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Lesson 11 Complex Power Series (EK 15) 

 

 Importance 

Every analytic function can be represented by a Taylor (power) series. 

 

Complex Sequence and Series (EK 15.1) 

 Sequences 

Definition: an ordered set of complex numbers {zn}. 

 

Convergence: nn
z

∞→
lim =c ({zn}→ c), if for every ε>0, we can find N, s.t. |zn−c|<ε for any n>N. 

Let {zn}={xn+iyn}, c=a+ib, then {zn}→ c ⇔ {xn}→ a, and {yn}→ b. 

 

 

 Series 

Definition: ∑
∞

=1n
nz ≡ nn

S
∞→

lim , where Sn=∑
=

n

m
mz

1
 is the n-th partial sum. Series is convergent if its 

partial sum is convergent. 

Let {zn}={xn+iyn}, s=u+iv, then ∑
∞

=1n
nz =s ⇔ {∑

∞

=1n
nx =u, and ∑

∞

=1n
ny =v}. 

 

If ∑
∞

=1

||
n

nz  converges, ⇒ ∑
∞

=1n
nz  is absolutely convergent. If ∑

∞

=1

||
n

nz  diverges, while 

∑
∞

=1n
nz  converges, ⇒ ∑

∞

=1n
nz  is simply conditionally convergent. 

E.g. Series S=∑
∞

=

−−

1

1)1(
n

n

n
=1−

2
1 +

3
1 −

4
1 +… is convergent, but ∑

∞

=1

1
n n

 (harmonic series) is 

divergent. Therefore, ∑
∞

=

−−

0

1)1(
n

n

n
 is conditionally convergent. 
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 (*) Series Convergence Tests (EK 15.1) 

 Divergence test 

If nn
z

∞→
lim ≠0, ∑

∞

=1n
nz  diverges. But nn

z
∞→

lim =0 does not guarantee the convergence of nn
z

∞→
lim . 

E.g. Harmonic series ∑
∞

=1

1
n n

 is divergent, though 
nn

1lim
∞→

=0. 

 

 Comparison test 

If we can find a convergent series ∑
∞

=1n
nb , such that bn≥|zn|, ⇒ ∑

∞

=1n
nz  is absolutely 

convergent. 

 

 

 Ratio test 

Test 1: For a series ∑
∞

=1n
nz , if 

n

n

z
z 1+ ≤q<1 for all n>N, ⇒ ∑

∞

=1n
nz  is absolutely convergent. 

E.g. ∑
∞

=1

1
n n

 has 
n

n

z
z 1+ =

1+n
n <1, but 

1+n
n  can exceed any real number less than 1 if n is 

sufficiently large, ⇒ no fixed upper bound q<1, ratio test fails. 

Test 2: If 
n

n

n z
z 1lim +

∞→
=L, then the series ∑

∞

=1n
nz  is: 

(1) absolutely convergent, if L<1; (2) divergent, if L>1; (3) undetermined, if L=1. 

 

E.g. ∑
∞

=1

1
n n

 has L=
1

lim
+∞→ n
n

n
=1, which is divergent. ∑

∞

=1
2

1
n n

 has L= 2

2

)1(
lim

+∞→ n
n

n
=1, which 

converges to 
6

2π  [by Riemann Zeta function ζ(s)= ∑
∞

=1

1
n

sn
, with s=2]. 
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 Root test 

Similar with ratio test except for replacing 
n

n

z
z 1+  by n

nz . 

E.g. ∑
∞

=1

1
n n

 has L= n
n

n1lim
∞→

= n

n
n /1lim −

∞→
= )/(lnlim nn

n
e−

∞→
 (variable in exponent only) =1, which is 

divergent. ∑
∞

=1
2

1
n n

 has L= n
n

n 21lim
∞→

= n

n
n /2lim −

∞→
= )/ln2(lim nn

n
e−

∞→
=1, which converges to π2/6. 

 

 

Power Series and its Convergence (EK 15.2) 

 Definition 

A series of the form: ∑
∞

=

−
0

0 )(
n

n
n zza , where variable z, center z0, and coefficients {an} are 

generally complex. 

 

 Convergence theorem 

(1) If power series ∑
∞

=

−
0

0 )(
n

n
n zza  converges at a point z=z1, ⇒ it is absolutely convergent 

for every “closer point” {z, |z−z0|<|z1−z0|}. (2) If power series ∑
∞

=

−
0

0 )(
n

n
n zza  diverges at a 

point z=z2, ⇒ it is divergent for every “farther point” {z, |z−z0|>|z2−z0|}. 

 

(*) Proof: (1) By divergence test: ∑
∞

=

−
0

01 )(
n

n
n zza  converges, ⇒ an(z1−z0)n→0, i.e. 

|an(z1−z0)n|<M for all n. For a “closer point” z, |an(z−z0)n|=
n

n
n zz

zz
zza 








−
−

−
01

0
01 )( <Mrn ≡bn, 
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where r=
01

0

zz
zz

−
−

<1. Since 







= ∑∑

∞

=

∞

= 00 n

n

n
n rMb  is convergent, by comparison test, 

∑
∞

=

−
0

0 )(
n

n
n zza  is also convergent. (2) The divergence part can be proved by contradiction 

(歸謬法). 

 

 

 Region of convergence (ROC) 

The ROC of a power series is: {z, where ∑
∞

=

−
0

0 )(
n

n
n zza  is convergent}. By the convergence 

theorem, ROC always has a circular boundary: |z−z0|=R, on which the convergence of series 

is undetermined. 

 

E.g. The ROCs of ∑
∞

=1
2

n

n

n
z , ∑

∞

=0n

nz , ∑
∞

=1n

n

n
z  have same boundary C: |z|=1. ∑

∞

=1
2

n

n

n
z , converges, 

∑
∞

=0n

nz  diverges everywhere on C, while ∑
∞

=1n

n

n
z  converges at z= −1 but diverges at z=1. 

 

 

 Radius of convergence (Cauchy-Hadamard formula) 

T h e  r a d i u s  o f  c o n v e r g e n c e  R  o f  ∑
∞

=

−
0

0 )(
n

n
n zza  i s  e v a l u a t e d  b y : 

R= *

1
L

=
1

lim
+

∞→
n

n

n a
a

          (11.1) 

(*) Proof: By ratio test, L≡ n
n

n
n

n zza
zza

)(
)(

lim
0

1
01

−
− +

+

∞→
=L*|z−z0|. (1) L*≠0, ∞: series converges for L<1 

(|z−z0|<1/L*), and diverges for L>1 (|z−z0|>1/L*). ⇒ R=1/L*. (2) L*=0: L=0 for all z (note that 

|z−z0| can approach, but never equal to ∞), series converges everywhere. ⇒ R=1/L*=∞. (3) 

L*=∞: L=∞ for all z except for z=z0, series diverges everywhere. ⇒ R=1/L*=0. 
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Power Series Representation of Complex Functions (EK 15.3) 

 Power series represent analytic functions 

A power series ∑
∞

=0n

n
n za  with radius of convergence R>0 represents an analytic function f(z) 

for all |z|<R, where )(zf ′ =∑
∞

=

−

1

1

n

n
n zna ≡f1(z) (let z0=0 without loss of generality). 

Proof: Strategy: let f(z)= ∑
∞

=0n

n
n za , show that )(zf ′ ≡

z
zfzzf

z ∆
−∆+

→∆

)()(lim
0

= f1(z), i.e. 

q
z 0

lim
→∆

=0, if q≡
z

zfzzf
∆

−∆+ )()( −f1(z). 

(*) By definition, q=∑
∞

=

−








−

∆
−∆+

2

1)(
n

n
nn

n nz
z

zzza ≡∑
∞

=2n
nnta . Let z≡a, z+∆z≡b, ⇒ tn = 

1−−
−
− n

nn

na
ab
ab , which is a binomial of order n−1 (i.e. sum of terms akbl, where k+l=n−1). 

Let tn≡(b−a)An, An is a binomial of order n−2, ⇒ An=∑
−

=

−−
2

0

2
n

m

mnm
m bac . 

To find coefficients {cm}, we use: (b−a)tn=(b−a)2An, bn−an−(b−a)nan-1= bn+(n−1)an−(nb)an-1 

=(b−a)2 






∑
−

=

−−
2

0

2
n

m

mnm
m bac = {c0 bn+ (c1−2c0) bn-1a+ (c2−2c1+c0) bn-2a2 + …+ (−2cn-2+cn-3) ban-1 

+ cn-2 an}. By comparing the corresponding coefficients: {c0=1, c1=2c0=2, …., cm= m+1, …, 

cn-2= n−1}.⇒ cm=m+1. 

Consequently, q=∑
∞

=

−
2

)(
n

nn Aaba = ∑ ∑
∞

=

−

=

−−
















∆++∆

2

2

0

2)()1(
n

n

m

mnm
n zzzmza , by the triangular 

inequality ( )∑∑ ≤ nn zz , |q|≤ |∆z|·∑ ∑
∞

=

−

=

−−
















∆+⋅+⋅

2

2

0

2)1(
n

n

m

mnm
n zzzma . 
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For any point z in the ROC (|z|<R), we can choose some R0<R, such that {|z|, |z+∆z|}≤R0, ⇒ 

|z|m⋅|z+∆z|n-m-2≤ 2
0
−nR , ⇒ |q| ≤ |∆z|·∑ ∑

∞

=

−

=

−
















+⋅

2

2

0

2
0 )1(

n

n

m

n
n mRa =|∆z|·∑

∞

=

− −
⋅

2

2
0 2

)1(
n

n
n

nnRa  ≤ 

|∆z|· 



 −∑

∞

=

−

2

2
0)1(

n

n
n Rann . 

Since the series ∑
∞

=

−−
2

2)1(
n

n
n zann =∑

∞

=

′′
0

)(
n

n
n za , and ∑

∞

=0n

n
n za  is absolutely convergent for 

|z|=R0<R, (i.e. ∑
∞

=0
0

n

n
n Ra is convergent), by operation 3 (see below), ⇒ ∑

∞

=

−−
2

2)1(
n

n
n zann  is 

also absolutely convergent for |z|=R0, (i.e. ∑
∞

=

−−
2

2
0)1(

n

n
n Rann =K). ⇒ |q|≤ |∆z|·K, q

z 0
lim
→∆

=0. 

 

<Comment> 

As will be proved in the Taylor theorem (EK 15.4), for every point z in “the domain D where 

function f(z) is analytic”, there is a unique power series ∑
∞

=

−
0

0 )(
n

n
n zza , such that 

f(z)=∑
∞

=

−
0

0 )(
n

n
n zza  (z∈ROC of the power series). However, for different points in D, the 

corresponding power series could be different. E.g. A point z1∈D lying outside the ROC of 

∑
∞

=

−
0

0 )(
n

n
n zza  (i.e. ∑

∞

=

−
0

01 )(
n

n
n zza ≠ f(z1)) should correspond to another series 

∑
∞

=

′−
0

0 )(
n

n
n zzb  with different center 0z′ . 
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 Operations on power series 

1) If f(z)=∑
∞

=0n

n
n za , for |z|<Ra, g(z)=∑

∞

=0n

n
n zb , for |z|<Rb, ⇒ f(z)±g(z)=∑

∞

=0n

n
n za ±∑

∞

=0n

n
n zb = 

∑
∞

=

±
0

)(
n

n
nn zba , where the new radius of convergence R ≥ min{Ra,Rb}. 

2) If f(z)=∑
∞

=0n

n
n za , for |z|<Ra, g(z)=∑

∞

=0n

n
n zb , for |z|<Rb, ⇒ f(z)·g(z)=∑

∞

=0n

n
n za ×∑

∞

=0n

n
n zb = 

∑
∞

=0n

n
n zc , for |z|<R, where 

cn=∑
=

−

n

k
kkn ba

0
           (11.2) 

 is the Cauchy product (convolution) of {an}, {bn}; and R ≥ min{Ra,Rb}. 

3) If f(z)=∑
∞

=0n

n
n za , for |z|<R, ⇒ 

)(zf ′ =∑
∞

=

−

1

1

n

n
n zna         (11.3) 

(derived series), which is valid for |z|<R. 

E.g. f(z)=∑
∞

=









2 2n

nz
n

= )(
2

2

zgz ′′ , where g(z)=∑
∞

=0n

nz ⇒ By 3),  f(z), g(z) have the same R=1. 

You can arrive at the same R by Cauchy-Hadamard formula. 

4) Termwise integration of ∑
∞

=0n

n
n za  is ∑

∞

=

+

+0

1

1n

nn z
n
a

, which has the same radius of 

convergence R. 


