Lesson 12 Taylor Series (EK 15.4)

■ Taylor theorem
Let $f(z)$ is analytic in a domain D, and $z_{0} \in D ; \Rightarrow(\mathbf{1}) f(z)$ can be represented by a power series:

$$
\begin{equation*}
f(z)=\sum_{n=0}^{\infty} a_{n}\left(z-z_{0}\right)^{n}, \text { where } a_{n}=\frac{f^{(n)}\left(z_{0}\right)}{n!}=\frac{1}{2 \pi i} \oint_{C} \frac{f\left(z^{\prime}\right)}{\left(z^{\prime}-z_{0}\right)^{n+1}} d z^{\prime} \tag{12.1}
\end{equation*}
$$

for every point z in the largest open disk $\left|z-z_{0}\right|<R$ within D, and $C \subset D$ is an arbitrary simple closed path enclosing z_{0}. (2) The remainder $R_{n}(z) \equiv f(z)^{-} \sum_{m=0}^{n} a_{m}\left(z-z_{0}\right)^{m}$ is:

$$
\begin{equation*}
R_{n}(z)=\frac{\left(z-z_{0}\right)^{n+1}}{2 \pi i} \oint_{C} \frac{f\left(z^{\prime}\right)}{\left(z^{\prime}-z_{0}\right)^{n+1}\left(z^{\prime}-z\right)} d z^{\prime} \tag{12.2}
\end{equation*}
$$

Proof: Since $f(z)$ is analytic in D, by Cauchy's integral formula [eq. (10.9)]: $f(z)=\frac{1}{2 \pi i} \oint_{C} \frac{f\left(z^{\prime}\right)}{z^{\prime}-z} d z^{\prime}$, for every z lies within $C(\subset D)$.
Choose a circle $C^{*}:\left|z^{*}-z_{0}\right|=r>\left|z-z_{0}\right|$. Since the integrand $\frac{f\left(z^{\prime}\right)}{z^{\prime}-z}$ is analytic in a doubly connected domain bounded by C and C^{*}, by Cauchy's integral theorem 4 [eq. (10.8)]: $\oint_{C} \frac{f\left(z^{\prime}\right)}{z^{\prime}-z} d z^{\prime}=\oint_{C^{*}} \frac{f\left(z^{*}\right)}{z^{*}-z} d z^{*}=2 \pi i \cdot f(z)$.

$\frac{1}{z^{*}-z}=\frac{1}{\left(z^{*}-z_{0}\right)\left(1-\frac{z-z_{0}}{z^{*}-z_{0}}\right)} \equiv \frac{p}{\left(z^{*}-z_{0}\right)}$, where $p \equiv \frac{1}{1-q}, q=\frac{z-z_{0}}{z^{*}-z_{0}},|q|<1$.
$p=\frac{1}{1-q}=\sum_{m=0}^{\infty} q^{m}=\left(1+q+q^{2}+\ldots+q^{n}\right)+\left(\frac{q^{n+1}}{1-q}\right) ;$
$=\left[1+\frac{z-z_{0}}{z^{*}-z_{0}}+\left(\frac{z-z_{0}}{z^{*}-z_{0}}\right)^{2}+\ldots+\left(\frac{z-z_{0}}{z^{*}-z_{0}}\right)^{n}\right]+\frac{\left(z-z_{0}\right)^{n+1}}{\left(z^{*}-z\right)\left(z^{*}-z_{0}\right)^{n}}$.
$\Rightarrow \oint_{C^{*}} \frac{f\left(z^{*}\right)}{z^{*}-z} d z^{*}=\oint_{C^{*}} f\left(z^{*}\right)\left(\frac{p}{z^{*}-z_{0}}\right) d z^{*}=\left[\oint_{C^{*}} \frac{f\left(z^{*}\right)}{z^{*}-z_{0}} d z^{*}+\left(z-z_{0}\right) \oint_{C^{*}} \frac{f\left(z^{*}\right)}{\left(z^{*}-z_{0}\right)^{2}} d z^{*}+\ldots+\right.$
$\left.\left(z-z_{0}\right)^{n} \oint_{C^{*}} \frac{f\left(z^{*}\right)}{\left(z^{*}-z_{0}\right)^{n+1}} d z^{*}\right]+\left(\left(z-z_{0}\right)^{n+1} \oint_{C^{*}} \frac{f\left(z^{*}\right)}{\left(z^{*}-z\right)\left(z^{*}-z_{0}\right)^{n+1}} d z^{*}\right)=2 \pi i \cdot f(z)$.
$\Rightarrow f(z)=\sum_{m=0}^{n} a_{m}\left(z-z_{0}\right)^{m}+R_{n}(z)$, where $\boldsymbol{a}_{\boldsymbol{m}}=\frac{1}{2 \pi i} \oint_{C^{*}} \frac{f\left(z^{*}\right)}{\left(z^{*}-z_{0}\right)^{m+1}} d z^{*}=\frac{f^{(m)}\left(z_{0}\right)}{m!} \quad$ [eq. (10.11)], and $\boldsymbol{R}_{\boldsymbol{n}}(z)=\frac{\left(z-z_{0}\right)^{n+1}}{2 \pi i} \oint_{C^{*}} \frac{f\left(z^{*}\right)}{\left(z^{*}-z\right)\left(z^{*}-z_{0}\right)^{n+1}} d z^{*} .\left(\right.$ We still need to prove a_{m} exists, and $\left.\left|R_{n}(z)\right| \rightarrow 0.\right)$

Since analytic functions have derivatives of all orders, $a_{m}=\frac{f^{(m)}\left(z_{0}\right)}{m!}$ exists for all m.
$\left|R_{n}(z)\right|=\frac{\left|z-z_{0}\right|^{n+1}}{2 \pi} \cdot\left|\oint_{C^{*}} \frac{f\left(z^{*}\right)}{\left(z^{*}-z\right)\left(z^{*}-z_{0}\right)^{n+1}} d z^{*}\right| \leq \frac{\left|z-z_{0}\right|^{n+1}}{2 \pi r^{n+1}} \cdot \oint_{C^{*}}\left|\frac{f\left(z^{*}\right)}{z^{*}-z}\right| d z^{*}$. Since $f(z)$ is analytic on C^{*}, and $z \neq z^{*} \Rightarrow\left|\frac{f\left(z^{*}\right)}{z-z^{*}}\right| \leq M$ on C^{*}. By $M L$-inequality, $\left|R_{n}(z)\right| \leq \frac{\left|z-z_{0}\right|^{n+1}}{2 \pi r^{n+1}} \cdot M \cdot 2 \pi r=$ $M r\left|\frac{z-z_{0}}{r}\right|^{n+1} \rightarrow 0$, as $n \rightarrow \infty . \Rightarrow$ Taylor series does converge to $f(z)$.

<Comment>

1) Although we only need " $f(z)$ is analytic on $C^{* "}$ in proving $\oint_{C^{*}} \frac{f\left(z^{*}\right)}{z^{*}-z} d z^{*}=$ $2 \pi i \cdot \sum_{n=0}^{\infty} \frac{f^{(n)}\left(z_{0}\right)}{n!}\left(z-z_{0}\right)^{n}$, eq. (12.1) is true only if " $f(z)$ is analytic within C^{*} " such that Cauchy's integral formula $\oint_{C^{*}} \frac{f\left(z^{*}\right)}{z^{*}-z} d z^{*}=2 \pi i \cdot f(z)$ is valid.
2) There are real functions that are differentiable for all orders but cannot be represented by Taylor series. E.g. $f(x)=\left\{\begin{array}{l}\exp \left(-1 / x^{2}\right) \text {, if } x \neq 0 \\ 0, \text { if } x=0\end{array}\right.$ is differentiable at $x=0$, but $a_{n}=0\left[f^{(n)}(0)=0\right]$
for all n, \Rightarrow no Taylor series.

Taylor series of basic functions

1) Geometric series: $\frac{1}{1-z}=\sum_{n=0}^{\infty} z^{n}=1+z+z^{2}+\ldots$, for $|z|<1$.

Proof: $f^{(n)}(z)=\frac{n!}{(1-z)^{n+1}}$, for $z_{0}=0, a_{n}=\frac{f^{(n)}\left(z_{0}\right)}{n!}=1$. The distance from the center $z_{0}=0$ to the nearest singularity $z=1$ is $1, \Rightarrow \operatorname{ROC}:\{|z|<1\}$.

<Comment>

For points located on or outside unit circle $(|z|=1), \sum_{n=0}^{\infty} z^{n}$ cannot represent $\frac{1}{1-z}$ (divergent). E.g. $z=-1, \Rightarrow \sum_{n=0}^{\infty}(-1)^{n}$ is undetermined, while $\frac{1}{1-z}=\frac{1}{2}$. We have to find some Taylor series with different center, whose ROC contains the point of interest. E.g. $z_{0}=-\mathbf{1}, \Rightarrow a_{n}=\frac{f^{(n)}\left(z_{0}\right)}{n!}=\frac{1}{2^{n+1}}, f(z)=\sum_{n=0}^{\infty} \frac{(z+1)^{n}}{2^{n+1}}$, with ROC: $\{|z+1|<2\} . f(-1)=\sum_{n=0}^{\infty} \frac{0^{n}}{2^{n+1}}=\frac{1}{2}$.
2) Exponential function: $\boldsymbol{e}^{z}=\sum_{n=0}^{\infty} \frac{z^{n}}{n!}=1+z+\frac{z^{2}}{2!}+\ldots$, for all z. $\underline{\text { Proof: by eq. (12.1). }}$
3) Trigonometric functions: $\boldsymbol{\operatorname { c o s }} \boldsymbol{z}=\sum_{n=0}^{\infty}(-1)^{n} \frac{z^{2 n}}{(2 n)!}=1-\frac{z^{2}}{2!}+\frac{z^{4}}{4!}-\ldots ; \sin z=\sum_{n=0}^{\infty}(-1)^{n} \frac{z^{2 n+1}}{(2 n+1)!}$ $=z-\frac{z^{3}}{3!}+\frac{z^{5}}{5!}-\ldots$; for all z. Proof: by definitions of \cos , \sin, and 2).
4) Hyperbolic functions: $\boldsymbol{\operatorname { c o s h }} \boldsymbol{z}=\sum_{n=0}^{\infty} \frac{z^{2 n}}{(2 n)!}=1+\frac{z^{2}}{2!}+\frac{z^{4}}{4!}+\ldots ; \sinh \quad z=\sum_{n=0}^{\infty} \frac{z^{2 n+1}}{(2 n+1)!}=$ $z+\frac{z^{3}}{3!}+\frac{z^{5}}{5!}+\ldots ;$ for all z. [Relation between $\cos ()$ and $\cosh ()$ becomes clear in series.]
5) Logarithm: $\mathbf{L n}(\mathbf{1}+z)=\sum_{n=1}^{\infty}(-1)^{n-1} \frac{z^{n}}{n}=z-\frac{z^{2}}{2}+\frac{z^{3}}{3}-\ldots ; \quad$ Replacing z by $-z, \Rightarrow-\mathbf{L n}(\mathbf{1}-z)$ $=\sum_{n=1}^{\infty} \frac{z^{n}}{n}=z+\frac{z^{2}}{2}+\frac{z^{3}}{3}+\ldots ;$ for $|z|<1$.

How to obtain Taylor series

1) Evaluate n th-order derivatives [eq. (12.1)].
2) Rearrange $f(z)$ to use geometric series. E.g. $\frac{1}{1+z^{2}}=\frac{1}{1-\left(-z^{2}\right)}=\sum_{n=0}^{\infty}\left(-z^{2}\right)^{n}=\ldots$, for $|z|<1$.
3) Termwise integration: E.g. $f(z)=\tan ^{-1} z, \quad f^{\prime}(z)=\left(1+z^{2}\right)^{-1}=. ., f(z)=z-\frac{z^{3}}{3}+\frac{z^{5}}{5}-\ldots$; for $|z|<1$.
4) Partial fractions + binomial series. E.g. $\frac{2 z^{2}+9 z+5}{z^{3}+z^{2}-8 z-12}=\frac{1}{(z+2)^{2}}+\frac{2}{z-3}$, for $z_{0}=1$, $=\frac{1}{9[1+(z-1) / 3]^{2}}-\frac{1}{1-(z-1) / 2}$, by the binomial series: $\frac{1}{(1+z)^{m}}=\sum_{n=0}^{\infty}\binom{-m}{n} z^{n}=$ $1-\binom{m}{1} z+\binom{m}{2} z^{2}-\ldots,=\ldots$ Note the ROC is the overlapped ones of the two series: $|z-1|<2$.

Appendix 12A - Uniform Convergence (EK 15.5)

Definition

Let $s(z)=\sum_{m=0}^{\infty} f_{m}(z)=\lim _{n \rightarrow \infty} s_{n}(z)$, where $s_{n}(z) \equiv \sum_{m=0}^{n} f_{m}(z)$. We say $s(z)$ is uniformly convergent in a region G, if for every $\varepsilon>0$, we can find an N (independent of z), s.t. $\left|s(z)-s_{n}(z)\right|<\varepsilon$, for all $n>N$ and all $z \in G$.

E.g. Geometric series $s(z)=\sum_{m=0}^{\infty} z^{m}$ is (1) uniformly convergent for G : $|z| \leq \boldsymbol{r}<\mathbf{1}$, but (2) not uniformly convergent for G : $|z|<\mathbf{1}$.

Proof: (1) $\left|s(z)-s_{n}(z)\right|=\left|\frac{1}{1-z}-\frac{1-z^{n+1}}{1-z}\right|=\frac{|z|^{n+1}}{|1-z|} \leq \frac{r^{n+1}}{1-r}$. By letting $N>\frac{\ln \varepsilon(1-r)}{\ln r}-1$ (independent of z), $\left|s(z)-s_{n}(z)\right|<\varepsilon$ for all $n>N$. (2) As z gets closer to 1 , we need larger N such that $\left|s(z)-s_{n}(z)\right|=\frac{|z|^{n+1}}{|1-z|}<\varepsilon$, for all $n>N$. Since $|1-z|$ can be infinitely small, no fixed N.

- Power series is uniformly convergent
$\sum_{m=0}^{\infty} a_{m}\left(z-z_{0}\right)^{m}$ with radius of convergence $R>0$ is uniformly (and absolutely) convergent for all $\left|z-z_{0}\right| \leq r<R$.

Proof: by Cauchy's convergence principle (EK 15.1).

- Properties of uniformly convergent series

1) Continuity: if $F(z)=\sum_{m=0}^{\infty} f_{m}(z)$ is uniformly convergent in a region G, and each term $f_{m}(z)$ is continuous at $z_{1} \in G, \Rightarrow F(z)$ is continuous at z_{1}.
E.g. $f_{m}(x)=\frac{x^{2}}{\left(1+x^{2}\right)^{m}}$ is continuous at $x=0$ for all m, but $F(x)=\left\{\begin{array}{l}1+x^{2}, \text { if } x \neq 0 \\ 0, \text { if } x=0\end{array}\right.$ is discontinuous at $x=0, \Rightarrow$ The series is not uniformly convergent.

2) Termwise integration: If $F(z)=\sum_{m=0}^{\infty} f_{m}(z)$ is uniformly convergent in a region G, and C is some path in $G . \Rightarrow \int_{C} F(z) d z=\sum_{m=0}^{\infty} \int_{C} f_{m}(z) d z . \Rightarrow$ Exchange the order of \int and Σ is valid. E.g. $u_{m}(x) \equiv m x e^{-m x^{2}}, f_{m}(x) \equiv u_{m}(x)-u_{m-1}(x), s_{n}(x)=\sum_{m=1}^{n} f_{m}(z)=u_{n}(x), \Rightarrow F(x)=\lim _{n \rightarrow \infty} s_{n}(x)=0$, For $\quad G=[0,1], \quad \int_{0}^{1} F(x) d x=\mathbf{0}, \quad \int_{0}^{1} f_{m}(x) d x=\frac{e^{-m+1}-e^{-m}}{2}, \quad \Rightarrow \quad \sum_{m=1}^{\infty}\left(\int_{0}^{1} f_{m}(x) d x\right)=$ $\frac{\left(e^{0}-e^{-1}\right)+\left(e^{-1}-e^{-2}\right)+\ldots}{2}=\frac{\mathbf{1}}{\mathbf{2}} \neq 0, \Rightarrow \sum_{m=0}^{\infty} f_{m}(z)$ is not uniformly convergent.
3) Termwise differentiation: If $F(z)=\sum_{m=0}^{\infty} f_{m}(z)$ is convergent, $f_{m}(z)$ is continuous, and $\sum_{m=0}^{\infty} f_{m}^{\prime}(z)$ is uniformly convergent in a region $G, \Rightarrow F^{\prime}(z)=\sum_{m=0}^{\infty} f_{m}^{\prime}(z) . \Rightarrow$ Exchange the order of $(d / d z)$ and Σ is valid.
4) Absolutely convergent series are not necessarily uniformly convergent, while uniformly convergent series are also not necessarily absolutely convergent.
