Lesson 15 Potential Theory Using Complex Analysis (EK 18)

Introduction
"Potentials" in physics can simplify the derivation of forces. They are typically described by solutions to Laplace's equation $\nabla^{2} \Phi=0$. The solutions are called "harmonic functions" if they have continuous 2nd partial derivatives.

Why using complex analysis?
The real and imaginary parts of a complex analytic function $F(z=x+i y)=\Phi(x, y)+i \Psi(x, y)$ are satisfied with 2-D Laplace's equation: $\nabla^{2} \Phi=\nabla^{2} \Psi=0$ (proved by CR-conditions, Lesson 9). If $\Phi(x, y)$ represents the potential function, by working with $F(z)$, we can: (1) handle both equipotential lines ($\Phi=$ constant $)$ and lines of force ($\Psi=$ constant) simultaneously; (2) solve Dirichlet problems with complicated boundary geometry by introducing another analytic transformation function $f(z)$ for conformal mapping.

Complex Potential

- Examples of real potentials

1) Parallel plates: The electrostatic potential Φ between two parallel conducting plates is governed by: Laplace's equation: $\nabla^{2} \Phi=\Phi^{\prime \prime}(x)=0$, and BCs: $\Phi\left(-\frac{d}{2}\right)=\Phi_{1}, \Phi\left(\frac{d}{2}\right)=\Phi_{2}$.

The solution is a linear function:

$$
\begin{equation*}
\Phi(x)=a x+b \tag{15.1}
\end{equation*}
$$

where $a=-\frac{\Phi_{1}-\Phi_{2}}{d}, b=\frac{\Phi_{1}+\Phi_{2}}{2}$. The equipotential line $\Phi=\Phi_{0}$, is a vertical line $x=x_{0}$ parallel to the plates. The E-field is $\vec{E}=-\nabla \Phi, \Rightarrow$

$$
\begin{equation*}
\vec{E}=-a \vec{x} \tag{15.2}
\end{equation*}
$$

which is constant and perpendicular to the plates.
Note: Infinite dimension (along y-axis) causes constant potential (Φ is independent of y).
2) Coaxial cylinder: If Φ is independent of $\theta, \nabla^{2} \Phi=r^{2} \Phi_{r r}+r \Phi_{r}=0 \Rightarrow$

$$
\begin{equation*}
\Phi(r)=a \ln r+b \tag{15.3}
\end{equation*}
$$

where a, b are determined by $\mathrm{BCs}\left[\Phi\left(r_{1}\right)=\Phi_{1}, \Phi\left(r_{2}\right)=\Phi_{2}\right]$. The equipotential line $\Phi=\Phi_{0}$ is a circle $r=r_{0}$. The E-field is $\vec{E}=-\nabla \Phi, \Rightarrow$

$$
\begin{equation*}
\stackrel{\rightharpoonup}{E}=-\frac{a}{r} \vec{r} \tag{15.4}
\end{equation*}
$$

which is in radial direction, perpendicular to the equipotential lines.
3) Angular region: If the region of interest is confined by two plates in the radial directions and with an included angle α, it is difficult to directly solve the potential Φ by traditional methods. Instead, we can borrow the concept of analytic complex functions:
(1) To be satisfied with the two BCs: $u\left(\theta=-\frac{\alpha}{2}\right)=\Phi_{1}, u\left(\theta=\frac{\alpha}{2}\right)=\Phi_{2}, u(x, y)=\tan ^{-1}\left(\frac{y}{x}\right)$ ($=\theta$ in the polar coordinates) is a choice. (2) $u(x, y)$ is also satisfied with 2-D Laplace's equation for it is the imaginary part of an analytic function: $F(z)=\operatorname{Ln} z=\ln |z|+i \cdot \operatorname{Arg}(z)$ [eq. (9.7)]. $\mathrm{By}(1-2), \Rightarrow$

$$
\begin{equation*}
\Phi=a+b \theta \tag{15.5}
\end{equation*}
$$

where $a=\frac{\Phi_{1}+\Phi_{2}}{2}, b=\frac{\Phi_{2}-\Phi_{1}}{\alpha}$. The equipotential line $\Phi=\Phi_{0}$ is a ray $\theta=\theta_{0}$. The E-field is $\vec{E}=-\nabla \Phi, \Rightarrow$

$$
\begin{equation*}
\stackrel{\rightharpoonup}{E}=-\frac{b}{r} \vec{\theta} \tag{15.6}
\end{equation*}
$$

which is in azimuthal（方位角）direction，perpendicular to the equipotential lines．

Concept of complex potential
For a given real potential $\Phi(x, y)$ ，we can uniquely（except for an additive constant）determine a conjugate $\Psi(x, y)$ by CR－equations，such that complex potential $F(z=x+i y)=\Phi(x, y)+i \Psi(x, y)$ is analytic．As a result，$F(z)$ maps curves in the $x y$－plane onto curves in the $\Phi \Psi$－plane ＂conformally＂or vise versa，i．e．included angle is preserved during mapping（Appendix 9A）．

Since $\Phi=\Phi_{0}$（vertical line）is always perpendicular to $\Psi=\Psi_{0}$（horizontal line）in the $\Phi \Psi$－plane， \Rightarrow the corresponding curves in the $x y$－plane：$\Phi(x, y)=\Phi_{0}$（equipotential line），and $\Psi(x, y)=\Psi_{0}$ always make a right angle as well．

Since gradient defines the steepest ascent／descent direction，which is always perpendicular with the equipotential lines（zero－variation direction），$\Rightarrow \mathrm{E}$－field $\vec{E}=-\nabla \Phi$ is perpendicular with $\Phi(x, y)=$ constant，$\Rightarrow \Psi(x, y)=\Psi_{0}$ stands for a E－field（force）line．

■ Examples of deriving lines of force by complex potential

1) Parallel plates: By eq. (15.1), $\Phi(x)=a x+b$. By CR-equations, its conjugate is:

$$
\begin{equation*}
\Psi=a y+c \tag{15.7}
\end{equation*}
$$

\Rightarrow complex potential $F(z)=(a x+b)+i(a y+c)=a z+d$, which is analytic. The E-field lines are $\Psi=$ constant,$\Rightarrow y=$ constant, same as eq. (15.2).
2) Coaxial cylinders: By eq. (15.3), $\Phi=a \ln r+b=a \ln |z|+b$. By CR-equations, its conjugate is:

$$
\begin{equation*}
\Psi=a \operatorname{Arg}(z)+c \tag{15.8}
\end{equation*}
$$

\Rightarrow complex potential $F(z)=(a \cdot \ln |z|+b)+i(a \operatorname{Arg}(z)+c)=a \operatorname{Ln} z+d$, which is analytic except for 0 and points on the negative real axis. The E-field lines are $\Psi=$ constant, \Rightarrow $\operatorname{Arg}(z)=\theta=$ constant, same as eq. (15.4).
3) Angular region: By eq. (15.5), $\Phi=a+b \theta=a+b \operatorname{Arg}(z)$, which is the imaginary part of $(c+i a)+b \operatorname{Ln} z$, or the real part of $F(z)=(a+i d)-i b \operatorname{Ln} z ; \Rightarrow \Psi=\operatorname{Im}[F(z)]$,

$$
\begin{equation*}
\Psi=d-b \ln |z| \tag{15.9}
\end{equation*}
$$

The E-field lines are $\Psi=$ constant, $\Rightarrow|z|=r=$ constant, same as eq. (15.6).

Solving Dirichlet Potential Problems by Conformal Mapping (SJF 47)

Concept
Find an analytic transformation function $f(z)$ to map a complicated domain D (in the z-plane) onto a simpler domain D^{*} (in the w-plane), where the complex potential $F^{*}(w)$ can be easily solved $\left[\operatorname{Re}\left\{F^{*}(w)\right\}=\Phi^{*}(w)\right.$ is satisfied with 2-D Laplace's equation and boundary conditions in the w-plane]. Then the complex potential in the z-plane is derived by inverse transform: $F(z)=\left.F^{*}(w)\right|_{w=f(z)}$, from which the real potential is: $\Phi(x, y)=\operatorname{Re}\{F(z=x+i y)\}$.

The strategy works because harmonic functions remain harmonic under conformal mapping. Proof: $f(z)$ and $F^{*}(w)$ are analytic (s.t. $\operatorname{Re}\left\{F^{*}(w)\right\}$ is harmonic). By the chain rule, $F(z)$ is also analytic: $\quad F^{\prime}(z)=\left.\frac{d F^{*}}{d w} \cdot f^{\prime}(z)\right|_{w=f(z)}$ exists. $\Rightarrow \Phi(x, y)=\operatorname{Re}\{F(z)\}$ is harmonic.
E.g. Non-coaxial cylinders: $C_{1}:|z|=1, C_{2}:\left|z-\frac{2}{5}\right|=\frac{2}{5} ; U_{1}=0, U_{2}=110$.

(a) z-plane

(b) w-plane

Direct solution in the z-plane is difficult. By using linear fractional transformation: $w=$ $f(z)=\frac{z-1 / 2}{(z / 2)-1}$ (EK 17.2-17.4), domain D is mapped onto D^{*} in the w-plane, consisting of two concentric circles: $C_{1}^{*}:|w|=1, C_{2}^{*}:|w|=\frac{1}{2}$; with BCs: $U_{1}=0, U_{2}=110$.

The complex potential in the w-plane is: $F^{*}(w)=a \cdot \operatorname{Ln} w+k$, where a, k can be solved by BCs: $\Phi^{*}(|w|=1)=0, \Phi^{*}\left(|w|=\frac{1}{2}\right)=110$.
The complex potential in the z-plane is: $F(z)=\left.F^{*}(w)\right|_{w=f(z)}=a \cdot \operatorname{Ln}\left(\frac{2 z-1}{z-2}\right)$, and the real potential is: $\Phi(x, y)=\operatorname{Re}\{F(z)\}=a \cdot \ln \left(\left|\frac{2 z-1}{z-2}\right|\right)$.

The equipotential lines $\Phi(x, y)=\Phi_{0}, \Rightarrow\left|\frac{2 z-1}{z-2}\right|=$ constant, are circles (with different centers) in the z-plane (see plot); corresponding to concentric circles in the w-plane. The lines of force are circular arcs (see plot), corresponding to rays $\operatorname{Arg}(w)=$ constant in the w-plane.

