Lesson 11 Complex Power Series (EK 15)

Importance
Every analytic function can be represented by a Taylor (power) series.

Complex Sequence and Series (EK 15.1)

- Sequences

Definition: an ordered set of complex numbers $\left\{z_{n}\right\}$.

Convergence: $\lim _{n \rightarrow \infty} z_{n}=c\left(\left\{z_{n}\right\} \rightarrow c\right)$, if for every $\varepsilon>0$, we can find N, s.t. $\left|z_{n}-c\right|<\varepsilon$ for any $n>N$. Let $\left\{z_{n}\right\}=\left\{x_{n}+i y_{n}\right\}, c=a+i b$, then $\left\{z_{n}\right\} \rightarrow c \Leftrightarrow\left\{x_{n}\right\} \rightarrow a$, and $\left\{y_{n}\right\} \rightarrow b$.

- Series

Definition: $\sum_{n=1}^{\infty} z_{n} \equiv \lim _{n \rightarrow \infty} S_{n}$, where $S_{n}=\sum_{m=1}^{n} z_{m}$ is the n-th partial sum. Series is convergent if its partial sum is convergent.

Let $\left\{z_{n}\right\}=\left\{x_{n}+i y_{n}\right\}, s=u+i v$, then $\sum_{n=1}^{\infty} z_{n}=s \Leftrightarrow\left\{\sum_{n=1}^{\infty} x_{n}=u\right.$, and $\left.\sum_{n=1}^{\infty} y_{n}=v\right\}$.

If $\sum_{n=1}^{\infty}\left|z_{n}\right|$ converges, $\Rightarrow \sum_{n=1}^{\infty} z_{n}$ is absolutely convergent. If $\sum_{n=1}^{\infty}\left|z_{n}\right|$ diverges, while $\sum_{n=1}^{\infty} z_{n}$ converges, $\Rightarrow \sum_{n=1}^{\infty} z_{n}$ is simply conditionally convergent.
E.g. Series $S=\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n}=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\ldots$ is convergent, but $\sum_{n=1}^{\infty} \frac{1}{n}$ (harmonic series) is divergent. Therefore, $\sum_{n=0}^{\infty} \frac{(-1)^{n-1}}{n}$ is conditionally convergent.

(*) Series Convergence Tests (EK 15.1)

- Divergence test

If $\lim _{n \rightarrow \infty} z_{n} \neq 0, \sum_{n=1}^{\infty} z_{n}$ diverges. But $\lim _{n \rightarrow \infty} z_{n}=0$ does not guarantee the convergence of $\lim _{n \rightarrow \infty} z_{n}$. E.g. Harmonic series $\sum_{n=1}^{\infty} \frac{1}{n}$ is divergent, though $\lim _{n \rightarrow \infty} \frac{1}{n}=0$.

- Comparison test

If we can find a convergent series $\sum_{n=1}^{\infty} b_{n}$, such that $b_{n} \geq\left|z_{n}\right|, \Rightarrow \sum_{n=1}^{\infty} z_{n}$ is absolutely convergent.

- Ratio test

Test 1: For a series $\sum_{n=1}^{\infty} z_{n}$, if $\left|\frac{z_{n+1}}{z_{n}}\right| \leq \boldsymbol{q}<1$ for all $n>N, \Rightarrow \sum_{n=1}^{\infty} z_{n}$ is absolutely convergent.
E.g. $\sum_{n=1}^{\infty} \frac{1}{n}$ has $\left|\frac{z_{n+1}}{z_{n}}\right|=\frac{n}{n+1}<1$, but $\frac{n}{n+1}$ can exceed any real number less than 1 if n is sufficiently large, \Rightarrow no fixed upper bound $q<1$, ratio test fails.

Test 2: If $\lim _{n \rightarrow \infty}\left|\frac{z_{n+1}}{z_{n}}\right|=L$, then the series $\sum_{n=1}^{\infty} z_{n}$ is:
(1) absolutely convergent, if $L<1$; (2) divergent, if $L>1$; (3) undetermined, if $L=1$.
E.g. $\sum_{n=1}^{\infty} \frac{1}{n}$ has $L=\lim _{n \rightarrow \infty} \frac{n}{n+1}=1$, which is divergent. $\sum_{n=1}^{\infty} \frac{1}{n^{2}}$ has $L=\lim _{n \rightarrow \infty} \frac{n^{2}}{(n+1)^{2}}=1$, which converges to $\frac{\pi^{2}}{6}$ [by Riemann Zeta function $\zeta(s)=\sum_{n=1}^{\infty} \frac{1}{n^{s}}$, with $\left.s=2\right]$.

- Root test

Similar with ratio test except for replacing $\left|\frac{z_{n+1}}{z_{n}}\right|$ by $\sqrt[n]{\left|z_{n}\right|}$.
E.g. $\sum_{n=1}^{\infty} \frac{1}{n}$ has $L=\lim _{n \rightarrow \infty} \sqrt[n]{1 / n}=\lim _{n \rightarrow \infty} n^{-1 / n}=\lim _{n \rightarrow \infty} e^{-(\ln n / n)} \quad$ (variable in exponent only) $=1$, which is divergent. $\sum_{n=1}^{\infty} \frac{1}{n^{2}}$ has $L=\lim _{n \rightarrow \infty} \sqrt[n]{1 / n^{2}}=\lim _{n \rightarrow \infty} n^{-2 / n}=\lim _{n \rightarrow \infty} e^{-(2 \ln n / n)}=1$, which converges to $\pi^{2} / 6$.

Power Series and its Convergence (EK 15.2)

- Definition

A series of the form: $\sum_{n=0}^{\infty} a_{n}\left(z-z_{0}\right)^{n}$, where variable z, center z_{0}, and coefficients $\left\{a_{n}\right\}$ are generally complex.

- Convergence theorem
(1) If power series $\sum_{n=0}^{\infty} a_{n}\left(z-z_{0}\right)^{n}$ converges at a point $z=z_{1}, \Rightarrow$ it is absolutely convergent for every "closer point" $\left\{z,\left|z-z_{0}\right|<\left|z_{1}-z_{0}\right|\right\}$. (2) If power series $\sum_{n=0}^{\infty} a_{n}\left(z-z_{0}\right)^{n}$ diverges at a point $z=z_{2}, \Rightarrow$ it is divergent for every "farther point" $\left\{z,\left|z-z_{0}\right|>\left|z_{2}-z_{0}\right|\right\}$.

(*) Proof: (1) By divergence test: $\sum_{n=0}^{\infty} a_{n}\left(z_{1}-z_{0}\right)^{n}$ converges, $\Rightarrow a_{n}\left(z_{1}-z_{0}\right)^{n} \rightarrow 0$, i.e. $\left|a_{n}\left(z_{1}-z_{0}\right)^{n}\right|<M$ for all n. For a "closer point" $z,\left|a_{n}\left(z-z_{0}\right)^{n}\right|=\left|a_{n}\left(z_{1}-z_{0}\right)^{n}\left(\frac{z-z_{0}}{z_{1}-z_{0}}\right)^{n}\right|<M r^{n} \equiv b_{n}$,
where $r=\left|\frac{z-z_{0}}{z_{1}-z_{0}}\right|<1$ ．Since $\sum_{n=0}^{\infty} b_{n}=M\left(\sum_{n=0}^{\infty} r^{n}\right)$ is convergent，by comparison test， $\sum_{n=0}^{\infty} a_{n}\left(z-z_{0}\right)^{n}$ is also convergent．（2）The divergence part can be proved by contradiction （歸謬法）。

Region of convergence（ROC）
The ROC of a power series is：$\left\{z\right.$ ，where $\sum_{n=0}^{\infty} a_{n}\left(z-z_{0}\right)^{n}$ is convergent $\}$ ．By the convergence theorem，ROC always has a circular boundary：$\left|z-z_{0}\right|=R$ ，on which the convergence of series is undetermined．

E．g．The ROCs of $\sum_{n=1}^{\infty} \frac{z^{n}}{n^{2}}, \sum_{n=0}^{\infty} z^{n}, \sum_{n=1}^{\infty} \frac{z^{n}}{n}$ have same boundary C ：$|z|=1 . \sum_{n=1}^{\infty} \frac{z^{n}}{n^{2}}$ ，converges， $\sum_{n=0}^{\infty} z^{n}$ diverges everywhere on C ，while $\sum_{n=1}^{\infty} \frac{z^{n}}{n}$ converges at $z=-1$ but diverges at $z=1$ ．

■ Radius of convergence（Cauchy－Hadamard formula）

The radius of convergence R of $\sum_{n=0}^{\infty} a_{n}\left(z-z_{0}\right)^{n}$ is evaluated by：

$$
\begin{equation*}
R=\frac{1}{L^{*}}=\lim _{n \rightarrow \infty}\left|\frac{a_{n}}{a_{n+1}}\right| \tag{11.1}
\end{equation*}
$$

（＊）Proof：By ratio test，$L \equiv \lim _{n \rightarrow \infty}\left|\frac{a_{n+1}\left(z-z_{0}\right)^{n+1}}{a_{n}\left(z-z_{0}\right)^{n}}\right|=L^{*}\left|z-z_{0}\right|$ ．（1）$L^{*} \neq 0, \infty$ ：series converges for $L<1$ $\left(\left|z-z_{0}\right|<1 / L^{*}\right)$ ，and diverges for $L>1\left(\left|z-z_{0}\right|>1 / L^{*}\right) . \Rightarrow R=1 / L^{*}$ ．（2）$L^{*}=0: L=0$ for all z（note that $\left|z-z_{0}\right|$ can approach，but never equal to ∞ ），series converges everywhere．$\Rightarrow R=1 / L^{*}=\infty$ ．（3） $L^{*}=\infty$ ：$L=\infty$ for all z except for $z=z_{0}$ ，series diverges everywhere．$\Rightarrow R=1 / L^{*}=0$ ．

Power Series Representation of Complex Functions (EK 15.3)

Power series represent analytic functions
A power series $\sum_{n=0}^{\infty} a_{n} z^{n}$ with radius of convergence $R>0$ represents an analytic function $f(z)$ for all $|z|<R$, where $f^{\prime}(z)=\sum_{n=1}^{\infty} n a_{n} z^{n-1} \equiv f_{1}(z)$ (let $z_{0}=0$ without loss of generality).
Proof: Strategy: let $f(z)=\sum_{n=0}^{\infty} a_{n} z^{n}$, show that $f^{\prime}(z) \equiv \lim _{\Delta z \rightarrow 0} \frac{f(z+\Delta z)-f(z)}{\Delta z}=f_{1}(z)$, i.e. $\lim _{\Delta z \rightarrow 0}|q|=0$, if $q \equiv \frac{f(z+\Delta z)-f(z)}{\Delta z}-f_{1}(z)$.
(*) By definition, $q=\sum_{n=2}^{\infty} a_{n}\left[\frac{(z+\Delta z)^{n}-z^{n}}{\Delta z}-n z^{n-1}\right] \equiv \sum_{n=2}^{\infty} a_{n} t_{n}$. Let $z \equiv a, z+\Delta z \equiv b, \Rightarrow t_{n}=$ $\frac{b^{n}-a^{n}}{b-a}-n a^{n-1}$, which is a binomial of order $n-1$ (i.e. sum of terms $a^{k} b^{l}$, where $k+l=n-1$). Let $t_{n} \equiv(b-a) A_{n}, A_{n}$ is a binomial of order $n-2, \Rightarrow A_{n}=\sum_{m=0}^{n-2} c_{m} a^{m} b^{n-2-m}$.
To find coefficients $\left\{c_{m}\right\}$, we use: $(b-a) t_{n}=(b-a)^{2} A_{n}, b^{n}-a^{n}-(b-a) n a^{n-1}=b^{n}+(n-1) a^{n}-(n b) a^{n-1}$ $=(b-a)^{2}\left(\sum_{m=0}^{n-2} c_{m} a^{m} b^{n-m-2}\right)=\left\{c_{0} b^{n}+\left(c_{1}-2 c_{0}\right) b^{n-1} a+\left(c_{2}-2 c_{1}+c_{0}\right) b^{n-2} a^{2}+\ldots+\left(-2 c_{n-2}+c_{n-3}\right) b a^{n-1}\right.$ $\left.+c_{n-2} a^{n}\right\}$. By comparing the corresponding coefficients: $\left\{c_{0}=1, c_{1}=2 c_{0}=2, \ldots, c_{m}=m+1, \ldots\right.$, $\left.c_{n-2}=n-1\right\} . \Rightarrow c_{m}=m+1$.

Consequently, $q=\sum_{n=2}^{\infty} a_{n}(b-a) A_{n}=\sum_{n=2}^{\infty}\left[a_{n} \Delta z\left(\sum_{m=0}^{n-2}(m+1) z^{m}(z+\Delta z)^{n-m-2}\right)\right]$, by the triangular inequality $\left(\left|\sum z_{n}\right| \leq \sum\left|z_{n}\right|\right),|q| \leq|\Delta z| \cdot \sum_{n=2}^{\infty}\left[\left|a_{n}\right| \cdot\left(\sum_{m=0}^{n-2}(m+1)|z|^{m} \cdot|z+\Delta z|^{n-m-2}\right)\right]$.

For any point z in the ROC $(|z|<R)$, we can choose some $R_{0}<R$, such that $\{|z|,|z+\Delta z|\} \leq R_{0}, \Rightarrow$ $|z|^{m} \cdot|z+\Delta z|^{n-m-2} \leq R_{0}^{n-2}, \Rightarrow|q| \leq|\Delta z| \cdot \sum_{n=2}^{\infty}\left[\left|a_{n}\right| \cdot R_{0}^{n-2}\left(\sum_{m=0}^{n-2}(m+1)\right)\right]=|\Delta z| \cdot \sum_{n=2}^{\infty}\left|a_{n}\right| \cdot R_{0}^{n-2} \frac{n(n-1)}{2} \leq$ $|\Delta z| \cdot\left[\sum_{n=2}^{\infty} n(n-1)\left|a_{n}\right| R_{0}^{n-2}\right]$.
Since the series $\sum_{n=2}^{\infty} n(n-1) a_{n} z^{n-2}=\sum_{n=0}^{\infty}\left(a_{n} z^{n}\right)^{\prime \prime}$, and $\sum_{n=0}^{\infty} a_{n} z^{n}$ is absolutely convergent for $|z|=R_{0}<R$, (i.e. $\sum_{n=0}^{\infty}\left|a_{n}\right| R_{0}^{n}$ is convergent), by operation 3 (see below), $\Rightarrow \sum_{n=2}^{\infty} n(n-1) a_{n} z^{n-2}$ is also absolutely convergent for $|z|=R_{0}$, (i.e. $\sum_{n=2}^{\infty} n(n-1)\left|a_{n}\right| R_{0}^{n-2}=K$). $\Rightarrow|q| \leq|\Delta z| \cdot K, \quad \lim _{\Delta z \rightarrow 0}|q|=0$.

<Comment>

As will be proved in the Taylor theorem (EK 15.4), for every point z in "the domain \boldsymbol{D} where function $f(z)$ is analytic", there is a unique power series $\sum_{n=0}^{\infty} a_{n}\left(z-z_{0}\right)^{n}$, such that $f(z)=\sum_{n=0}^{\infty} a_{n}\left(z-z_{0}\right)^{n} \quad(z \in \mathbf{R O C}$ of the power series $)$. However, for different points in D, the corresponding power series could be different. E.g. A point $z_{1} \in D$ lying outside the ROC of $\sum_{n=0}^{\infty} a_{n}\left(z-z_{0}\right)^{n} \quad$ (i.e. $\left.\quad \sum_{n=0}^{\infty} a_{n}\left(z_{1}-z_{0}\right)^{n} \neq f\left(z_{1}\right)\right)$ should correspond to another series $\sum_{n=0}^{\infty} b_{n}\left(z-z_{0}^{\prime}\right)^{n}$ with different center z_{0}^{\prime}.

- Operations on power series

1) If $f(z)=\sum_{n=0}^{\infty} a_{n} z^{n}$, for $|z|<R_{a}, g(z)=\sum_{n=0}^{\infty} b_{n} z^{n}$, for $|z|<R_{b}, \Rightarrow f(z) \pm g(z)=\sum_{n=0}^{\infty} a_{n} z^{n} \pm \sum_{n=0}^{\infty} b_{n} z^{n}=$ $\sum_{n=0}^{\infty}\left(a_{n} \pm b_{n}\right) z^{n}$, where the new radius of convergence $R \geq \min \left\{R_{a}, R_{b}\right\}$.
2) If $f(z)=\sum_{n=0}^{\infty} a_{n} z^{n}$, for $|z|<R_{a}, g(z)=\sum_{n=0}^{\infty} b_{n} z^{n}$, for $|z|<R_{b}, \Rightarrow f(z) \cdot g(z)=\sum_{n=0}^{\infty} a_{n} z^{n} \times \sum_{n=0}^{\infty} b_{n} z^{n}=$ $\sum_{n=0}^{\infty} c_{n} z^{n}$, for $|z|<R$, where

$$
\begin{equation*}
c_{n}=\sum_{k=0}^{n} a_{n-k} b_{k} \tag{11.2}
\end{equation*}
$$

is the Cauchy product (convolution) of $\left\{a_{n}\right\},\left\{b_{n}\right\}$; and $R \geq \min \left\{R_{a}, R_{b}\right\}$.
3) If $f(z)=\sum_{n=0}^{\infty} a_{n} z^{n}$, for $|z|<R, \Rightarrow$

$$
\begin{equation*}
f^{\prime}(z)=\sum_{n=1}^{\infty} n a_{n} z^{n-1} \tag{11.3}
\end{equation*}
$$

(derived series), which is valid for $|z|<R$.
E.g. $f(z)=\sum_{n=2}^{\infty}\binom{n}{2} z^{n}=\frac{z^{2}}{2} g^{\prime \prime}(z)$, where $\left.g(z)=\sum_{n=0}^{\infty} z^{n} \Rightarrow \mathrm{By} 3\right), \quad f(z), g(z)$ have the same $R=1$. You can arrive at the same R by Cauchy-Hadamard formula.
4) Termwise integration of $\sum_{n=0}^{\infty} a_{n} z^{n}$ is $\sum_{n=0}^{\infty} \frac{a_{n}}{n+1} z^{n+1}$, which has the same radius of convergence R.

