Lesson 15 Potential Theory Using Complex Analysis (EK 18)

■ Introduction

"Potentials" in physics can simplify the derivation of forces. They are typically described by solutions to Laplace's equation $\nabla^2\Phi=0$. The solutions are called "harmonic functions" if they have continuous 2nd partial derivatives.

■ Why using complex analysis?

The real and imaginary parts of a complex analytic function $F(z=x+iy)=\Phi(x,y)+i\Psi(x,y)$ are satisfied with 2-D Laplace's equation: $\nabla^2\Phi=\nabla^2\Psi=0$ (proved by CR-conditions, Lesson 9). If $\Phi(x,y)$ represents the potential function, by working with F(z), we can: (1) handle both equipotential lines (Φ =constant) and lines of force (Ψ =constant) simultaneously; (2) solve Dirichlet problems with complicated boundary geometry by introducing another analytic transformation function f(z) for conformal mapping.

Complex Potential

- Examples of real potentials
- 1) Parallel plates: The electrostatic potential Φ between two parallel conducting plates is governed by: Laplace's equation: $\nabla^2 \Phi = \Phi''(x) = 0$, and BCs: $\Phi\left(-\frac{d}{2}\right) = \Phi_1$, $\Phi\left(\frac{d}{2}\right) = \Phi_2$.

The solution is a linear function:

$$\Phi(x) = ax + b \tag{15.1}$$

where $a=-\frac{\Phi_1-\Phi_2}{d}$, $b=\frac{\Phi_1+\Phi_2}{2}$. The equipotential line $\Phi=\Phi_0$, is a vertical line $x=x_0$ parallel to the plates. The E-field is $\vec{E}=-\nabla\Phi$, \Rightarrow

$$\vec{E} = -a\vec{x} \tag{15.2}$$

which is constant and perpendicular to the plates.

Note: Infinite dimension (along y-axis) causes constant potential (Φ is independent of y).

2) Coaxial cylinder: If Φ is independent of θ , $\nabla^2 \Phi = r^2 \Phi_{rr} + r \Phi_r = 0$, \Rightarrow

$$\Phi(r) = a \ln r + b \tag{15.3}$$

where a, b are determined by BCs $[\Phi(r_1)=\Phi_1, \Phi(r_2)=\Phi_2]$. The equipotential line $\Phi=\Phi_0$ is a **circle** $r=r_0$. The E-field is $\vec{E}=-\nabla\Phi$, \Rightarrow

$$\vec{E} = -\frac{a}{r}\vec{r} \tag{15.4}$$

which is in radial direction, perpendicular to the equipotential lines.

- 3) Angular region: If the region of interest is confined by two plates in the radial directions and with an included angle α , it is difficult to directly solve the potential Φ by traditional methods. Instead, we can borrow the concept of analytic complex functions:
 - (1) To be satisfied with the two BCs: $u\left(\theta = -\frac{\alpha}{2}\right) = \Phi_1$, $u\left(\theta = \frac{\alpha}{2}\right) = \Phi_2$, $u(x,y) = \tan^{-1}\left(\frac{y}{x}\right)$

(= θ in the polar coordinates) is a choice. (2) u(x,y) is also satisfied with 2-D Laplace's equation for it is the imaginary part of an analytic function: $F(z) = \text{Ln} z = \ln |z| + i \cdot \text{Arg}(z)$ [eq. (9.7)]. By (1-2), \Rightarrow

$$\Phi = a + b\theta \tag{15.5}$$

where $a = \frac{\Phi_1 + \Phi_2}{2}$, $b = \frac{\Phi_2 - \Phi_1}{\alpha}$. The equipotential line $\Phi = \Phi_0$ is a **ray** $\theta = \theta_0$. The E-field is $\vec{E} = -\nabla \Phi$, \Rightarrow

$$\vec{E} = -\frac{b}{r}\vec{\theta} \tag{15.6}$$

which is in azimuthal (方位角) direction, perpendicular to the equipotential lines.

■ Concept of complex potential

For a given real potential $\Phi(x,y)$, we can uniquely (except for an additive constant) determine a conjugate $\Psi(x,y)$ by CR-equations, such that complex potential $F(z=x+iy)=\Phi(x,y)+i\Psi(x,y)$ is analytic. As a result, F(z) maps curves in the xy-plane onto curves in the $\Phi\Psi$ -plane "conformally" or vise versa, i.e. included angle is preserved during mapping (Appendix 9A).

Since $\Phi = \Phi_0$ (vertical line) is always perpendicular to $\Psi = \Psi_0$ (horizontal line) in the $\Phi\Psi$ -plane, \Rightarrow the corresponding curves in the *xy*-plane: $\Phi(x,y) = \Phi_0$ (equipotential line), and $\Psi(x,y) = \Psi_0$ always make a right angle as well.

Since gradient defines the steepest ascent/descent direction, which is always perpendicular with the equipotential lines (zero-variation direction), \Rightarrow E-field $\vec{E} = -\nabla \Phi$ is perpendicular with $\Phi(x,y)$ =constant, $\Rightarrow \Psi(x,y)$ = Ψ_0 stands for a E-field (force) line.

- Examples of deriving lines of force by complex potential
- 1) Parallel plates: By eq. (15.1), $\Phi(x)=ax+b$. By CR-equations, its conjugate is:

$$\Psi = ay + c \tag{15.7}$$

- \Rightarrow complex potential F(z)=(ax+b)+i(ay+c)=az+d, which is analytic. The E-field lines are Ψ = constant, \Rightarrow y=constant, same as eq. (15.2).
- 2) Coaxial cylinders: By eq. (15.3), $\Phi = a \ln r + b = a \ln |z| + b$. By CR-equations, its conjugate is:

$$\Psi = a \operatorname{Arg}(z) + c \tag{15.8}$$

- \Rightarrow complex potential $F(z)=(a \cdot \ln |z|+b)+i(a\operatorname{Arg}(z)+c)=a\operatorname{Ln} z+d$, which is analytic except for 0 and points on the negative real axis. The E-field lines are Ψ =constant, \Rightarrow $\operatorname{Arg}(z)=\theta$ =constant, same as eq. (15.4).
- 3) Angular region: By eq. (15.5), $\Phi = a + b \theta = a + b \operatorname{Arg}(z)$, which is the imaginary part of $(c+ia)+b\operatorname{Ln} z$, or the real part of $F(z)=(a+id)-ib\operatorname{Ln} z$; $\Rightarrow \Psi = \operatorname{Im}[F(z)]$,

$$\Psi = d - b \ln |z| \tag{15.9}$$

The E-field lines are Ψ = constant, $\Rightarrow |z|=r$ =constant, same as eq. (15.6).

Solving Dirichlet Potential Problems by Conformal Mapping (SJF 47)

■ Concept

Find an analytic transformation function f(z) to map a complicated domain D (in the z-plane) onto a simpler domain D^* (in the w-plane), where the complex potential $F^*(w)$ can be easily solved [Re $\{F^*(w)\}=\Phi^*(w)$ is satisfied with 2-D Laplace's equation and boundary conditions in the w-plane]. Then the complex potential in the z-plane is derived by inverse transform: $F(z)=F^*(w)|_{w=f(z)}$, from which the real potential is: $\Phi(x,y)=\operatorname{Re}\{F(z=x+iy)\}$.

The strategy works because harmonic functions remain harmonic under conformal mapping. Proof: f(z) and $F^*(w)$ are analytic (s.t. Re $\{F^*(w)\}$ is harmonic). By the chain rule, F(z) is also analytic: $F'(z) = \frac{dF^*}{dw} \cdot f'(z) \Big|_{w=f(z)}$ exists. $\Rightarrow \Phi(x,y) = \text{Re}\{F(z)\}$ is harmonic.

E.g. Non-coaxial cylinders: $C_1: |z|=1, C_2: |z-\frac{2}{5}| = \frac{2}{5}; U_1=0, U_2=110.$

Direct solution in the z-plane is difficult. By using linear fractional transformation: $w = f(z) = \frac{z - 1/2}{(z/2) - 1}$ (EK 17.2–17.4), domain D is mapped onto D^* in the w-plane, consisting of two concentric circles: C_1^* : |w| = 1, C_2^* : $|w| = \frac{1}{2}$; with BCs: $U_1 = 0$, $U_2 = 110$.

The complex potential in the w-plane is: $F^*(w)=a\cdot \operatorname{Ln} w+k$, where a, k can be solved by BCs: $\Phi^*(|w|=1)=0$, $\Phi^*(|w|=\frac{1}{2})=110$.

The complex potential in the z-plane is: $F(z)=F^*(w)|_{w=f(z)}=a\cdot \operatorname{Ln}\left(\frac{2z-1}{z-2}\right)$, and the real potential is: $\Phi(x,y)=\operatorname{Re}\{F(z)\}=a\cdot \ln\left(\frac{2z-1}{z-2}\right)$.

The equipotential lines $\Phi(x,y)=\Phi_0$, $\Rightarrow \left|\frac{2z-1}{z-2}\right|=$ constant, are circles (with different centers) in the z-plane (see plot); corresponding to concentric circles in the w-plane. The lines of force are circular arcs (see plot), corresponding to rays Arg(w)= constant in the w-plane.