
PDE & Complex Variables              P13-1 

Edited by: Shang-Da Yang 

Lesson 13 Laurent Series and Residue (EK 16) 

 

Laurent Series (EK 16.1) 

 Motivation 

Singularities are routine for complex functions, for bounded entire functions must be constant 

(Liouville’s theorem, Lesson 10). We have to represent complex functions by Laurent series 

if there is singularity in the region of interest. 

 
 

 

 Laurent theorem 

If f(z) is analytic in an open annulus D: R2<|z−z0|<R1,⇒  
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for every point z∈D, where C⊂D is a simple closed path. 
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Proof: Let C1, C2 ⊂D are two concentric circles of radii r1, r2. By Cauchy’s integral formula 

for doubly connected domain [eq. (10.10)]: f(z)= ∫ −1 
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g(z)+h(z) = (analytic part)+(principal part), for any z∈D. 

 

(1) Since z lies within C1, and f(z) is analytic on C1, by the proof of Taylor series in Lesson 
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<Comment> 

The proof of Taylor series consists of two steps: (i) f(z)= ∫ −C
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only requires f(z) is analytic on C. Here we simply use (ii). 
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By the ML-inequality and the same procedure in proving Taylor theorem eq’s (12.1-2), we 

derive )(lim * zRnn ∞→
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(3) By Cauchy’s integral theorem 4 [eq. (10.8)], an= ∫
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, for any contour C⊂D. 

 

Eq. (13.1) remains valid if we continuously move C1 outward and C2 inward until they reach 

some singularity. ⇒ ROC of Laurent series is the open annulus D: R2<|z-z0|<R1. 

 
 

<Comment> 

1) A function may have different power series because of different ROCs or different centers. 

E.g. 
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Singularities and Zeros (EK 16.2) 

 Definitions 

1) A function f(z) has a singularity at z=z0 if f(z) is not analytic at z=z0. 

2) z=z0 is an isolated singularity if it has a neighborhood without any other singularity. 

E.g. ztan  has isolated singularities at z= π
2

12 +
±

n .  

E.g. ( )1tan −z  is not continuous/analytic for 
z
1 = π

2
12 +

±
n , ⇒ z=

π)12(
2
+

±
n

=
π
2

± , 

π3
2

± , …. For an arbitrarily small disk |z|<ε, you can always find infinitely many 

singularities within it, ⇒ z=0 is a non-isolated singularity (other sigularities are isolated). 

3) If the Laurent series of f(z) centered at z=z0 has nonzero coefficient(s) up to m-th order 

(bm≠0), ⇒ z0 is a pole of order m of f(z), which can be removed by multiplying (z−z0)m. It 

is called a simple pole if m=1. 

E.g. 
zsin

1 =
...)!5/()!3/(

1
53 −+− zzz

, by long division, =
z
1 +

6
z +

360
7 3z +... has a simple 

pole at z=0. 

E.g. To find the order of pole of tan z at z=
2
π , we change the variable: u=z−

2
π : f(z)= 







 +

2
tan πu = −tan u= 







 −−−− ...
453

1 3uu
u

, which has a simple pole at u=0, i.e. z=
2
π . 

4) If the Laurent series of f(z) centered at z=z0 has infinitely many nonzero coefficients, z0 is 

an essential singularity of f(z). 

 E.g. e1/z =∑
∞

=0 !
1

n
nzn

 has an isolated essential singularity at z=0. 

 E.g. ( )1tan −z =
)/1cos(
)/1sin(

z
z =

z
1 + 33

1
z

+... has a non-isolated essential singularity at z=0. 

5) If an analytic function f(z) has a property of f(z0)= f'(z0)=…= f (n-1)(z0)=0 (i.e. the first n 

Taylor coefficients a0=a1=…=an-1=0), ⇒ z=z0 is a zero of order n of f(z). 

 E.g. zsin  has simple zeros (n=1) at z=0, ±π, ±2π, …; sin2 z has second-order zeros at 

these points. 
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 Properties 

1) If f(z) is analytic except for a pole at z=z0, ⇒ |f(z)|→∞ as z→z0 in any manner. 

2) Picard’s theorem: If f(z) is analytic except for an essential singularity at z=z0, ⇒ f(z) can 

be equal to any complex number in an arbitrarily small neighborhood of z0. 

 E.g. f(z)=e1/z: (i) if z=x=(+∞→0+), f(z)→∞; (ii) if z= −x=(−∞→0-), f(z)→0; (iii) For any 

given complex number c=c0⋅eiα, we can find some z=r⋅eiθ, s.t. f(z)= 



 −

r
i θθ sincosexp =c, 

⇒ 








+=−= παθθ

n
r

ce r 2sin  ,0
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; ⇒ [ ] 2
1

22
0 )2()(ln −

++= πα ncr , tanθ = 

0ln
)2(

c
nπα +− . The solution z can be made arbitrarily close to 0 (r→0) by increasing n. 

3) If f(z) is analytic and has an nth-order zero at z0, ⇒ 
)(

1
zf

 has an nth-order pole at z=z0. 

4) The properties of f(z) at large |z| can be investigated by: set z=1/w, investigate 

g(w)=f(1/w)=f(z) in the neighborhood of w=0. 

E.g. ez has an isolated essential singularity at ∞, for e1/w has that at w=0. 

 

 

Residue Integration (EK 16.3) 

 Evaluate contour integral by residue 

To evaluate I= ∫C
dzzf

 
)(  for some arbitrary contour C: 

1) If f(z) is analytic for every point on and within C, ⇒ I=0 by Cauchy’s integral theorem 1. 

2) If f(z) has only one singularity at z=z0 inside C, its “closest” Laurent series with ROC: 

{0<|z−z0|<R} is: f(z)=∑
∞
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       (13.2) 
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where )(Res
0

zf
zz=

=b1 is called the residue of f(z) at z0. [eq. (10.9) is a special case.] 

Proof: by 


 −=
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E.g. I= ∫C
dzzf

 
)( , where f(z)=

)1(
1

zz −
, C: |z|=

2
1 , in counterclockwise sense. 

Since only one singularity z=0 lies inside C, ⇒ find the Laurent series centered at z=0: (1) 

f(z)=
z
1 +1+z2+…., for 0<|z|<1, ⇒ b1=1. (2) f(z)= 



 ++− ...11

32 zz
, for |z|>1, ⇒ b1=0. ⇒ 

Choose series-1: b1=1, and I=2πi. 

 

<Comment> 

We always choose the closest Laurent series to evaluate residue, even when part of the 

integral path C falls outside its ROC. E.g. Let f(z)=
)1(

1
zz −

, C: z= θirei +





 +

4
1 , 

θ∈[0,2π], which passes through ROCs of the two Laurent series and only encloses one 

singularity z=0 if 417 <r< 45 . ⇒ I=2πi for arbitrary 417 <r< 45 . 

 
 

3) If f(z) has finitely many isolated singularities {zi; i=1−N} inside C, ⇒ 
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zfi
N
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Proof: By Cauchy’s integral theorem 4 [eq. (10.6)], ⇒ ∫C
dzzf
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=
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)( , where 

Ck is a circle that only encloses one singularity zk, and is separated from all the other 

circles. By eq. (13.2), ∫
kC
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, ⇒ …. 

 

 

 How to evaluate the residue of a singularity 

1) If z=z0 is (i) a pole of unknown order, (ii) essential singularity, (iii) non-isolated 

singularity of f(z), ⇒ try to derive the (partial) Laurent series. 

2) If z=z0 is a simple pole of f(z), ⇒ 
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Proof: If z=z0 is a simple zero of q(z), q(z)= )( 0zq′ (z−z0)+
!2

)( 0zq ′′
(z−z0)2 +…, by eq. (13.4): 

)(
)(Res

0 zq
zp

zz=
=

)(
)()(lim 0

0 zq
zpzz

zz
−

→
= [ ]...!2/)()()()(

)()(
lim

0000

0

0 +′′−+′−
−

= zqzzzqzz
zpzz

zz
= 

)(
)(

0

0

zq
zp

′
. 

5) If z=z0 is mth order pole of f(z), ⇒ 
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Proof: f(z)= 
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E.g. Find the residues of f(z)= 3)2(
1
+zz

 at all poles. (1) z=0 is a simple pole. )(Res
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Note: Partial fractions reveal all the residues: f(z)=
z
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z
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(*) E.g. Find the residue of f(z)=(cot z) at z=π. 

Ans: Find the order first. Let u=z−π, cot z =cot u, ⇒ {order of pole z=π of cot z}={order of 

pole u=0 of cot u}. cot u=
u
u
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Appendix 13A − Residue at Infinity 

 

If the contour C of ∫C
dzzf

 
)(  encloses a non-isolated singularity or a large number of 

isolated singularities of f(z), evaluating the “interior” residues becomes inefficient. Instead, 

we can derive ∫C
dzzf

 
)(  by evaluating “exterior” residues of isolated singularities z1, z2, , zN 

outside C, and perhaps a residue at infinity: 

 

Creating an infinite contour C∞. By eq. (13.3): ∫
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θ =[0,2π] (counterclockwise). By change of variable w=1/z, C∞ in the z-plane becomes C'∞ in 

the w-plane: w≡ρeiφ=(1/r)e-iθ, ρ→0, φ=[0,-2π] (clockwise), f(z)=f(1/w), ⇒ ∫
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<Comment> 
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. Proof: Let )(Res zf
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=b1, ⇒ the Laurent series of f(z) centered at 
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z=∞ as: f(z)={…+ ...)(10
1 +∞−++
∞−
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b } ⇒. By change of variable: w=
z
1 , f(z)= f(1/w)= 
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w=0. 

E.g. Evaluate ∫ +C

z
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z

ez
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1
, C: |z|=3. 

Ans: There are 101 singularities within C (z=0, and 100 points fall on the unit circle), and 

none outside C, ⇒ use residue at infinity. 
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