation: Polar Graphs

- vertex: channel segment (or boundary)
- edge (weight): cell/block/module (dimension)

Concluding Remarks

- Floorplanning Strategy

- Representation \rightarrow Cost Calculation \rightarrow Perturbation Scheme
- Slicing Tree
- Normalized Polish Expression
- Non-Slicing Tree
- Polar Graph

It Is The Floorplan That
Shapes The Landscape of Your IC.

清華大學 EE 5265
 積體電路設計自動化

單元7
 Placement and Partitioning

教育部顧問室
「超大型積體電路與系統設計」教育改進計畫
EDA聯盟－推廣課程

Outline of Placement

- Course contents:

- Placement metrics
- Placement
- Clustering-Based, Partitioning-Based, Force-Directed, Simulated-Annealing, Genetic Algorithm
- Partitioning
- Kernighang-Lin Partitioning Algorithm
- Simulated-Annealing Based Partitioning

layout surface

Placement

- Placement

- is to automatically assign pre-designed cells to correct positions on the chip, so as to minimize certain criteria
- Inputs: A set of fixed cells/modules, a netlist.
- Quality metrics:
- Routability, Channel Density, Wire-Length, cut size, performance, thermal issues, I/O pads.

Placement Objectives and Constraints

- What does a placement algorithm try to optimize?
- the total area
- the total wire length
- the number of horizontal/vertical wire segments crossing a line
- Constraints:
- the placement should be routable (no cell overlaps; no density overflow).
- timing constraints are met (some wires should always be shorter than a given length).

Placement Styles

- Building-Block Placement
- The cells to be placed have arbitrary shapes
- Standard-Cell Placement
- Cells are to be placed in rows
- Gate-Level Placement
- Cells are mapped into pre-fabricated logic blocks

Building-block placement

Standard-Cell Placement

- Standard cells are designed in such a way that
- power and clock connections run horizontally through the cell and other I/O leaves the cell from the top or bottom sides.
- Sometimes feedthrough cells are added to ease wiring.

Consequences of Fabrication Method

- Full-custom fabrication (building block):
- Free selection of aspect ratio (quotient of height and width).
- Height of wiring channels can be adapted if necessary.
- Semi-custom fabrication (gate array, standard cell):
- Placement has to deal with fixed carrier dimensions.
- Placement should be able to deal with fixed channel capacities.

Relation with Routing

- Ideally,
- placement and routing should be performed simultaneously as they depend on each other's results. This is, however, too complicated.
- P\&R: placement and routing
- In practice,
placement is done prior to routing. The placement algorithm estimates the wire length of a net using some metric.
(Wire Length Estimation) Input: the multiple pins of a net Output: estimation of the length

Estimation of Wirelength

- Semi-perimeter method:
- Half the perimeter of the bounding rectangle that encloses all the pins of the net to be connected. Most widely used approximation!
- Squared Euclidean distance:
- Squares of all pairwise terminal distances in a net using a quadratic cost function

$$
\frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} \gamma_{i j}\left[\left(x_{i}-x_{j}\right)^{2}+\left(y_{i}-y_{j}\right)^{2}\right]
$$

- Steiner-tree approximation:
- Computationally expensive.
- Minimum spanning tree:
- Good approximation to Steiner trees.

Estimation of Wirelength (cont'd)

semi-perimeter ien $=1 /$

Steinertree $\mathrm{Cen}=12$

complete gruph ien $* 2 / n=17.5$

Spumning tree ien $=13$

Placement Algorithms

- The placement problem is NP-complete
- Popular placement algorithms:
- Constructive algorithms: once the position of a cell is fixed, it is not modified anymore.
- Clustering-based, Partition-based
- Iterative algorithms: intermediate placements are modified in an attempt to improve the cost function.
- Force-directed method, etc
- Non-deterministic approaches:
- Simulated annealing, genetic algorithm, etc.
- Most approaches combine multiple elements:
- (1) Constructive algorithms are used to obtain an initial placement.
- (2) The initial placement is refined by an iterative improvement phase.
- (3) The results can further be improved by simulated annealing.

Outline

- Placement metrics
- Placement
- Clustering-Based
- Partitioning-Based
- Force-Directed
- Simulated-Annealing
- Genetic Algorithm
- Partitioning
- Kernighang-Lin Partitioning Algorithm
- Simulated-Annealing Based Partitioning

Bottom-Up Placement: Clustering

- Starts with a single cell and finds more cells that share nets with it.

Clustering-Based Placement

- Greedy method: Selects unplaced components and places them in available slots.
(1) SELECT: Choose the unplaced component that is most strongly connected to all of the placed components (or most strongly connected to any single placed component).
(2) PLACE: Place the selected component at a slot such that a certain "cost" of the partial placement is minimized.

Example: Clustering-Based Placement

- Connectivity degree of each cell
$c_{a}=3, c_{b}=1, c_{c}=1, c_{d}=1, c_{e}=4, c_{f}=3$, and $c_{g}=3$
$\rightarrow e$ has the most connectivity.
- Place e in the center, slot 4. a, b, g are connected to e
\Rightarrow Place a next to e (say, slot 3). Continue with other cells
- Further improve the placement by swapping the gates.
connectivity
$\hat{c}_{a e}=2, \hat{c}_{b e}=\hat{c}_{e g}=1$

Top-down Placement: Partitioning-Based

- Starts with the whole circuit and ends with small circuits.
- Recursive Bi-partitioning of a circuit leads to a min-cut placement.

Partitioning-Based (or Min-Cut) Placement

- Breuer
" "A class of min-cut placement algorithms," DAC-77.
- Partition-Based Placement
- Quadrature
- Bisection
- Slice / Bisection

Chang, Huang, Li, Lin, Liu

Algorithm for Min-Cut Placement

Algorithm: Min_Cut_Placement(N, n, C) /* N : the layout surface */	
/* n : no. of cells to be placed */	
/* n_{0} : no. of cells in a slot */	
/* C: the connectivity matrix */	
1 begin	
2 if $\left(n \leq n_{0}\right)$ then PlaceCells (N, n, C) 3 else	
$4 \quad\left(N_{1}, N_{2}\right) \leftarrow$ CutSurface (N);	
$5 \quad\left(n_{1}^{-}, C_{1}\right),\left(n_{2}, C_{2}\right) \leftarrow \operatorname{Partition}(n, C)$;	
6 Call Min_Cut_Placement $\left(N_{1}, n_{1}, C_{1}\right)$;	
7 Call Min_Cut_Placement $\left(N_{2}, \mathrm{n}_{2}, C_{2}\right)$;	
	8 end

Quadrature Placement Example

- K-L heuristic to partition + Quadrature Placement: Cost $C_{1}=4, C_{2 L}=C_{2 R}=2$, etc.

Outline

- Placement metrics
- Placement
- Clustering-Based
- Partitioning-Based
- Force-Directed
- Simulated-Annealing
- Genetic Algorithm
- Partitioning
- Kernighang-Lin Partitioning Algorithm
- Simulated-Annealing Based Partitioning

General Procedure for Iterative Improvement

```
Algorithm: Iterative_Improvement()
1 begin
\(2 \mathrm{~s} \leftarrow\) initial_configuration();
\(3 c \leftarrow \operatorname{cost}(s)\);
4 while (not stop()) do
\(5 \quad s^{\prime} \leftarrow \operatorname{perturb}(s)\);
\(6 \quad c^{\prime} \leftarrow \operatorname{cost}\left(s^{\prime}\right)\);
7 if (accept(c, c'))
8 then \(s \leftarrow s^{\prime}\);
end
```


Placement by the Force-Directed Method

- Hanan \& Kurtzberg,
"Placement techniques," in Design Automation of Digital Systems, Breuer, Ed, 1972.
- Quinn, Jr. \& Breuer,
- "A force directed component placement procedure for printed circuit boards," IEEE Trans. Circuits and Systems, June 1979.
- Force-Directed Method:
- Reduce the placement problem to solving a set of simultaneous linear equations to determine equilibrium locations for cells.
- Analogy to Hooke's law:
$-F=k d, F$: force, k : spring constant, d : distance.

Finding the Zero-Force Location

- Cell i connects to several cells j 's at distances $d_{i j}$'s by wires of weights $w_{i j}$'s. Total force: $F_{i}=\sum_{j} w_{i j} d_{i j}$
- The zero-force location ($\widehat{x_{i}}, \widehat{y_{i}}$) can be determined by equating the x - and y-components of the forces to zero:

$$
\begin{aligned}
& \sum_{j} w_{i j} \cdot\left(x_{j}-\hat{x_{i}}\right)=0 \Rightarrow \hat{x_{i}}=\frac{\sum_{j} w_{i j} x_{j}}{\sum_{j} w_{i j}} \\
& \sum_{j} w_{i j} \cdot\left(y_{j}-\hat{y_{i}}\right)=0 \Rightarrow \hat{y_{i}}=\frac{\sum_{j} w_{i j} y_{j}}{\sum_{j} w_{i j}}
\end{aligned}
$$

- In the example, $\widehat{x_{i}}=\frac{8 \times 0+10 \times 2+3 \times 0+3 \times 2}{8+10+3+3}=1.083$ and $\hat{y_{i}}=1.50$.

Force-Directed Placement

- Can be constructive or iterative:

- Start with an initial placement.
- Select a "most profitable" cell p (e.g., maximum F, critical cells) and place it in its zero-force location.
- "Fix" placement if the zero-location has been occupied by another cell q.
- Popular options to fix:
- Ripple move: place p in the occupied location, compute a new zero-force location for q, ...
- Chain move: place p in the occupied location, move q to an adjacent location, ...
- Proximity Move: place p to a free location close to q.

```
Algorithm: Force-Directed_Placement
begin
2 Compute the connectivity for each cell;
Sort the cells in decreasing order of their connectivities into list L;
4 while (IterationCount < IterationLimit) do
    Seed }\leftarrow\mathrm{ next module from L;
    Declare the position of the seed vacant
        while (EndRipplc = FALSE) do
            Compute target location of the seed;
            case the target location
            VACANT:
                Move seed to the target location and lock
                EndFipple \leftarrowTRUE; AbortCount \leftarrow0;
            SAME AS PRESENT LOCATION:
                EndFipple \leftarrow TTRUE; AbortCount \leftarrow 0;
            LOCKED:
            Move selected cell to the nearest vacant location;
            EndRipple }\leftarrowTRUE; AbortCount \leftarrow AbortCount + 1
                            if (AbortCount > AbortLimit) then Stopping criterion of an iteration
                    IterationCount \leftarrow IterationCount + 1;
            OCCUPIED AND NOT LOCKED:
                            Select cell as the target location for next move;
                            Move seed cell to target location and lock the target location;
                            EndFipple \leftarrowFALSE; AbortCount \leftarrow0;
    end

\section*{TimberWolf: Placement by Simulated Annealing}
- Sechen and Sangiovanni-Vincentelli,
_ "The TimberWolf placement and routing package," IEEE J. Solid-State Circuits, Feb. 1985;
- "TimberWolf 3.2: A new standard cell placement and global routing package," DAC-86.


Questions: What are the moving scheme and cost function?

\section*{- Solution Space:}
- All possible arrangements of the modules into rows, possibly with overlaps.
- Moving Types
\(-M_{1}\) : Displace a module to a new location.
\(-M_{2}\) : Interchange two modules.
\(-M_{3}\) : Change the orientation of a module.

re-location


M2
swapping


M3
re-orientation

\section*{TimberWolf: Moving Scheme}
- Neighborhood Window: Range Limiter
- The neighborhood window shrinks as temperature decreases.
- At the beginning, \(\left(W_{T}, H_{T}\right)\) is big enough to contain the whole chip.
- Window height \& width is proportional to \(\log (T)\).
- Moving Scheme
- (1) Pick an M1 or M2 type of move. The probabilities of M1 is 0.8 , while that of M 2 is 0.2 .
- (2) Check acceptance or rejection by cost function and temperature
- (3) If M1 is picked while rejected \(\rightarrow\) Try M3 with probability of 0.1.


\section*{TimberWolf: Cost Function}



\section*{Placement by the Genetic Algorithm}
- Cohoon \& Paris, "Genetic placement," ICCAD-86.
- Genetic Ingredients:
- (1) Encoding (or Chromosome) of feasible solutions
- (2) No. of populations in each generation: e.g., 50
- (3) Fitness Function: for offspring selection
- (4) Operators: Crossover, Mutation, Inversion

A connectivity graph
For a netlist


Space to be filled in


Encoding

string: aghcbidef

\section*{Genetic Operator: Crossover}

\section*{- Main genetic operator:}
- Operate on two individuals and generates an offspring.
\([\) bidef \(\mid \operatorname{aghc}]\left(\frac{1}{86}\right)+[b d e f i \mid g c h a]\left(\frac{1}{110}\right) \rightarrow[\) bidefgcha \(]\left(\frac{1}{63}\right)\).
- Need to avoid repeated symbols in the solution string!
- Partially mapped crossover
- for avoiding repeated symbols:
\(-[b i d e f \mid g c h a]\left(\frac{1}{86}\right)+[a g h c b \mid\) idef \(]\left(\frac{1}{85}\right) \rightarrow[b g c h a \mid\) idef \(]\).
- Copy idef to the offspring; scan [bideflgcha] from the left, and then copy all unrepeated genes.

Note: Cost of each placement's encoding
\[
\text { Cost }=\frac{1}{\text { (Weighted Sum of Wire Lengths) }}
\]

\section*{Two More Crossover Operations}
- Cut-and-paste + Chain moves
- The cells that earlier occupied the neighboring locations in parent 2 are shifted outwards.
- Cut-and-paste + Swapping
- Copy \(k \times k\) square modules
- Swap cells not in both square modules.

Common squares: \{BHIG\}

Parent 1


Cut-and-paste + chain moves

Parent 2


Parent 1


Cut-and-paste + Swapping

\section*{Genetic Operators: Mutation \& Inversion}
- Mutation:
- Prevents loss of diversity by introducing new solutions.
- A commonly used mutation: pairwise interchange.
- Inversion: [bid|efgch|a] \(\rightarrow\) [bid|hcgfe|a].
- Probabilities of mutation and inversion:
- probability \(P_{\mu}\) and \(P_{i}\) respectively.

\section*{Pseudo-Code of Genetic Algorithm}
```

Algorithm: Genetic_Placement($\left.N_{p}, N_{g}, N_{o}, P_{i}, P \mu\right)$
$I^{*} N_{p}$: population size; *I $\quad I^{*} N_{g}$: number of generation; *I
/* N_{o} : number of offspring; */
/* Pi : inversion probability; *I I* $P \mu$: mutation probability; *I
1 begin
2 ConstructPopulation $\left(N_{p}\right)$; /* randomly generate the initial population */
3 for $j \leftarrow 1$ to N_{p}
Evaluate Fitness(population $\left(N_{p}\right)$);
5 for $i \leftarrow 1$ to $N_{g} / *$ produce one generation at a time */
for $j \leftarrow \mathbf{1}$ to N_{o}
$(x, y) \leftarrow$ ChooseParents; I^{*} choose parents with probability \propto fitness value *
offspring $(j) \leftarrow$ GenerateOffspring (x, y); ${ }^{*}$ crossover to generate offspring */
for $h \leftarrow \mathbf{1}$ to \boldsymbol{N}_{p}
With probability $P \mu$, apply Mutation(population(h));
for $h \leftarrow \mathbf{1}$ to $\boldsymbol{N}_{\boldsymbol{p}}$
With probability P_{i}, apply Inversion(population(h));
Evaluate Fitness(offspring(j));
14 population \leftarrow Select(population, offspring, N_{p});
15 return the highest scoring configuration in population;

```

\section*{Outline}
- Placement metrics
- Placement
- Clustering-Based
- Partitioning-Based
- Force-Directed
- Simulated-Annealing
- Genetic Algorithm
- Partitioning
- Kernighang-Lin Partitioning Algorithm
- Simulated-Annealing Based Partitioning


\section*{Partitioning}


\section*{Kernighan-Lin Algorithm}

\section*{- Kernighan and Lin,}
"An efficient heuristic procedure for partitioning graphs,"
The Bell System Technical Journal, vol. 49, no. 2, Feb. 1970.
- Basic Strategy
- An iterative, 2-way, balanced partitioning heuristic
- Basic Procedure
(1) Start with an initial solution \(S=(A \mid B)\)
- (2) Find a subset from A and B for swapping
- (3) Iterate until there is no gain


Questions:
(1) What is the cost function?
(2) How to find best swapping pairs?

\section*{Internal Cost vs. External Cost}

For vertex \(a\) :
Internal cost: \((1+2)=3\)
External cost: \((2+4)=6\)

For vertex \(b\) :
Internal cost: \((1+1+2)=4\)
External cost: 5

What if we swap \(a\) and \(b\) ?
\(\rightarrow\) Internal cost and external cost swaps as well.
\(\rightarrow\) External Cost Change \(=(3+4)-(6+5)=-4\) (reduction).
\(\rightarrow\) Looks like a good swap.


\section*{K-L Algorithm: A Simple Example}
- Each edge has a unit weight.


\section*{Terminology}
- Two sets \(A\) and \(B\) such that \(|A|=n=|B|\) and \(A \cap B=\varnothing\).
- External cost of \(a \in A: E_{a}=\sum_{v \in B} \boldsymbol{c}_{a v}\).
- Internal cost of \(a \in A: I_{a}=\sum_{v \in A} \boldsymbol{c}_{a v}\).
- D-value of a vertex \(a\) : \(D_{a}=E_{a}-I_{a}\) (cost reduction for moving \(a\) ).
- Cost reduction (gain) for swapping \(a\) and \(b\) :
\(g_{a b}=D_{a}+D_{b}-2 c_{a b}\)
Watch out for the edge connecting the swapping pair \((a, b)\) !


\section*{K-L Algorithm: A Weighted Example}

\begin{tabular}{l|llllll} 
& \(a\) & \(b\) & \(c\) & \(d\) & \(e\) & \(f\) \\
\hline\(a\) & 0 & 1 & 2 & 3 & 2 & 4 \\
\(b\) & 1 & 0 & 1 & 4 & 2 & 1 \\
\(c\) & 2 & 1 & 0 & 3 & 2 & 1 \\
\(d\) & 3 & 4 & 3 & 0 & 4 & 3 \\
\(e\) & 2 & 2 & 2 & 4 & 0 & 2 \\
\(f\) & 4 & 1 & 1 & 3 & 2 & 0
\end{tabular}


Initial cut cost \(=(3+2+4)+(4+2+1)+(3+2+1)=22\)
- Iteration 1:
\(I_{a}=1+2=3\)
\(E_{a}=3+2+4=9 ;\)
\(D_{a}=E_{a}-I_{a}=9-3=6\)
\(I_{b}=1+1=2\);
\(E_{b}=4+2+1=7\);
\(D_{b}=E_{b}-I_{b}=7-2=5\)
\(I_{c}=2+1=3\)
\(E_{c}=3+2+1=6 ;\)
\(D_{c}=E_{c}-I_{c}=6-3=3\)
\(I_{d}=4+3=7 ;\)
\(E_{d}=3+4+3=10 ;\)
\(D_{d}=E_{d}-I_{d}=10-7=3\)
\(I_{e}=4+2=6\);
\(E_{e}=2+2+2=6\);
\(D_{e}=E_{e}-I_{e}=6-6=0\)
\(I_{f}=3+2=5 ;\)
\(E_{f}=4+1+1=6 ;\)
\(D_{f}=E_{f}-I_{f}=6-5=1\)

\section*{(Step 1): Computing the g Value}

\section*{- Iteration 1:}
\[
\begin{array}{lll}
I_{a}=1+2=3 ; & E_{a}=3+2+4=9 ; & D_{a}=E_{a}-I_{a}=9-3=6 \\
I_{b}=1+1=2 ; & E_{b}=4+2+1=7 ; & D_{b}=E_{b}-I_{b}=7-2=5 \\
I_{c}=2+1=3 ; & E_{c}=3+2+1=6 ; & D_{c}=E_{c}-I_{c}=6-3=3 \\
I_{d}=4+3=7 ; & E_{d}=3+4+3=10 ; & D_{d}=E_{d}-I_{d}=10-7=3 \\
I_{e}=4+2=6 ; & E_{e}=2+2+2=6 ; & D_{e}=E_{e}-I_{e}=6-6=0 \\
I_{f}=3+2=5 ; & E_{f}=4+1+1=6 ; & D_{f}=E_{f}-I_{f}=6-5=1
\end{array}
\]
- \(g_{x y}=D_{x}+D_{y}-2 c_{x y}\).
\[
g_{o d}=D_{a}+D_{d}-2 c_{a d}=6+3-2 \times 3=3
\]
gae \(=6+0-2 \times 2=2\)
\(g_{a f}=6+1-2 \times 4=-1\)
\(g_{b d}=5+3-2 \times 4=0\)
\(g_{b e}=5+0-2 \times 2=1\)
\(g_{b f}=5+1-2 \times 1=4\) (masimum)
\(g_{c d}=3+3-2 \times 3=0\)
\(g c e=3+0-2 \times 2=-\)
\(g_{c f}=3+1-2 \times 1=2 \quad\) Best pick
- Swap \(b\) and \(f . \quad\left(\hat{g}_{1}=4\right)\)
(Step 2): Lock and Update

A

B
After locking (b, f)

A

B

Update the D -value of each unlocked vertices:
(1) For unlocked vertex, \(x\), in \(A: D_{x}{ }^{\prime}=D_{x}+2 c_{x b}-2 c_{x f}\)
(2) For unlocked vertex, \(y\), in \(B: D_{y}{ }^{\prime}=D_{y}+2 c_{y f}-2 c_{y b}\)
\(\rightarrow\) Update the g-value of each unlocked vertex pairs
\(\mathrm{g}_{\mathrm{xy}}=\mathrm{D}_{\mathrm{x}}{ }^{\prime}+\mathrm{D}_{\mathrm{y}}{ }^{\prime}-2 \mathrm{c}_{\mathrm{xy}}\)
Find the next candidate pair to lock ...

\section*{(Step 3): Determining Swapping Pairs}

At the end of the locking process: each vertex is paired up with another one Locked pairs: \((b, f) \rightarrow(c, e) \rightarrow(a, d)\)
\begin{tabular}{|c|c|c|c|}
\hline \(\bigcirc\) & \(\bigcirc\) & Gain of each pair & Accumulated gain \\
\hline e & c & 4 & \\
\hline d & \(a\) & 2 & (6) best \\
\hline \(\bigcirc\) & \(\bigcirc\) & -2 & 4 \\
\hline A & B & \(\rightarrow\) Best swapping & rs \(\{(\mathbf{b}, \mathbf{f}),(\mathrm{c}, \mathrm{e})\) \} \\
\hline
\end{tabular}


\section*{Pseudo-Code of Kernighan-Lin Algorithm}
```

Algorithm: Kernighan-Lin(G)
Input: $G=(V, E),|V|=2 n$.
Output: Balanced bi-partition A and B with "small" cut cost.
1 begin
2 Bipartition G into A and B such that $\left|V_{A}\right|=\left|V_{B}\right|, V_{A} \cap V_{B}=\emptyset$,
and $V_{A} \cup V_{B}=V$.
3 repeat
4 Compute $D_{v}, \forall v \in V$.
5 for $i=1$ to n do
$6 \quad$ Find a pair of unlocked vertices $v_{a i} \in V_{A}$ and $v_{b i} \in V_{B}$ whose
exchange makes the largest decrease or smallest increase in
cut cost; (Find next candidate pair)
Mark $v_{a i}$ and $v_{b i}$ as locked, store the gain $\hat{g}_{i,}$, and compute
the new D_{v}, for all unlocked $v \in V$; (Lock \& update)
8 Find k, such that $G_{k}=\sum_{i=1}^{k} \hat{g}_{i}$ is maximized; (Peak in gain curve)
9 if $G_{k}>0$ then
10 Move $v_{a 1}, \ldots, v_{a k}$ from V_{A} to V_{B} and $v_{b 1}, \ldots, v_{b k}$ from V_{B} to V_{A};
11 Unlock $v, \forall v \in V$.
12 until $G_{k} \leq 0$;
13 end

```

\section*{Time Complexity}
- Line 4: Initial computation of \(D: O\left(n^{2}\right)\)
- Line 5: The for-loop: \(O(n)\)
- The body of the loop: \(O\left(n^{2}\right)\).
- Lines 6--7: Step i takes \((n-i+1)^{2}\) time.
- Lines 4--11: Each pass of the repeat loop: \(O\left(n^{3}\right)\).
- Suppose the repeat loop terminates after \(r\) passes.
- The total running time: \(O\left(r n^{3}\right)\).
- Polynomial-time algorithm?

\section*{Extensions of K-L Algorithm}
- Unequally sized subsets (assume \(n_{1}<n_{2}\) )
1. Partition: \(|A|=n_{1}\) and \(|B|=n_{2}\).
2. Add \(n_{2}-n_{1}\) dummy vertices to set \(A\). Dummy vertices have no connections to the original graph.
3. Apply the Kernighan-Lin algorithm.
4. Remove all dummy vertices.
- Unequally sized "vertices"
1. Assume that the smallest "vertex" has unit size.
2. Replace each vertex of size \(s\) with \(s\) vertices which are fully connected with edges of infinite weight.
3. Apply the Kernighan-Lin algorithm.
- K-way partition
1. Partition the graph into \(k\) equally sized sets.
2. Apply the Kernighan-Lin algorithm for each pair of subsets.
3. Time complexity? Can be reduced by recursive bi-partition.

\section*{Concluding Remarks}

\section*{- Placement}
- (1) Top-Down, Bottom-Up, or Hybrid
- (2) A Good Heuristic: Force-Directed Algorithm
(3) Application of Simulated Annealing, Genetic Algorithm
- Partitioning
- An often encountered problem in EDA
- Kernighan-Lin algorithm is a classic algorithm

For Any Search Problem,
Evolution Works, But Just Takes Time ...

\title{
清華大學 EE 5265 \\ 積體電路設計自動化
}

\section*{單元 8}

\section*{Routing}

\section*{致謝}

本單元之教材主要取自於
教育部
超大型積體電路與系統設計教育改進計畫
EDA聯盟之課程發展成果
- （教材編纂小組成員）
- 台灣大學電機系 張耀文
- 清華大學電機系黄錫瑜
- 交通大學資科系李毅郎
- 中央大學電機系 劉建男
- 元智大學資工系 林榮彬


\section*{Outline}
- Course contents
- Basics of Routing
- General-Purpose Routing (Maze Routing, Line Search Routing)
- Global Routing
- Detailed Routing
- Readings
- Chapter 9


Detailed routing

switchbox routing


\section*{Routing Constraints}
- Requirements of a valid routing
- 100\% routing completion
- 100\% layout rules compliance
- Use of assigned layers only
- Quality considerations of Routing
(1) Area minimization
- (2) Performance-driven routing (critical wire length minimization)
- (3) Crosstalk alleviation
- (4) Resistance to process variations (Design for manufacturability)


Two-layer routing


Geometrical constraint

\section*{Lee Algorithm}
- Basic Concept:
- Find a path from \(S\) to \(T\) by "wave propagation".
- Strength:
- Guarantee to find the best route
- Time and space complexities
\(-\mathrm{O}(\mathrm{MxN})\) for MxN grid \(\rightarrow\) Huge !


Filling


Retrace

\section*{Improvements of Maze Routing}
- Starting Point Selection:
- Choose the point farthest from the center of the grid as the starting point.
- Double Fan-Out:
- Propagate waves from both the source and the target cell.
- Framing:
- Search inside a rectangle area 10-20\% larger than the bounding box containing the source and target.
- Need to enlarge the rectangle and redo the search if it fails.


\section*{Connecting Multi-Terminal Nets}
- Step 1: Propagate wave from the source \(s\) to the closest target.
- Step 2: Mark ALL cells on the path as s.
- Step 3: Propagate wave from ALL s cells to the other cells.
- Step 4: Continue until all cells are reached.
- Step 5: Apply heuristics to further reduce the tree cost.




\section*{Routing on a Weighted Grid}
- Motivation:
- To find a more desirable path (I.e., path of less weight)
- To achieve a more balanced routing
- Weight of a grid cell
- Defined as (the number of unblocked neighbor cells - 1)


\section*{Hightower - Line-Search Algorithm}
- Hightower
- "A solution to line-routing problem on the continuous plane," DAC-69.
- Basic Concept:
- A route is searched by moving two crossing lines.
- One stride is determined at each step.
- Alternate the vertical and horizontal moves.
- Get around the obstacles and get closer to the target destination.


Chang, Huang, Li, Lin, Liu

\section*{Net Ordering}
- Net ordering greatly affects routing solutions.

route net a before net \(b\)

route net \(b\) before net \(a\)
Chang, Huang, Li, Lin, Liu

\section*{Net Ordering Heuristics}
- Ordering Criteria
- A net with more pins within their bounding boxes last
- A net with large length estimation first (or last?)
- A net with higher timing criticality first

routing ordering: \(a(0) \rightarrow b(1)->d(2)->c(6)\)

\section*{Rip-Up and Re-Routing}
- Rip-up and re-routing

Is required when a router fails to connect all nets.
- Two steps in rip-up and re-routing
(1) Identify bottleneck regions
(2) Rip up some already routed nets
- (3) Route the blocked connections
- (4) Re-Route the ripped up connections
- Stopping criteria
- (1) All nets are routed successfully
- (2) Time limit is exceeded

\section*{Outline}
- Basics of Routing
- General-Purpose Routing
- Maze Routing
- Line Search Routing
- Global Routing
- Minimum Steiner Tree Problem
- Channel Routing

\section*{Graph Models for Global Routing: Grid Graph}
- Vertex
- Each cell is represented by a vertex.
- Edge
- Two vertices are joined by an edge if the corresponding cells are adjacent to each other
- Occupation mark

The occupied cells are marked as filled circles, whereas the others are clear circles.


\section*{Global Routing}

\section*{- Global Routing}
- is the process of roughly fixing the shapes of the connections for each net.
- by distributing the wiring segments among channels.
- Each shape is a rectilinear Steiner tree.


\section*{Example Global Routing}

Global routing
For Standard-Cell Design


Routing could fail due to Inadequate feed-through channels

Global routing
For Gate-Array


Each channel has a capacity of 2 tracks.

\section*{Global Routing in FPGA}
- Routing constraints
- Depends on the switch box architecture.
- For performance-driven routing
- (1) Minimize the number of switches.
- (2) Minimize the maximum of the critical wire length.


Each channel has a capacity of 2 tracks.

\section*{The Steiner Tree Problem}
- Problem:
- Given a set of pins of a net, connect the pins by a routing tree.



building block
- Minimum Rectilinear Steiner Tree (MRST) Problem:
- Given \(n\) points in the plane, find a minimum-length tree of rectilinear edges which connects the points.
- MRST \((P)=\operatorname{MST}(P \cup S)\), where \(P\) and \(S\) are the sets of original points and Steiner points, respectively.


\section*{Theoretical Results for the MRST Problem}
- Hanan's Theorem:
- There exists an MRST with all Steiner points (set S) chosen from the points of horizontal and vertical lines crossing points in \(P\).
- Hwang's Theorem: For any point set \(P, \frac{\operatorname{Cost}(M S T(P))}{\operatorname{Cost}(M R S T(P))} \leq \frac{3}{2}\).


O Hanan Points
000

0

Chang, Huang, Li, Lin, Liu

\section*{Coping with the MRST Problem}
- Ho, Vijayan, Wong,
"New algorithms for the rectilinear Steiner problem,"
- (1) Construct an MRST from an MST.
(2) Each edge is straight or L-shaped.
(3) Maximize overlaps by dynamic programming.
- About 8\% smaller than Cost(MST).


\section*{Iterated 1-Steiner Heuristic for MRST}
- Kahng \& Robins (1990)
"A new class of Steiner tree heuristics with good performance: the iterated 1-Steiner approach,"
```

Algorithm: Iterated_1-Steiner (P)
P : set of n points to be connected
1 begin
$2 S \leftarrow \varnothing$;
$f^{*} H(P \cup S)$: set of Hanan points */
I* $^{*} \triangle M S T(A, B)=\operatorname{Cost}(M S T(A))-\operatorname{Cost}(M S T(A \cup B)) *$
3 while $($ Cand $\leftarrow\{x \in H(P \cup S) \mid \Delta M S T(P \cup S,\{x\})>0\} \neq \varnothing)$ do
4 Find $x \in C$ and which maximizes $\triangle M S T(P \cup S),\{x\}$;
$5 \quad S \leftarrow S \cup\{x\}$;
6 Remove points in S which have degree ≤ 2 in $\operatorname{MST}(P \cup S)$;
7 Output MST(P $\cup S$);
8 end

```


Chang, Huang, Li, Lin, Liu

\section*{Outline}
- Basics of Routing
- General-Purpose Routing
- Global Routing
- Channel Routing
- Left-Edge Algorithm
- Robust Channel Router

\section*{Routing Area Partitioning}

\section*{- Routing Area}
- Is usually partitioned into smaller pieces before routing
- Types of routing area
(1) Normal channel
(2) L-shaped channel
(3) Switchbox
- An L-shaped channel

Can be divided into a normal channel + a switchbox

(a)

(b)

(c)

(d)

\section*{A Few Parameters When Doing Routing}
- Number of terminals
- Two-terminal nets vs. multi-terminal nets
- Net types
- Power / ground / clock wires vs. signal wires
- Number of layers

Two vs. three, or more layers
- Signal types

Critical nets vs. non-critical nets

\section*{Routing Models}
- Grid-based model:
- A grid is superimposed on the routing region.
- Wires follow paths along the grid lines.
- Pitch: distance between two grid lines.
- Gridless model: one without grid lines.

grid-based

gridless

\section*{Models for Multi-Layer Routing}
- Unreserved layer model:
- Any net segment is allowed to be placed in any layer.
- Reserved layer model:
- Certain type of segments are restricted to particular layer(s).
- Two-layer:
- (HV): Layer \(1 \rightarrow\) Horizontal, Layer \(2 \rightarrow\) Vertical
- (VH): Layer \(1 \rightarrow\) Vertical, Layer \(2 \rightarrow\) Horizontal
- Three-layer: HVH, VHV


\section*{Channel Routing Problem}
- Inputs for channel routing
(1) A rectangle routing area
(2) Fixed terminals at the top and bottom boundaries
(3) Floating terminals at left and right boundaries
- Objective

To minimize the channel height


\section*{Terminology for Channel Routing}
- Channel density: maximum local density
- Number of horizontal tracks required \(\geq\) channel density.
local
density


\section*{Horizontal Constraint Graph (HCG)}
- HCG \(G=(V, E)\) is an undirected graph, where
\(-V=\left\{v_{i} \mid v_{i}\right.\) represents a net \(\left.n_{i}\right\}\)
\(-E=\left\{\left(v_{i}, v_{j}\right) \mid\right.\) a horizontal constraint exists between \(n_{i}\) and \(\left.n_{j}\right\}\).
- For graph G:
- vertices \(\Leftrightarrow\) nets; edge \((i, j) \Leftrightarrow\) net \(i\) overlaps net \(j\).


A routing problem and its HCG.


\section*{Vertical Constraint Graph (VCG)}
- VCG \(G=(V, E)\) is a directed graph where
- \(V=\left\{v_{i} \mid v_{i}\right.\) represents a net \(\left.n_{i}\right\}\)
\(-E=\left\{\left(v_{i}, v_{j}\right) \mid\right.\) a vertical constraint exists between \(n_{i}\) and \(\left.n_{j}\right\}\).
- For graph G:
- Vertices \(\Leftrightarrow\) nets; edge \(\boldsymbol{i} \rightarrow \boldsymbol{j} \Leftrightarrow\) net \(\boldsymbol{i}\) must be above net \(\boldsymbol{j}\).


A routing problem and its VCG.


\section*{Example: Vertical Constraint Graph}
- Nets to be routed:
- Nets 1, 2, 3, 4
- Columns of the channel
- Columns a, b, c, d, e, f, g, h


\section*{Example: Cyclic Vertical Constraints}

\section*{- Cyclic vertical constraints}
- Needs to be resolved by splitting horizontal segments
- That is, doglegs are necessary


\section*{2L Channel Routing: Basic Left-Edge Algorithm}
- Hashimoto \& Stevens
- "Wire Routing by Optimizing Channel Assignment within Large Apertures," DAC-71
- For problems without vertical constraint
- HV-layer model is used
- No doglegs are allowed
- Major operations
- (1) Treat each net as an interval
- (2) Intervals are sorted based on theirs left-end x-coordinates
- (3) Intervals are routed one at a time based on the above order
- (4) For a net, tracks are scanned from top to bottom. First available track is assigned immediately for this net
- Results
- Simple left-edge algorithm produces minimal number of tracks under the assumption that there are no vertical constraints

\section*{Basic Left-Edge Example}
- List of nets to be routed, \(U=\left\{I_{1}, I_{2}, \ldots, I_{6}\right\}\);
\(-I_{1}=[1,3], I_{2}=[2,6], I_{3}=[4,8], I_{4}=[5,10], I_{5}=[7,11], I_{6}=[9,12]\).
- \(t=1\) :
- Route \(I_{1}\) : watermark = 3;
- Route \(I_{3}\) : watermark = 8;
- Route \(I_{6}\) : watermark = 12;
- \(t=2\) :
- Route \(I_{2}\) : watermark = 6;
- Route \(I_{5}\) : watermark = 11;
- \(t=3\) : Route \(I_{4}\)


Chang, Huang, Li, Lin, Liu

\section*{Basic Left-Edge Algorithm}
```

Algorithm: Basic_Left-Edge(U, track[j])
U : set of unassigned intervals (nets) I_{1}, \ldots, I_{n};
$I_{j}=\left[s_{j}, e_{j}\right]$: interval j with left-end x-coordinate s_{j} and right-end e_{j};
track $[j]$: track to which net j is assigned.
1 begin
$2 U \leftarrow\left\{I_{1}, I_{2}, \ldots, I_{n}\right\} ;$
$3 t \leftarrow \mathbf{0}$;
4 while $(U \neq \varnothing$) do
$5 \quad t \leftarrow t+1$;
6 watermark $\leftarrow \mathbf{0}$;
7 while (there is an $I_{j} \in U$ s.t. $s_{j}>$ watermark) do
8 Pick the interval $I_{j} \in U$ with $s_{j}>$ watermark,
$9 \quad \operatorname{track}[j] \leftarrow t$;
10 watermark $\leftarrow e_{j}$;
$11 U \leftarrow U-\left\{I_{i}\right\}$;
12 end

```

\section*{Example: Left-Edge Under Vertical Constraints}

result from basic
left-edge algorithm 3 tracks


\section*{Constrained Left-Edge Algorithm}
```

Algorithm: Constrained_Left-Edge(U, track[j])
U : set of unassigned intervals (nets) I_{1}, \ldots, I_{n};
$I_{j}=\left[s_{j}, e_{j}\right]$: interval j with left-end x-coordinate s_{j} and right-end e_{j};
track[j]: track to which net \boldsymbol{j} is assigned.
1 begin
$2 U \leftarrow\left\{I_{1}, I_{2}, \ldots, I_{n}\right\} ;$
$3 t \leftarrow \mathbf{0}$;
4 while ($U \neq \varnothing$) do
$t \leftarrow t+1$;
watermark $\leftarrow \mathbf{0}$;
while (there is an unconstrained $I_{j} \in U$ s.t. $s_{j}>$ watermark) do
Pick the interval $I_{j} \in \boldsymbol{U}$ that is unconstrained,
with $s_{j}>$ watermark
track[j] $\leftarrow t$;
10 watermark $\leftarrow \boldsymbol{e}_{j}$;
$11 U \leftarrow U-\left\{I_{j}\right\}$;
12 end

```

\section*{Constrained Left-Edge Example}
- \(I_{1}=[1,3], I_{2}=[1,5], I_{3}=[6,8], I_{4}=[10,11], I_{5}=[2,6], I_{6}=[7,9]\).
- Track 1: Route \(I_{1}\) (cannot route \(I_{3}\) ); Route \(I_{6}\); Route \(I_{4}\).
- Track 2: Route \(I_{2}\); cannot route \(I_{3}\).
- Track 3: Route \(I_{5}\).
- Track 4: Route \(I_{3}\).





\section*{Dogleg Channel Router}

\section*{- Deutch}
"A dogleg channel router," 13rd DAC, 1976.
- Motivation:

Left-Edge algorithm cannot handle constraint cycles.
- Solution:
- Doglegs are used to resolve constraint cycle.


\section*{Illustration of Dogleg}

\section*{- Left-Edge:}
- The entire net is on a single track.
- Dogleg Strategy
- Doglegs are used to split the horizontal parts of a net into different tracks to minimize the channel height.
- Penalty
- Additional vias might be needed.

save 2 tracks, with via penalty


\section*{Dogleg Channel Router}
- Basic Idea:
- Each multi-pin net is broken down into a set of 2-pin nets.
- Two parameters are used to control routing:
(1) Range: Determine the \# of consecutive 2-terminal subnets of the same net that can be placed on the same track.
(2) Routing sequence: Specifies the starting position and the direction of routing along the channel.
- Modified Left-Edge Algorithm is applied to each subnet.


\section*{Restricted vs. Unrestricted Doglegging}
- Unrestricted doglegging:
- Allow a dogleg even at a position where there is no pin.
- Restricted doglegging:
- Allow a dogleg only at a position where there is a pin belonging to that net.
- The dogleg channel router
- does not allow unrestricted doglegging.


splits a net into subnets.


\section*{Robust Channel Router}
- Yoeli,
"A robust channel router," IEEE TCAD, 1991.
- Track assigning procedure
- (1) From top and bottom sides towards to the center of channel.
- (2) Alternates between top and bottom tracks towards center.
- The working side is called the current side.
- Weights
- are used to guide the assignment of segments in a track, which
(1) favor nets that contribute to the channel density;
(2) favor nets with terminals at the current side;
(3) penalize nets whose routing at the current side would cause vertical constraint violations.
- Allows unrestricted doglegs by rip-up and re-route.

Track assignment procedure

\(\qquad\)


\section*{Interval Graphs}
- Vertex:

There is a vertex for each interval.
- Edge:

Vertices corresponding to overlapping intervals are linked by an edge.
- The net selection problem (I.e., selecting nets to one row)
- is equivalent to finding a minimal vertex coloring of the graph.



\section*{Net Selection For One Row}
- The nets to be put in one row of the current side
- Is done by selecting maximum weighted compatible set in the interval graph.
- NP-complete for general graphs, but can be solved efficiently for interval graphs using dynamic programming.
- Main ideas:
- The interval for net \(i\) is denoted by \(\left[x_{i_{\text {min }}}, x_{i_{\max }}\right]\); its weight is \(w_{i}\).
(1) Process each channel column from left to right column;
- The optimal benefit for position \(c\) is denoted by total[c];
(2) A net \(n\) with a rightmost terminal at position \(c\) is taken into the candidate set if \(w_{n}+\operatorname{total}\left[x_{n_{\text {min }}}-1\right]>\operatorname{total}[c-1]\)


What nets are selected for the \(1^{\text {st }}\) row?


Chang, Huang, Li, Lin, Liu

\section*{Candidate Selection Criterion}

Net \(\boldsymbol{n}\) is selected as a condidate if the following holds:


Assume:
\(W_{2}=987\), Total [1] = 0, Total [3] = 0
\(\rightarrow W_{2}+\) Total [1] > Total [3]
\(\rightarrow\) Net 2 is included as a candidate

\section*{Weight Computation}

（Density at each column position）
```

d(1) = 1
d(2) = 2
d(3)}=
d(4)}=3(\mathrm{ nets 2, 3, 4)
d(5) = 2

```
－Computation of the weight \(w_{i}\) for net \(i\) ：
1．favor nets that contribute to the channel density：add a large \(B\) to \(w_{i}\) ．
2．favor nets with current side terminals at column \(x\) ：add \(\mathrm{d}(x)\) to \(w_{\mathrm{i}}\) ．
3．penalize nets whose routing at the current side would cause vertical constraint violations：subtract \(K d(x)\) from \(w_{i}, K=5 \sim 10\) ．
－Assume \(B=1000\) and \(K=5\) in the \(1^{\text {st }}\) iteration（top side）：
－ \(\mathrm{w}_{1}=(0)+(1)+(-5\)＊ 2\()=-9\)
－Net 1 does not contribute to the channel density
－One net 1 terminal on the top
－Routing net 1 causes a vertical constraint from net 2 at column 2 whose density is 2

\section*{Weight Computation（cont＇d）}

\(d(1)=1\)
\(d(2)=2\)
\(d(3)=2\)
\(d(4)=3\)（nets \(2,3,4)\)
\(d(5)=2\)
－Computation of the weight \(w_{i}\) for net \(i\) ：
1．favor nets that contribute to the channel density：add a large \(B\) to \(w_{i}\) ．
2．favor nets with current side terminals at column \(x\) ：add \(\mathrm{d}(x)\) to \(w_{\mathrm{i}}\) ．
3．penalize nets whose routing at the current side would cause vertical constraint violations：subtract \(K \mathrm{~d}(x)\) from \(w_{\mathrm{i}}, K=5 \sim 10\) ．
－Assume \(B=1000\) and \(K=5\) in the \(1^{\text {st }}\) iteration（top side）：
－ \(\mathrm{w}_{1}=(0)+(1)+(-5\)＊ 2\()=-9\)
－ \(\mathrm{w}_{2}=(1000)+(2)+(-5\)＊ 3\()=987\)
－ \(\mathrm{w}_{3}=(1000)+(2+2)+(0)=1004\)

兩賞一罰
＋Channel density contributor
＋Current side terminals
－Vertical constraint violator
－ \(\mathrm{w}_{4}=(1000)+(3)+(-5 * 2)=993\)

\section*{1st Iteration: Top-Row Net Selection}

- \(w_{1}=-9, w_{2}=987, w_{3}=1004, w_{4}=993\).
- A net \(\boldsymbol{n}\) with a rightmost terminal at position \(\boldsymbol{c}\) is taken into the candidate set if: \(w_{n}+\operatorname{total}\left[x_{n_{\min }}-1\right]>\) total \([c-1] \cdot /\) Column ID Column
\begin{tabular}{|l|l|}
\hline total[1] \(=0\) & selected_net[1] \(=0\) \\
\hline total[2] \(=\max (0,0-9)=0\) & selected_net[2] \(=0\) \\
\hline total[3] \(=0\) & selected_net[3] \(=0\) \\
\hline total[4] \(=\max \left(0, w_{2}+\right.\) total[1] \()=987\) & selected_net[4] \(=32\) \\
\hline total[5] \(=\max (987,0+1004,0+993)=1004\) & selected_net[5] \(=3\) \\
\hline
\end{tabular}
- Select those nets not violating horizontal constraints
- Select those nets not violating horizontal constraints backwards from right to left: Only net 3 is selected for the top row. (Net 2 is not selected since it overlaps with net 3 .)



\section*{Concluding Remarks}
- Routing In One Shot
- Maze routing or line search routing
- Routing In Stages (Divide-and-Conquer)
- (1) Routing Area Decomposition
- (2) Global Routing
- (3) Detailed Routing
- Global Routing
- To find minimum rectilinear Steiner tree
- Good heuristics are available
- Detailed Channel Routing
- Getting around vertical and horizontal constraints
- Modified left-edge, Robust router, etc.

Routing In A Maze,
It Is Important That All Mice Find Their Ways Out!

\section*{Lex \＆Yacc Tutorial}

\section*{Instructor：清華大學 黃錫瑜}

Acknowledgements：
C．C．Weng 翁嘉謙
M．C．Li 李明治
July 20， 2012
Department of Electrical Engineering
National TsingHua University，HsinChu，Taiwan

\section*{Outline}
－Overview
－Lex：A Lexical Analyzer Generator
－Yacc：Yet Another Compiler－Compiler
－Case Study

\section*{History of Lex \& Yacc}
- Lex \& Yacc were both developed at Bell Lab. in the 1970s.
- Yacc was developed as the first of the two by Stephen C. Johnson.
- Lex was designed by Mike E. Lesk and Eric Schmidt to work with Yacc.
- Standard UNIX utilities

\section*{Who Needs Lex \& Yacc ?}
- Lex \& Yacc are programming tools designed for
- Writers of compiler and interpreters
- Non-compiler-writers
- Any application looking for patterns in its input or having an input/command language is a candidate for Lex/Yacc.

\section*{Why Lex \＆Yacc ？}
－Lex \＆yacc help you write programs that transform structured input
－Lex：generate a lexical analyzer
－（將文章分成一個一個辭彙）
\(>\) Divide an input stream into tokens
\(>\) Pass the tokens to Yacc
－Yacc：generate a parser
－（將一個一個辭彙組成符合自訂文法的句子）
\(>\) Grammar checking
＞Create an interpreter
Ex：德語裡，動詞放在受詞的後面

\section*{A Simple Example}
－Build a program that recognizes different types of English words
－Extend it to handle multiword sentences that conform to a simple English grammar
－Vocabulary set：辭彙
Noun：Tom，Mary，apple，dog，cat
Pronoun：I，you，they，we
Verb：love，hate，
－Valid sentence grammar：subject＋verb＋object
文法
Is＂Mary hate dog＂a valid sentence？

\section*{Recognizing Word w／Lex}



\section*{References}
1. John R. Levine, "lex \& yacc," O'REILLY, 1992.
2. M.E. Lesk and E.Schmidt, "Lex - A Lexical Analyzer Generator," Tech. Rep., Bell Laboratories, 1975.
3. S.C. Johnson, "Yacc: Yet Another Compiler-Compiler," Tech. Rep, Bell Laboratories, 1975.
4. Thomas Nierman, "A Compact Guide to Lex \& Yacc", ePaper Press.


\section*{Outline}
- Overview
- Lex: A Lexical Analyzer Generator
- Lex Source Format
- Lex Regular Expressions
- Lex Actions
- Usage
- Yacc: Yet Another Compiler-Compiler
- Case Study


\section*{Format of Lex Source}
－Lex source consists of three parts：
```

{definitions section}
% %
{rules section}
%%
{user subroutines}

```
－Separated by lines consisting of \％\％
－The first two sections are required，can be empty
－The absolute minimum lex program is：


\section*{Definition Section}
－Can include the included code，name translation， start conditions and changes to internal setting
－An Example：
\begin{tabular}{|lc|}
\hline \multicolumn{1}{|c|}{ int count；\(\quad l^{*}\)＜space＞＜code＞＊／} \\
\hline \begin{tabular}{l} 
\％\｛ \\
int words＿count； \\
int lines＿count；將這段 code 加到 \\
void foo（ ）； \\
\％\}
\end{tabular} \\
\hline \begin{tabular}{l} 
W［a－zA－Z］ \\
D［0－9］ \\
\％Start state1 state2
\end{tabular} \\
\hline
\end{tabular}

\section*{Rules Section}
- Contains regular expression and actions, program fragments to be executed when expressions are recognized
- An example:
```

%%
[\t] ; /*no action*/
\n {lines_count++;}
apple {ECHO;} /* <regexp> <action> */
{W}+ {printf("find a word %s\n", yytext);}
<state1>man {printf("a man in state1\n");}
<state2>man {printf("a man in state2\n");}
{D}+ {foo();}

```

\section*{User Subroutines Section}
- Includes user-defined routines called from the rules, and the redefined input(), output(), unput() or yywrap()
- The content in this section is copied verbatim to C file.
```

%%
main()
{
yylex();
printf ("word count = %d\n", words_count);
}
void foo(){
}

```

\section*{One Simple Example}


This program copies standard input to standard out!!

\section*{Another Example}
```

A word count program
%{
int charCount=0, wordCount=0, lineCount=0;
%}
word [^ \t\n]+
%%
{word} {wordCount++; charCount+=yyleng;}
In {charCount++; lineCount++;}
charCount++;
% %
main (){
yylex ();
printf ("%d %d %d", charCount, wordCount, lineCount);
}

```

\section*{Outline}
- Overview
- Lex: A Lexical Analyzer Generator
- Lex Source Format
- Lex Regular Expressions
- Lex Actions
- Usage
- Yacc: Yet Another Compiler-Compiler
- Case Study

\section*{Lex Regular Expressions}
- Specify a set of strings to be matched
- Contain text characters and operator characters
- Operators
- Character classes
- Arbitrary character
- Optional expressions
- Repeated expressions
- Alternation and Grouping
- Context sensitivity
- Repetitions and Definitions

\section*{Operators}
- The set of operator characters:
\[
\text { " \ [ ]^-? . * + ( ) \$ / \{ \} \% < > }
\]
- If used as text characters, an escape should be added.
\[
x y z "++"={ }^{6} \mathrm{xyz}++"=\mathrm{xyz} \backslash+\backslash+\Longrightarrow \mathrm{xyz}^{++}
\]
- Any blank not contained within [ ] must be quoted.
- Every character but blank, tab (it), newline (in), and the list above is always a text character.

\section*{Character Classes}
- Class of characters can be specified using the operator pair [ ].
- Most operator meanings are ignored except
> \(\\) (turn into ASCII character),
> - (indicate range),
> ^ (except)
[abc] => a or b or c
[a-z] => from a to \(z\)
\([-+0-9]=>\) all the digits and the two signs
[ \(\wedge\) a-zA-Z] \(=>\) any character which is not a letter
[\40-\176] => from octal 40 (blank) to octal 176 (tilde~)

\section*{Arbitrary Character}
- The operator character . matches all characters except newline.
- [ \(440-1176\) ] matches all printable characters in the ASCII character set.

\section*{Optional \& Repeated Expressions}
a? => zero or one instance of a
a* => zero, one, or more instances of a
a+ \(=>\) one or more instances of a
ab?c => ac or abc
[a-z]+ => all strings of lower case letters
[A-Za-z][a-zA-Z0-9]* => all alphanumeric strings with a leading alphabetic character
d923940 ?

\section*{Alternation and Grouping}
- The operator | indicates alternation.
- The parentheses () can be used for grouping.
\((\mathbf{a b} \mid \mathbf{c d})=\mathbf{a b} \mid \mathbf{c d}=>\mathbf{a b}\) or cd
(ab|cd+)?(ef)* => abefef, efefef, cdef, or cddd but not abc, abcd, or abcdef

\section*{cdcdef?}

\section*{Context Sensitivity}
- The operator \({ }^{\wedge}\) means the expression is matched from the beginning of the line.
\(\wedge \mathrm{ab}=>\) matches the string ab, but only if ab is at the start of the line
- The operator \$ means the expression is matched from the end of the line.
ab\$ => matches the string ab, but only if ab is at the end of the line
- The operator / indicates trailing context.
ab/cd => matches the string ab, but only if followed by cd \(a b / \mathbf{n}=\mathbf{a b} \$\)

\section*{Repetitions and Definitions}
- The operators \(\}\) specify
- Repetitions (if enclosing a number)
- Definition expansion (if enclosing a name)
a\{1,5\} => 1 to 5 occurrences of a
\{digit\} => inserts a predefined string named digit (The string is defined in definition section)

\section*{Regular Expression Summary}
\begin{tabular}{|c|c|}
\hline Regexp & Description \\
\hline x & the character " x " \\
\hline "x" & an " \(x\) ", even if \(x\) is an operator \\
\hline |x & an " \(x\) ", even if \(x\) is an operator \\
\hline [xy] & the character x or y \\
\hline [x-z] & the characters \(\mathrm{x}, \mathrm{y}\) or z \\
\hline [^x] & any character but \(x\) \\
\hline . & any character but newline \\
\hline \(\wedge \mathbf{x}\) & an \(x\) at the beginning of a line \\
\hline \(<\mathrm{y}>\mathrm{x}\) & an x when Lex is in start condition y \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline Regexp & \multicolumn{1}{|c|}{ Description } \\
\hline\(x \$\) & an \(x\) at the end of a line \\
\hline\(x ?\) & an optional \(x\) \\
\hline\(x^{*}\) & \(0,1,2, \ldots\) instances of \(x\) \\
\hline\(x+\) & \(1,2,3, \ldots\) instances of \(x\) \\
\hline\(x \mid y\) & an \(x\) or a \(y\) \\
\hline\((x)\) & an \(x\) \\
\hline\(x / y\) & \begin{tabular}{l} 
an \(x\) but only if followed \\
by \(y\)
\end{tabular} \\
\hline\(\{x x\}\) & \begin{tabular}{l} 
the translation of \(x x\) \\
the fefrom \\
\(m\)
\end{tabular} \\
\hline\(x\{m, n\}\) & \begin{tabular}{l}
\(m\) through \(n\) occurrences \\
of \(x\)
\end{tabular} \\
\hline
\end{tabular}

\section*{Outline}
- Overview
- Lex: A Lexical Analyzer Generator
- Lex Source Format
- Lex Regular Expressions
- Lex Actions
- Usage
- Yacc: Yet Another Compiler-Compiler
- Case Study

\section*{Lex Actions}
- When an expression is matched
- Lex executes the corresponding action, i.e., a C program fragment
- The action character | indicates the action for this rule is the action for the next rule.


\section*{More Lex Actions}
- Lex predefined variable yytext is the pointer to the matched string.
- yyleng indicates the length of matched string.
- The action of ECHO is to print the matched string.
[a-z]+ printf("\%s", yytext);
[a-z]+ ECHO; => the same
[a-zA-Z]+ \(\quad\) \{wordsCount++;charsCount+=yyleng;\}
yytext[yyleng-1] \(\Rightarrow\) The last character of the matched string

\section*{Ambiguous Source Rules}
- When more than one expression can match the current input,
- The longest match is preferred
- The rule given first is preferred
\begin{tabular}{ll} 
is | am | are & \{printf("Verb\n");\} \\
ambiguous & \{printf("ADJ\n");\} \\
[a-zA-Z]+ & \{printf("Unknown\n";\}
\end{tabular}

How does lex choose the action when the input is "ambiguous"?

\section*{Lex Action REJECT}
－The action REJECT means＂go do the next
\begin{tabular}{|l|l|}
\hline alternative＂ & \begin{tabular}{l} 
有點像 Recycle \\
Matched token
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline she & s1＋＋； & she & \｛s2＋＋；REJECT\} \\
\hline he & h1＋＋； & he & \｛h2＋＋；REJECT\} \\
\hline ． 1 & & ． 1 & \\
\hline ln & ； & ln & ； \\
\hline
\end{tabular}

When the input is＂she＂
\[
\begin{aligned}
& \text { s1=1; h1=0; } \\
& \text { s2=1; h2=1; }
\end{aligned}
\]

\section*{More Details－yymore}
－yymore（ ）
串連好幾個 Matched tokens 到 yytext 裡
－Append the next matched token to the end of the current matched token
```

%%
hyper {yymore();}
text {printf("Token is %s\n", yytext);}

```

Input：＂hypertext＂
Output：＂Token is hypertext＂


\section*{More Details - yyless}
- yyless( \(\mathbf{n}\) )
- Push back all but the first \(\boldsymbol{n}\) characters of the token
- Consider a string "= - a"
=-[a-zA-Z] \{printf("Op: =-\n"); yyless(yyleng-1); ...action for \(=-. .\). \}

=-[a-zA-Z] \{printf("Op: =\n"); yyless(yyleng-2); ...action for = ... \};


\section*{Start Conditions}
- When only a few rules change from one environment to another
- The start conditions can be used to explicitly declare multiple states (in definition section)
\%Start state1 state2 ...
- Different rules are applied according to the corresponding state.
\begin{tabular}{ll}
\hline <state \(1>\) man & printf("a man in state1 \(\backslash n\) "); \\
<state2>man & printf("a man in state2 \(\backslash n ") ; ~\)
\end{tabular}

\section*{Example of Start Conditions}
- Consider the following problem:
- copy the input to the output
- changing the word magic to first on every line which began with the letter \(a\),
- changing the word magic to second on every line which began with the letter \(b\),
- changing the word magic to third on every line which began with the letter \(c\). amagic magic b magic cmagicmagic
afirst first \(b\) second cthirdthird

\section*{Example of Start Conditions (Cont.)}

\section*{Using flag}
\begin{tabular}{|c|c|}
\hline int flag; & \\
\hline \(\wedge\) a & \{flag=‘a';ECHO; \} \\
\hline \(\wedge\) b & \{flag=‘'; \({ }^{\text {eCHO; }}\) \} \\
\hline \(\wedge c\) & \{flag=‘c';ECHO;\} \\
\hline In & \{flag \(=0\); ECHO; \(\}\) \\
\hline magic & \\
\hline & switch(flag) \\
\hline & \{ \\
\hline
\end{tabular}
case 'a': printf("first");break; case ‘b’: printf("second");break; case 'c': printf("third");break; default: ECHO; break;

Using Start Conditions
\begin{tabular}{|ll|}
\hline \%Start AA BB CC \\
\(\% \%\) & \\
\%a & \{ECHO;BEGIN AA;\} \\
^b & \{ECHO;BEGIN BB;\} \\
^c & \{ECHO;BEGIN CC;\} \\
<AA>magic & printf("first"); \\
<BB>magic & printf("second") \\
<CC>magic & printf("third")
\end{tabular}

\section*{Predefined Variables in LEX}
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Name } & \multicolumn{1}{c}{ Description } \\
\hline char \({ }^{*}\) yytext & pointer to matched string \\
\hline int yyleng & length of matched string \\
\hline FILE *yyin & input stream pointer \\
\hline FILE *yyout & output stream pointer \\
\hline int yylex(void) & call to invoke lexer, returns token \\
\hline char* yymore(void) & return the next token \\
\hline int yyless(int n) & retain the first n characters in yytext \\
\hline int yywrap(void) & Wrap-up, return 1 if done, 0 if not done \\
\hline ECHO & write matched string \\
\hline REJECT & go to the next alternative rule \\
\hline INITIAL & initial start condition \\
\hline BEGIN condition & switch start condition \\
\hline
\end{tabular}

\section*{Outline}
- Overview
- Lex: A Lexical Analyzer Generator
- Lex Source Format
- Lex Regular Expressions
- Lex Actions
- Usage
- Yacc: Yet Another Compiler-Compiler
- Case Study

\section*{How to Generate 辭彙解析器 by LEX}

Step1：Turn the lex source into a C program

\section*{lex test．I}
－lex．yy．c is then produced，which is a C program for lexical analyzer．
Step2：Compile lex．yy．c into an executable gcc lex．yy．c－II
Step3：Run the lexical analyzer program
```

./a.out < inputfile

```

\section*{Versions of Lex}
－AT\＆T－lex
－http：／／www．combo．org／lex＿yacc＿page／lex．html
－GNU－flex
－http：／／www．gnu．org／manual／flex－2．5．4／flex．html
－Win32 version of flex
－http：／／www．monmouth．com／～wstreett／lex－yacc／lex－yacc．html
－Cygwin
－http：／／sources．redhat．com／cygwin／

\section*{Outline}
－Overview
－Lex：A Lexical Analyzer Generator
－Yacc：Yet Another Compiler－Compiler
－What does Parser do
－Introduction to YACC
－How the Parser Works
－Work with Lex
－Case Study

\section*{What does Parser do ？}
－Parser invokes scanner for token processing．
－Parser analyzes the syntactic structure．
－Parser executes the semantic routines．

Scanner 就是 Token Recognizer 辭彙解析器
Parser 就是 文章解析器
Syntactic：語法的（有關句子的結構）
Semantic：語意的（有關句子的意義）

\section*{Outline}
- Overview
- Lex: A Lexical Analyzer Generator
- Yacc: Yet Another Compiler-Compiler
- What does Parser do
- Introduction to YACC
- How the Parser Works
- Work with Lex
- Case Study

\section*{Introduction of Yacc}
- Yacc source format

Declarations
\% \%
Rules (Grammar)
\% \%
Programs

\section*{Declarations}
- C source codes, include files, etc
- Token definition

\section*{Example :}
\%\{
\#include <stdio.h>
\%\}
\%token NOUN PRONOUN VERB ADVERB ADJECTIVE PREPOSITION CONJUNCTION

\section*{Rules}

Example：
\％token NAME NUMBER
\％\％
statement：NAME＇＝＇expression expression \｛printf（＂＝\％d\n＂，\＄1）；\}

LHS
expression：
expression＇＋＇NUMBER \(\{\$ \$=\$ 1+\$ 3 ;\}\)
expression＇－＇NUMBER \(\{\$ \$=\$ 1-\$ 3 ;\}\)
NUMBER \(\{\$ \$=\$ 1 ;\}\)

大寫或字串的是 Token
小寫的是 Non－Token
（下一頁進一步解釋．．．）
\begin{tabular}{|c|c|c|}
\hline ｜ & \multicolumn{2}{|l|}{expression \(\{\) printf（＂＝\％d\n＂，\＄1）；\}} \\
\hline \[
\Gamma \text { LHS }
\] &  & RHS \\
\hline \multirow[t]{3}{*}{expression：} & expression＇＋＇NUMBER & \｛ \＄\＄＝\＄1＋\＄3； \\
\hline & expression＇－＇NUMBER & \(\{\) \＄＝\＄1－\＄3；\} \\
\hline & NUMBER & \｛ \＄\＄＝\＄1；\} \\
\hline ； & & \\
\hline
\end{tabular}
;

\section*{Parse Tree（如何理解一個句子）}


Token is also called＂terminal symbol＂，為基本辭彙

\section*{Programs}

Example :
\% \%
void yyerror(char *s) \{
fprintf(stderr, "\%s\n", s);
\}
int main(void) \{ yyparse();
return 0;
\}

\section*{Outline}
- Overview
- Lex: A Lexical Analyzer Generator
- Yacc: Yet Another Compiler-Compiler
- What does Parser do?
- Introduction to YACC
- How does the Parser Work?
- Work with Lex
- Case Study

\section*{How Does the Parser Work?}

a.out :

Executable program that will parse grammar given in Calcu.y

\section*{How Does YACC Process An Article?}

It can be done by scanning the tokens in the input file, performing grammar reduction recursively with the aide of a stack.


\section*{How Does YACC Work?}
- The parser produced by Yacc consists of a finite state machine with a stack.
- The machine has only four actions available to it .
- SHIFT (move on to the next token - keep parsing...)
- REDUCE (a grammar has just matched)
- ACCEPT (the entire article has parsed successfully)
- ERROR (the article does not conform to the grammars)

\section*{A shift and reduce action example}

\section*{Part of Rule section:}
```

exp : INTEGER { \$\$ = \$1 ;}
```
| exp '+' $\exp \quad\{\$ \$=\$ 1+\$ 3 ;\}$
| exp '-’ exp $\quad\{\$ \$=\$ 1-\$ 3 ;\}$

## Input :

3+1
stack:
<empty>
Reduce and shift!!

## A shift and reduce action example

## Part of Rule section:

```
exp : INTEGER { $$ = $1 ;}
 | exp `+' exp { $$ = $1 + $3;}
 | exp '-` exp { $$ = $1 - $3;}
```

Input :
+1

Lex \& Yacc Tutorial

```
stack:
```

exp

## shift!!

matched no grammar.

## A shift and reduce action example

## Part of Rule section:

```
exp : INTEGER { $$ = $1 ;}
 | exp `+' exp { $$ = $1 + $3;}
 | exp '_' exp { $$ = $1 - $3;}
```

Input:
1
stack:
exp +

## Reduce and Shift!!

## A shift and reduce action example

## Part of Rule section:

```
exp : INTEGER { $$ = $1 ;}
 | exp ‘+' exp { $$ = $1 + $3;}
 | exp '-' exp { $$ = $1 - $3;}
```

I nput :
<empty>

```
stack:
exp + exp
```


## Continue to Reduce

## A shift and reduce action example

## Part of Rule section:

```
exp : INTEGER { $$ = $1 ;}
 | exp '+' exp { $$ = $1 + $3;}
 | exp '_' exp { $$ = $1 - $3;}
```

| Input: <br> <empty> | stack: <br> exp |
| :--- | :--- |

At the completion of parsing all the
input tokens, we conclude that it is an expression


## Precedence \& Association

Under "Declaration Section" :
\%left ' + ' '-‘‘
\%left $*$ ' $/$ / $\quad$ Higher precedence

Association :
\%left :
$\mathrm{A}-\mathrm{B}-\mathrm{C} \rightarrow(\mathrm{A}-\mathrm{B})-\mathrm{C}$
\%right :
$\mathrm{A}-\mathrm{B}-\mathrm{C} \rightarrow \mathrm{A}-(\mathrm{B}-\mathrm{C})$

## Left Association

| exp : INTEGER | $\{\$ \$=\$ 1 ;\}$ |
| ---: | :--- |
| $\mid \exp ‘+' \exp$ | $\{\$ \$=\$ 1+\$ 3 ;\}$ |
| $\mid \exp { }^{\text {'- }} \exp$ | $\{\$ \$=\$ 1-\$ 3 ;\}$ |



Desired!!!

## Outline

- Overview
- Lex: A Lexical Analyzer Generator
- Yacc: Yet Another Compiler-Compiler
- What does Parser do
- Introduction to YACC
- How the Parser Works
- Work with Lex
- Case Study



## Outline

- Overview
- Lex: A Lexical Analyzer Generator
- Yacc: Yet Another Compiler-Compiler
- Case Study
- A calculator


## Example

－Try to realize a calculator by Lex \＆Yacc
－（Provided example files）

- calculator．$h$（共同的 header file）
- calculator．l（LEX 描述檔）
- calculator．y（YACC 描述檔）
－exercise


## Example：Parse Tree



## Exercise of an Extension

- Please add the power function (e.g. pow(2,3)=8) into the calculator.y


# 清華大學 EE 5265 <br> 積體電路設計自動化 

## Appendix 1：IP Design

## 教育部顧問室

级行部
「超大型積體電路與系統設計」教育改進計畫 DIP聯盟

## Outline

$\square$－Brief Introduction of Verilog
－HDL stands for Hardware Description Language
－Cell－Based Design Flow

## Verilog HDL（Data－Flow）

表 4－10 Verilog HDL 運算子

| 符號 | 連算 |
| :---: | :---: |
| ＋ | binary addition；二進位加法 |
| － | binary subtraction：二迹位減法 |
| \＆ | bit－wise AND；位元的及運算 |
| ｜ | bit－wise OR ；位元的或连算 |
| $\wedge$ | bit－wise XOR ：位元的互斥或運算 |
| $\sim$ | bit－wise NOT ：位元的反相運算 |
| ＝＝ | equality ；全第 |
| $>$ | greater than ：大於 |
| $<$ | less than ；小於 |
| （ $)$ | concatenation；逪結 |
| ？ | conditional；惵件式 |

## Data－Flow for Adder

／／Dataflow description of 4－bit adder
module binary＿adder（A，B，Cin，SUM，Cout）；
input［3：0］A，B；
input Cin；／／carry input
output［3：0］SUM；
output Cout；／／carry output
assign $\{$ Cout， SUM$\}=\mathrm{A}+\mathrm{B}+\mathrm{Cin}$ ；
endmodule

## Data-Flow for Comparator

// Dataflow description of a 4-bit comparator.
module magcomp (A, B, ALTB, AGTB, AEQB);
input [3:0] A,B;
output ALTB,AGTB,AEQB;
assign ALTB $=(\mathrm{A}<\mathrm{B})$,
AGTB $=(\mathrm{A}>\mathrm{B})$,
AEQB $=(\mathrm{A}==\mathrm{B})$;
endmodule

## Data-Flow for 2-To-1 MUX

```
// Dataflow description of 2-to-1-line multiplexer
module mux_2x1 _in_data_flow (A,B,select,OUT);
 input A, B, select;
 output OUT;
 assign OUT = select ? A : B;
endmodule
```



## Behavior Description for MUX

// Behavioral description of 2-to-1-line multiplexer
module behavior_2x1_mux(A, B, select, OUT);
input $A, B$, select;
output OUT;
reg OUT;
always @ (select or A or B)
begin
if (select $==1$ ) OUT = A;
else OUT = B;
end
endmodule


## Behavior Description for MUX

// Behavioral description of 4-to-1- line multiplexer
module behavior_4x1_mux (i0, i1, i2, i3, select, y);
input i0, i1, i2, i3;
input [1:0] select;
output y;
reg y ;
always @ (i0 or i1 or i2 or i3 or select) begin
case (select)
2'b00: y = i0;
2'b01: y = i1;
2'b10: y = i2;
2'b11: y = i3;
endcase
end
endmodule



Fig. 4-33 Stimulus and Design Modules Interaction

## Basics of a Testbench

- Initial block: executed once
- \$display - dump variables' values with the end-of-line
- \$write - the same as \$display but without the end-of-line
- \$monitor - dump variables' values when changed
- \$time - dump simulation time
- \$finish - terminate simulation

Syntax: Task_name(format specification, argument list); Example: \$display(\%d, \%b, \%b, C, A, B)
$\rightarrow$ Display $C$ in decimal and $A, B$ in binary

## Testbench for Adder

```
// Stimulus for 3-input 2-output circuit analysis
module test_circuit;
 reg [2:0] D;
 wire F1, F2;
 analysis fig42(D[2], D[1], D[0], F1, F2);
 initial
 D = 3'b000;
 repeat(7)
 #10 D = D + 1'b1;
 end
```

Simulation log: ABC=000 F1=0 F2=0 $\mathrm{ABC}=001 \quad \mathrm{~F} 1=1 \quad \mathrm{~F} 2=0$ $A B C=010$ F1 $=1 \quad F 2=0$ $\mathrm{ABC}=011$ F1=0 F2=1 $A B C=100$ F1=1 F2=0 $\mathrm{ABC}=101$ F1=0 F2=1 ABC=110 F1=0 F2=1 ABC=111 F1=1 F2=1

```
 initial
 $monitor ("ABC = %b F1 = %b F2 =%b ",
 D, F1, F2);
endmodule
```


## D Flip-Flop

## //D flip-flop

module D-FF (Q,D ,CLK) ;
output Q ;
input $\mathrm{D}, \mathrm{CLK}$;
reg $\mathbf{Q}$;
always @ (posedge CLK)
$\mathbf{Q}=\mathbf{D}$;
endmodule
// D flip-flop with asynchronous reset.
module DFF ( Q, D, CLK, RST) ;
output Q ;
input D, CLK, RST ;
reg $\mathbf{Q}$;
always @ (posedge CLK or negedge RST)
if ( $\sim$ RST) $\mathbf{Q}=\mathbf{1}^{\prime} \mathbf{b 0}$;
//same as: if ( $\mathrm{RST}==\mathbf{0}$ )
else $\mathbf{Q}=\mathrm{D}$;
endmodule

## Register-Transfer-Level (RTL)

- A digital system
- is represented at RTL when it is specified by the following three components
- (1) The set of registers in the system
- (2) Operations performed on registers' values
- (3) The control regulates the operations

Ex (sequence of RTL operations):

| R1 $\leftarrow$ R1 + R2 | // Add contents of R2 to R1 |
| :--- | :--- |
| R3 R3 + | // Increment R3 by 1 (count upwards) |
| R4 shr R4 | // Shift right R4 |
| R5 $\leftarrow 0$ | // Clear R5 to 0 |

## Different Ways of RegisterTransfer Operations in Verilog



## Sequential Circuit (Two always-blocks description)

```
module Circuit (x , y, CLK, RST) ;
```

    input \(\mathrm{x}, \mathrm{CLK}, \mathrm{RST}\);
    output y;
    reg y ;
    reg [ 1: 0 ] Prstate, Nxtstate ;
    
always @ (posedge CLK or negedge RST)
if ( $\sim$ RST ) Prstate = S0; / / Initialize to state S0
else Prstate = Nxtstate ; / / Clock operations
always @ (Prstate or x ) / / Determine next state
case (Prstate)
S0 : if ( $\mathbf{x}$ ) Nxtstate = S1;
else Nxtstate = S0; // And other operations
S1: if ( $x$ ) Nxtstate = S3;
else Nxtstate $=\mathbf{S 0}$;
S2: if ( $\sim x$ ) Nxtstate $=\mathbf{S 0}$;
else Nxtstate = S2 ;
S3: if ( $\sim \mathbf{x}$ ) Nxtstate = S2 ;
else Nxtstate = S0;
endcase

## Outline

- HDL Verilog
- HDL stands for Hardware Description Langauge
- Cell-Based Design Flow
- Design a Greatest-Common-Divisor
- Simulation and Synthesis



## A Design Block

Two-way interactions often exist between CONTROL and DATA


## Why EFSM?

- Extended Finite State Machine (EFSM)
- is a high-level graphic representation of a design
- combines the CONTROL and DATA in a single model
- captures the design intensions easily
- Also called Algorithmic Finite State Machine


## Example of An EFSM

FSM: a transition is associated with Boolean input conditions and a set of Boolean output operations.
Extended FSM: a transition is modeled by an "if statement"


## Ex1: Greatest Common Divisor

Inputs: two natural numbers x 1 and x 2
Output: the greatest common divisor of $x 1$ and $x 2$ Example: $(9,6) \rightarrow(3,6) \rightarrow(3,3) \rightarrow$ Found GCD $=3$


Flow-Chart of GCD

## From Flow-Chart To EFSM




## Three-Block Architecture

FSM-block: for controller A-block: for data operation E-block: for trigger evaluation



## Sequential Divider - Algorithm

Function Specification: A/B=Q+R


## Flow Char - One Quotient Bit



## Complete Flow Chart \& States



## Synthesis Script

## design＿dir＝．．／design

io＿dir＝／home／users／cic／CIC＿CBDK35＿V3／Synopsys
lib＿dir＝／home／users／cic／CIC＿CBDK35＿V3／Synopsys
search＿path $=$ search＿path＋lib＿dir＋io＿dir＋design＿dir
define＿design＿lib Analyzed－path analyzed＿dir
／＊－－－－－（1）Specify Target Libraries
target＿library＝＂cb350s142＿max．db
link＿library＝＂cb35os142＿max．db＂
＊＊－－－－－（2）Read in desion＊＊
design＿list $=\{\mathrm{m} 1 . \mathrm{v}, \mathrm{m} 2 . \mathrm{v}\}$
read－format verilog design＿list
link
／＊－－－－－（3）Set constraints－－－－－＊／
create＿clock－period 2 －waveform $\{0,1\}$ find（port＊clk）
set＿input＿delay－max 0.0 －clock clk all＿inputs（）
set＿input＿delay－min 0.0 －clock clk all＿inputs（）
set＿output＿delay－max 0.0 －clock clk all＿outputs（）
set＿output＿delay－min 0.0 －clock clk all＿outputs（） set＿load 1 all＿outputs（）
uniquify
set＿structure true－timing true
compile－map＿effort low－boundary＿optimization
／＊－－－－－（5）Report results
write－f verilog－output FIR．gate．v
report＿timing－max $1>$ FIR．data
report＿area $\gg$ FIR．data
report＿power＞＞FIR．data

## Example of Time－Budgeting

## Timing Constraints For Block B：

set＿input＿delay－max 2.0 －clock clk all＿inputs（）
set＿output＿delay－max 3.0 －clock clk all＿outputs（）

預計A 用掉 1ns留 3ns給 C


## Synthesis Results

| criteria | Direct Form | Transposed <br> Form |
| :---: | :---: | :---: |
| Area <br> (gate-count) | 1674 <br> $(1573,101)$ | 1212 <br> $(1110,101)$ |
| Timing <br> (ns) | 12.7 ns | 10.37 ns |
| Power <br> (mW) | 35.03 nW | 37.26 mW |

(1) Gate count is in terms of equivalent 2-input NAND gate
(2) Timing is based on static timing analysis
(3) Power dissipation is only a very rough estimation

## Contents

- Needed tools
- Starting example
- Introduction
- SystemC highlights
- Differences
- Modules, processes, ports, signals, clocks and data types


## Needed tools

- SystemC library package v2.0.1 Download in www.systemc.org
- Linux platform
- GCC compiler
- GTKWave - Waveform tool
- some text editor


## Starting Example:Full Adder

FullAdder.h
SC_MODULE( FullAdder ) \{
sc_in< sc_uint<16>> A;
sc_in< sc_uint<16>> B;
sc_out< sc_uint<17>> result;
void dolt( void );
SC_CTOR( Fullidder ) \{
SC_METHOD ( dolt ); sensitive $\ll$ A; sensitive << B;
\}
\};
FullAdder.cpp
void FullAdder::dolt( void ) \{
sc_int<16> tmp_A, tmp_B;
sc_int<17> tmp_R;
tmp_A $=($ sc_int<16>) A.read();
tmp_B = (sc_int<16>) B.read();
tmp_R $=$ tmp_A + tmp_B;
result.write( (sc_uint<16>) tmp_R.range (15,0) );

## I ntroduction

- What is SystemC ?
$\square$ SystemC is a C++ class library and methodology that can effectively be used to create a cycleaccurate model of a system consisting of software, hardware and their interfaces.


## I ntroduction

- Where can I use SystemC ?

In creating an executable specification of the system to be developed.

- What should I know to learn SystemC ?

Notions of C++ programming and VHDL helps you a lot.

## SystemC highlights

- Supports hardware and software co-design
- Developing an executable specification avoids inconsistency and errors
- Avoids wrong interpretation of the specification
- SystemC has a rich set of data types for you to model your systems
- It allows multiple abstraction levels, from high level design down to cycle-accurate RTL level


## Why is SystemC different ?

- Current design methodology




## Modules

- Modules are the basic building blocks to partition a design
- Modules allow to partition complex systems in smaller components
- Modules hide internal data representation, use interfaces
- Modules are classes in C++
- Modules are similar to „entity" in VHDL


## Modules

```
SC_MODULE(module_name)
{
 // Ports declaration
 // Signals declaration
 // Module constructor : SC_CTOR
 // Process constructors and sensibility list
 // SC_METHOD
 // Sub-Modules creation and port mappings
 // Signals initialization
}
```

    They can contain ports, signals, local data,
        other modules, processes and constructors.
    
## Modules

- Module constructor
- Similar to „architecture" in VHDL

Example: Full Adder constructor
SC_CTOR( FullAdder ) \{
SC_METHOD( dolt );
sensitive $\ll A$;
sensitive $\ll B$;
\}

## Modules

- Sub-modules instantiation:
- Instantiate module

Module_type Inst_module ("label");

- Instantiate module as a pointer

Module_type * plnst_module;
// Instantiate at the module constructor SC_CTOR
plnst_module = new module_type ("label");

## Modules

How to connect sub-modules ?
$\square$ Named Connection or
$\square$ Positional Connection

## Modules

■ Named Connection

```
Inst_module.a(s);
Inst_module.b(c);
Inst_module.q(q);
plnst_module -> a(s);
plnst_module -> b(c);
plnst_module -> q(q);
```


## Modules

Positional Connection

Inst_module $\ll \mathrm{s} \ll \mathrm{c} \ll \mathrm{q}$;
(*plnst_module)(s,c,q);

## Modules

- Internal Data Storage
- Local variables: can not be used to connect ports
- Allowed data types

C++ types
$\square$ SystemC types
User defined types

## Modules

- Example:


```
SC_MODULE(filter) {
 // Sub-modules:"components"
 sample *s1;
 coeff *cl;
 mult *m1;
 sc_signal<sc_uint 32> q, s, c; // Signals
 // Constructor: "architecture"
 SC_CTOR(filter) {
 // Sub-modules instantiation and mapping
 s1 = new sample ("s1");
 s1->din(q); // named mapping
 s1->dout(s);
 c1 = new coeff("c1");
 c1->out(c); // named mapping
 m1 = new mult ("m1");
 (*m1)(s, c, q); // Positional mapping
 }
}
```


## Processes

- Processes are functions that are identified to the SystemC kernel. They are called if one signal of the sensitivity list changes its value.
- Processes implement the funcionality of modules
- Processes can be Methods, Threads and CThreads


## Processes

## - Methods

When activated, executes and returns

- SC_METHOD(process_name)
- Threads

Can be suspended and reactivated

- wait() -> suspends
- one sensitivity list event -> activates
- SC_THREAD(process_name)
- CThreads

Are activated in the clock pulse

- SC_CTHREAD(process_name, clock value);


## Processes

| Type | SC_METHOD | SC_THREAD | SC_CTHREAD |
| :---: | :---: | :---: | :---: |
| Activates <br> Exec. | Event in sensit. list | Event in sensit. List | Clock pulse |
| Suspends <br> Execution | NO | YES | YES |
| Infinite Loop | NO | YES | YES |
| suspended/ <br> reactivated <br> by | N.D. | wait() | wait() <br> wait_until() |
|  <br> Sensibility <br> definition | SC_METHOD(call_back); ; <br> sensitive(signa_s); <br> sensitive_pos(signals); <br> sensitive_neg(signals); | SC_THREAD(call_back); ; <br> sensitive(signals); <br> sensitive_pos(signals); <br> sensitive_neg(signals); ; | SC_CTHREAD( <br> call_back, <br> clock.pos() ); <br> SC_CTHREAD( <br> Call_back, <br> clock.neg()); |

## Ports and Signals

- Ports of a module are the external interfaces that pass information to and from a module
- In SystemC one port can be IN, OUT or INOUT
- Signals are used to connect module ports allowing modules to communicate
- Very similar to ports and signals in VHDL


## Ports and Signals

- Types of ports and signals:
$\square$ All natives $\mathrm{C} / \mathrm{C}++$ types
$\square$ All SystemC types
$\square$ User defined types
- How to declare
$\square$ IN : sc_in<port_typ>
$\square$ OUT : sc_out<port_type>
$\square$ Bi-Directional : sc_inout<port_type>


## Ports and Signals

- How to read and write a port ?
$\square$ Methods read( ); and write( );
- Examples:
$\square$ in_tmp $=$ in.read( ); //reads the port in to in_tmp
$\square$ out.write(out_temp); //writes out_temp in the out port


## Processes

Process Example
Into the .H file
void dolt( void);
SC_CTOR( Mux21 ) \{
SC_METHOD( dolt );
sensitive << selection;
sensitive $\ll$ in1;
sensitive << in2;
\}
Into the .CPP file
void Mux21::dolt( void ) \{
sc_uint<8> out_tmp;
if( selection.read() ) \{ out_tmp $=$ in2.read();
\} else \{ out_tmp $=$ in1.read(); \}
out.write( out_tmp );
\}

## Clocks

- Special object
- How to create?
sc_clock clock_name ( "clock_label", period, duty_ratio, offset, initial_ value );
- Clock connection
f1.clk( clk_signal ); / / where f1 is a module
- Clock example:



## Data Types

- SystemC supports:
$\square$ C/C++ native types
$\square$ SystemC types
- SystemC types
$\square$ Types for systems modelling
$\square 2$ values ( ${ }^{\prime} 0$ ','1')
$\square 4$ values ('0','1','Z','X')
$\square$ Arbitrary size integer (Signed/Unsigned)
$\square$ Fixed point types


## SystemC types

| Type | Description |
| :--- | :--- |
| sc_logic | Simple bit with 4 values(0/ 1/ X/ Z) |
| sc_int | Signed Integer from 1-64 bits |
| sc_uint | Unsigned I nteger from 1-64 bits |
| sc_bigint | Arbitrary size signed integer |
| sc_biguint | Arbitrary size unsigned integer |
| sc_bv | Arbitrary size 2-values vector |
| Sc_Iv | Arbitrary size 4-values vector |
| Sc_fixed | templated signed fixed point |
| sc_ufixed | templated unsigned fixed point |
| sc_fix | untemplated signed fixed point |
| sc_ufix | untemplated unsigned fixed point |

## SystemC types

## Simple bit type

- Assignment similar to char
$\square$ my_bit = ' 1 ';
- Declaration
$\square$ bool my_bit;

| Operators |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- |
| Bitwise | $\&($ and $)$ | $\mid$ (or) | $\wedge($ xor $)$ | $\sim$ (not) |
| Assignment | $=$ | $\&=$ | $\mid=$ | $\wedge=$ |
| Equality | $==$ | $!=$ |  |  |

## SystemC types

Operators of fixed precision types


## SystemC types

- Bit vector
sc_bv<n>
$\square \quad 2$-value vector (0/1)
$\square$ Not used in arithmetics operations
$\square$ Faster simulation than sc_Iv
- Logic Vector
sc_lv<n>
Vector to the sc_logic type
- Assignment operator ("=")
my_vector = "XZ01"
Conversion between vector and integer (int or uint)
Assignment between sc_bv and sc_lv
Additional Operators



## SystemC types

- Examples:
sc_bit y, sc_bv<8>x;
$y=x[6]$;
sc_bv<16> x, sc_bv<8> y;
$y=$.. range $(0,7)$;
sc_bv<64> databus, sc_logic result;
result = databus.or_reduce();
sc_Iv<32> bus2;
coút $\ll$ "bus $=$ " $\ll$ bus2.to_string();


## Ending Example:Full Adder

FullAdder.h
SC_MODULE( FullAdder ) \{
sc_in< sc_uint<16>> A;
sc_in< sc_uint<16>> B;
sc_out< sc_uint<17>> result;
void dolt( void );
SC_CTOR( FullAdder ) \{
SC_METHOD ( dolt ); sensitive $\ll$ A; sensitive << B;
\}
\};
FullAdder.cpp
void FullAdder::dolt( void ) \{
sc_int<16> tmp_A, tmp_B;
sc_int<17> tmp_R;
tmp_A $=($ sc_int<16>) A.read();
tmp_B $=(\mathrm{sc}$ _int<16>) B.read();
tmp_R = tmp_A + tmp_B;
result.write( (sc_uint<16>) tmp_R.range(15,0) );

# Appendix: on Integrated Fan-Out Wafer-Level Packaging (InFO-WLP) 

Edited by:<br>Shi-Yu Huang<br>National Tsing Hua University, Taiwan

## References

1. Web site at STATSChipPAC http://www.statschippac.com/
2. Web site at "SEMI Networking Day: Packaging - Key for System Integration," http://www.semi.org/eu/node/8481
3. T. Meyer et al., "System Integration with eWLB", Electronic System-Integration Technology Conference (ESITC), 2010.
4. Seung Wook et al., "Fanout Flipchip eWLB (embedded Wafer Level Ball Grid Array) Technology as 2.5D Packaging Solutions" Electronic Components and Technology Conf., (ECTC) 2013.
5. Christianto C. Liu et al., "High-Performance Integrated FanOut Wafer Level Packaging (InFO-WLP): Technology and System Integration", Int'l Electron Device Meetings (IEDM), 2012.
6. Cedric Durand et al., "High Performance RF Inductors Integrated in Advanced Fan-Out Wafer Level Packaging Technology", Silicon Monolithic Integrated Circuits in RF Systems (SiRF), 2012.

## Outline

## $\longrightarrow$ What is FO-WLP?

- Evolution of packaging technology
- Processing steps
- Advantages


## Example of application

- An RF test chip validated by TSMC

Discussion

## Classical Single-Die Package

Wire-Bond Package


Flip-Chip Package



## Evolution of Packaging Technologies



Source: Eric Mounier, Yole Development, Lyon, France, Global SMT \& Packaging July 2007.


## Typical Wafer-Level Package (Fan-In WLP)

Three layers: (1) Silicon die, (2) Solder Ball, (3) PCB
Only one-layer of solder bump/ball $\rightarrow$ No Laminate, but larger IO pitch

P.S. One typical dimension of an IO pad is roughly $60 \mu \mathrm{~m} \times 60 \mu \mathrm{~m}$ P.S. ITRS roadmap: The IO pad pitch will continue to shrink...

## Interconnect Pitch Gap Problem



Source: Infineon

## InFO-WLP <br> (Integrated Fan-Out Wafer-Level Packaging)

Fanout: the extra area outside the die areas
Wafer-Level Package: Interconnects and ball-dropping on a re-constituted wafer


## RDL (Re-Distribution Layer)

Exploit higher Flexibility provided by RDL (Re-Distribution Layer) between bare dies and solder balls
$\rightarrow$ (1) package foot-print > chip foot-print, (2) multi-chip package


RDL: used to route the signal path from the die's IOs to desired bump locations



## Layers of a FO-WLP Package



Source: STMicroelectronics, SiRF 2012.

## A Specific WLP Technology

## - Embedded Wafer-Level Ball-Grid Array (eWLB)

- eWLB was a technology pioneered by Nanium
$\rightarrow$ Siemens $\rightarrow$ Infineon (1999) $\rightarrow$ Qimonda (2006) $\rightarrow$ Nanium (2010)
- With proven high-volume manufacturing capability, Nanium have shipped more than 300 million eWLB components, achieving industry-level yields and full JEDEC quality/reliability compliance.


## MOTIVATION:

to address the growing mismatch in interconnect gap, higher levels of integration, improved electrical performance and shorter vertical interconnects.

## Business Outlook of FO-WLP

FOWLP Revenues
Breakdown by application area (M\$)


Based on Yole Development, due to ramp-up of fabless wireless IC vendors

## Features of eWLB

Flexibility to integrate die from diverse processes, manufacturing sources \& silicon wafer nodes for increased functionality
$\checkmark 2 D$ solutions in single \& multi-die configurations, down to 0.4 mm

- MCP versions with flip chip \& IPD (integrated passive devices) integration capability
-2.5D \& 3D options offer lower overall cost than TSV integration with increased process simplicity
$\checkmark$ Industry's thinnest 3D PoP solutions (ultra thin z-height of 0.3 mm with stacked thickness down to 0.8 mm height)
$\checkmark$ Ultra fine ball pitch (down to 0.3 mm ) \& maximum I/O density
Thin film processing enables very fine lines for $X, Y$ routing (line-width/line-space ratios less than $10 u m / 10 u m$ ), very fine via pitches and thin dielectrics
- Bumpless thin film interconnection offers lowest cost structure over competing manufacturing approaches

Source: web site of STATS ChipPAC

## Features of eWLB - Continued

- Elimination of substrate results in a thinner package with lower warpage, simplifying supply chain \& reducing costs
-Cost effective HVM batch processing (includes wafer level test)
$\checkmark$ Advanced dielectric materials for reliable, power-efficient solutions
-Strong electrical performance (capable to beyond 60GHz)
- Effective heat dissipation supports strong thermal performance
-KGD helps achieve strong yields (99.9\%)
-Cu/low-k (ELK) compatible packaging technology
$\bullet$ Green packaging (Pb-free and Halogen-free)



## Multi-Chip Test Vehicle

Die-to-Die distance is $300 \mu \mathrm{~m}$ in this case


## TMV (Through Mold Via in z-Direction)

- also called TEV (Through Encapsulant Via)
(Via-Before-Molding)
The placement of pre-fabricated via bars prior to the molding of the Reconstituted Wafer.
(Via-After-Molding)
laser drilling and copper filling of vias in the mold compound.
ePOP Process Flow with Via Bars



## Defects

Potential manufacturing imperfections:
(1) Die shift (due to imprecision of pick-and-place equipment)
(2) Wafer warpage


## Outline

## What is FO-WLP? <br> Example of application

- RF test vehicles

Discussion

## Integration of Passive Components

Why passive components matter:
(1) Wireless products are everywhere
(2) Passives (in particularly inductors) are key in RF circuits

- Low-Noise Amplifiers (LNA), Voltage Controlled Oscillators (VCO),
- Power Amplifiers (PA), filters, impedance matching networks...

Larger size Higher performance


Promising


Smaller size Lower performance


More integrated

## Q Factor of Inductance



L $\quad$ R
Smaller R $\rightarrow$ Higher Inductor's Q Factor
(Less Energy Loss in the Tuned Circuit)

Typical Q-factor range:
(1) Around 10 for CMOS inductors
(2) Around 25 ~ 35 for eWLB inductors


## FO-WLP Package on Board





## Peak Q Vale at Different Regions



| Thermal Analysis |  |  |  |
| :---: | :---: | :---: | :---: |
|  | $\begin{aligned} & \text { FC-BGA/ } \\ & \text { MCM } \end{aligned}$ | InFO-WLP |  |
| Package Size ( $\mathrm{mm}^{2}$ ) |  |  |  |
| Die Sizes ( $\mathrm{mm}^{2}$ ) | $15 \times 5$ die, 2 | $\times 1.25$ dies |  |
| Die Thickness (mm) | 0.5 | $<0.3$ |  |
| Substrate Thickness (mm) | 0.3 | N/A |  |
| Ball Count |  |  |  |
| Ball Diameter/Pitch (mm) |  |  |  |
| Total Power (W) |  |  |  |
| Ambient Temp ( ${ }^{\circ} \mathrm{C}$ ) |  |  |  |
| Max Temp ( ${ }^{\circ} \mathrm{C}$ ) | 90.5 | 81.5 |  |
| Thermal Resistance ( ${ }^{\circ} \mathrm{C} / \mathrm{W}$ ) | 32.5 | 28.0 |  |
| A5-35 |  |  |  |

## Thermal Map



## Concluding Remarks

Wafer-Level Packaging (WLP)
has great potential for future multi-chip packaging.
Impacts on Testing:
(1) Yield might be highly dependent on KGD test
(2) Solder ball could be a weak point of thermal reliability
(3) Testing \& Delay characterization for die-to-die interconnects


Ref: Coefficient of Thermal Expansion ( $\sim 2.6 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ for silicon and $17 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ for PCB)


Fatigue of solder ball after intensive Temperature Cycling

