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Lesson 12 Taylor Series (EK 15.4) 

 

 Taylor theorem 

Let f(z) is analytic in a domain D, and z0∈D; ⇒ (1) f(z) can be represented by a power series: 
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for every point z in the largest open disk |z−z0|<R within D, and C⊂D is an arbitrary simple 
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Proof: Since f(z) is analytic in D, by Cauchy’s integral formula [eq. (10.9)]: 
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, for every z lies within C(⊂D). 

Choose a circle C*: |z*−z0|=r>|z−z0|. Since the integrand 
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′)(  is analytic in a doubly 

connected domain bounded by C and C*, by Cauchy’s integral theorem 4 [eq. (10.8)]: 
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Since analytic functions have derivatives of all orders, am=
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<Comment> 

1) Although we only need “f(z) is analytic on C*” in proving ∫ −* 
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2) There are real functions that are differentiable for all orders but cannot be represented by 

Taylor series. E.g. f(x)=
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 is differentiable at x=0, but an=0 [f (n)(0)=0] 
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for all n, ⇒ no Taylor series. 

 

 

 

 Taylor series of basic functions 

1) Geometric series: 
z−1

1 =∑
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the nearest singularity z=1 is 1, ⇒ ROC: {|z|<1}. 

 

<Comment> 
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2) Exponential function: ez =∑
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4) Hyperbolic functions: cosh z = ∑
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 How to obtain Taylor series 

1) Evaluate nth-order derivatives [eq. (12.1)]. 

2) Rearrange f(z) to use geometric series. E.g. 21
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Appendix 12A − Uniform Convergence (EK 15.5) 

 

 Definition 

Let s(z)=∑
∞

=0
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n>N and all z∈G. 

 

E.g. Geometric series s(z)=∑
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 Power series is uniformly convergent 

∑
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−
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m
m zza  with radius of convergence R>0 is uniformly (and absolutely) convergent for 

all |z−z0|≤r<R. 

Proof: by Cauchy’s convergence principle (EK 15.1). 
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 Properties of uniformly convergent series 

1) Continuity: if F(z)=∑
∞

=0
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m
m zf  is uniformly convergent in a region G, and each term fm(z) 

is continuous at z1∈G, ⇒ F(z) is continuous at z1. 
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discontinuous at x=0, ⇒ The series is not uniformly convergent. 
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3) Termwise differentiation: If F(z)= ∑
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m
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4) Absolutely convergent series are not necessarily uniformly convergent, while uniformly 

convergent series are also not necessarily absolutely convergent. 


