Lesson 11 Complex Power Series (EK 15)

■ Importance

Every analytic function can be represented by a Taylor (power) series.

Complex Sequence and Series (EK 15.1)

Sequences

Definition: an ordered set of complex numbers $\{z_n\}$.

Convergence: $\lim_{n \to \infty} z_n = c \ (\{z_n\} \to c)$, if for every $\varepsilon > 0$, we can find *N*, s.t. $|z_n - c| < \varepsilon$ for any n > N. Let $\{z_n\} = \{x_n + iy_n\}, c = a + ib$, then $\{z_n\} \to c \Leftrightarrow \{x_n\} \to a$, and $\{y_n\} \to b$.

Series

Definition: $\sum_{n=1}^{\infty} z_n \equiv \lim_{n \to \infty} S_n$, where $S_n \equiv \sum_{m=1}^{n} z_m$ is the *n*-th partial sum. Series is convergent if its

partial sum is convergent.

Let
$$\{z_n\} = \{x_n + iy_n\}$$
, $s = u + iv$, then $\sum_{n=1}^{\infty} z_n = s \Leftrightarrow \{\sum_{n=1}^{\infty} x_n = u, \text{ and } \sum_{n=1}^{\infty} y_n = v\}$.

If $\sum_{n=1}^{\infty} |z_n|$ converges, $\Rightarrow \sum_{n=1}^{\infty} z_n$ is absolutely convergent. If $\sum_{n=1}^{\infty} |z_n|$ diverges, while $\sum_{n=1}^{\infty} z_n$ converges, $\Rightarrow \sum_{n=1}^{\infty} z_n$ is simply conditionally convergent. **E.g.** Series $S = \sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n} = 1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \dots$ is convergent, but $\sum_{n=1}^{\infty} \frac{1}{n}$ (harmonic series) is divergent. Therefore, $\sum_{n=0}^{\infty} \frac{(-1)^{n-1}}{n}$ is conditionally convergent.

(*) Series Convergence Tests (EK 15.1)

Divergence test

If $\lim_{n \to \infty} z_n \neq 0$, $\sum_{n=1}^{\infty} z_n$ diverges. But $\lim_{n \to \infty} z_n = 0$ does not guarantee the convergence of $\lim_{n \to \infty} z_n$. **E.g.** Harmonic series $\sum_{n=1}^{\infty} \frac{1}{n}$ is divergent, though $\lim_{n \to \infty} \frac{1}{n} = 0$.

Comparison test

If we can find a convergent series $\sum_{n=1}^{\infty} b_n$, such that $b_n \ge |z_n|$, $\Rightarrow \sum_{n=1}^{\infty} z_n$ is absolutely convergent.

Ratio test

Test 1: For a series $\sum_{n=1}^{\infty} z_n$, if $\left| \frac{z_{n+1}}{z_n} \right| \le q < 1$ for all n > N, $\Rightarrow \sum_{n=1}^{\infty} z_n$ is absolutely convergent.

E.g. $\sum_{n=1}^{\infty} \frac{1}{n}$ has $\left| \frac{z_{n+1}}{z_n} \right| = \frac{n}{n+1} < 1$, but $\frac{n}{n+1}$ can exceed any real number less than 1 if *n* is

sufficiently large, \Rightarrow no fixed upper bound q < 1, ratio test fails.

Test 2: If
$$\lim_{n \to \infty} \left| \frac{z_{n+1}}{z_n} \right| = L$$
, then the series $\sum_{n=1}^{\infty} z_n$ is:

(1) absolutely convergent, if L < 1; (2) divergent, if L > 1; (3) undetermined, if L=1.

E.g.
$$\sum_{n=1}^{\infty} \frac{1}{n}$$
 has $L = \lim_{n \to \infty} \frac{n}{n+1} = 1$, which is divergent. $\sum_{n=1}^{\infty} \frac{1}{n^2}$ has $L = \lim_{n \to \infty} \frac{n^2}{(n+1)^2} = 1$, which converges to $\frac{\pi^2}{6}$ [by Riemann Zeta function $\zeta(s) = \sum_{n=1}^{\infty} \frac{1}{n^s}$, with $s=2$].

Root test

Similar with ratio test except for replacing $\left| \frac{z_{n+1}}{z_n} \right|$ by $\sqrt[n]{|z_n|}$.

E.g. $\sum_{n=1}^{\infty} \frac{1}{n} \text{ has } L = \lim_{n \to \infty} \sqrt[n]{1/n} = \lim_{n \to \infty} n^{-1/n} = \lim_{n \to \infty} e^{-(\ln n/n)} \text{ (variable in exponent only)} = 1, \text{ which is divergent.}$ $\sum_{n=1}^{\infty} \frac{1}{n^2} \text{ has } L = \lim_{n \to \infty} \sqrt[n]{1/n^2} = \lim_{n \to \infty} n^{-2/n} = \lim_{n \to \infty} e^{-(2\ln n/n)} = 1, \text{ which converges to } \pi^2/6.$

Power Series and its Convergence (EK 15.2)

Definition

A series of the form: $\sum_{n=0}^{\infty} a_n (z - z_0)^n$, where variable *z*, center *z*₀, and coefficients $\{a_n\}$ are generally complex.

Convergence theorem

(1) If power series $\sum_{n=0}^{\infty} a_n (z - z_0)^n$ converges at a point $z = z_1$, \Rightarrow it is absolutely convergent for every "closer point" $\{z, |z-z_0| < |z_1-z_0|\}$. (2) If power series $\sum_{n=0}^{\infty} a_n (z - z_0)^n$ diverges at a point $z = z_2$, \Rightarrow it is divergent for every "farther point" $\{z, |z-z_0| > |z_2-z_0|\}$.

(*) <u>Proof</u>: (1) By divergence test: $\sum_{n=0}^{\infty} a_n (z_1 - z_0)^n$ converges, $\Rightarrow a_n (z_1 - z_0)^n \rightarrow 0$, i.e.

 $|a_n(z_1-z_0)^n| \le M$ for all *n*. For a "closer point" *z*, $|a_n(z-z_0)^n| = \left|a_n(z_1-z_0)^n\left(\frac{z-z_0}{z_1-z_0}\right)^n\right| \le Mr^n \equiv b_n$,

Edited by: Shang-Da Yang

where
$$r = \left| \frac{z - z_0}{z_1 - z_0} \right| < 1$$
. Since $\sum_{n=0}^{\infty} b_n = M\left(\sum_{n=0}^{\infty} r^n\right)$ is convergent, by comparison test,

 $\sum_{n=0}^{\infty} a_n (z - z_0)^n$ is also convergent. (2) The divergence part can be proved by contradiction (歸謬法).

Region of convergence (ROC)

The ROC of a power series is: $\{z, \text{ where } \sum_{n=0}^{\infty} a_n (z - z_0)^n \text{ is convergent}\}$. By the convergence theorem, ROC always has a circular boundary: $|z-z_0|=R$, on which the convergence of series is undetermined.

E.g. The ROCs of $\sum_{n=1}^{\infty} \frac{z^n}{n^2}$, $\sum_{n=0}^{\infty} z^n$, $\sum_{n=1}^{\infty} \frac{z^n}{n}$ have same boundary C: |z|=1. $\sum_{n=1}^{\infty} \frac{z^n}{n^2}$, converges, $\sum_{n=0}^{\infty} z^n$ diverges everywhere on C, while $\sum_{n=1}^{\infty} \frac{z^n}{n}$ converges at z=-1 but diverges at z=1.

Radius of convergence (Cauchy-Hadamard formula)

The radius of convergence R of $\sum_{n=0}^{\infty} a_n (z-z_0)^n$ is evaluated by:

$$R = \frac{1}{L^*} = \lim_{n \to \infty} \left| \frac{a_n}{a_{n+1}} \right|$$
(11.1)

(*) <u>Proof</u>: By ratio test, $L \equiv \lim_{n \to \infty} \left| \frac{a_{n+1}(z-z_0)^{n+1}}{a_n(z-z_0)^n} \right| = L^* |z-z_0|$. (1) $L^* \neq 0, \infty$: series converges for L < 1

 $(|z-z_0| < 1/L^*)$, and diverges for L > 1 $(|z-z_0| > 1/L^*)$. $\Rightarrow R = 1/L^*$. (2) $L^* = 0$: L = 0 for all z (note that $|z-z_0|$ can approach, but never equal to ∞), series converges everywhere. $\Rightarrow R = 1/L^* = \infty$. (3) $L^* = \infty$: $L = \infty$ for all z except for $z = z_0$, series diverges everywhere. $\Rightarrow R = 1/L^* = 0$.

Power Series Representation of Complex Functions (EK 15.3)

Power series represent analytic functions

A power series $\sum_{n=1}^{\infty} a_n z^n$ with radius of convergence *R*>0 represents an analytic function f(z)for all |z| < R, where $f'(z) = \sum_{n=1}^{\infty} na_n z^{n-1} \equiv f_1(z)$ (let $z_0 = 0$ without loss of generality). <u>Proof</u>: Strategy: let $f(z) = \sum_{n=0}^{\infty} a_n z^n$, show that $f'(z) = \lim_{\Delta z \to 0} \frac{f(z + \Delta z) - f(z)}{\Delta z} = f_1(z)$, i.e. $\lim_{\Delta z \to 0} |q| = 0, \text{ if } q \equiv \frac{f(z + \Delta z) - f(z)}{\Delta z} - f_1(z).$ (*) By definition, $q = \sum_{n=1}^{\infty} a_n \left[\frac{(z + \Delta z)^n - z^n}{\Delta z} - nz^{n-1} \right] = \sum_{n=1}^{\infty} a_n t_n$. Let $z = a, z + \Delta z = b, \Rightarrow t_n =$ $\frac{b^n - a^n}{b - a} - na^{n-1}$, which is a binomial of order n-1 (i.e. sum of terms $a^k b^l$, where k+l=n-1). Let $t_n \equiv (b-a)A_n$, A_n is a binomial of order n-2, $\Rightarrow A_n = \sum_{n=1}^{n-2} c_m a^m b^{n-2-m}$. To find coefficients $\{c_m\}$, we use: $(b-a)t_n = (b-a)^2 A_n$, $b^n - a^n - (b-a)na^{n-1} = b^n + (n-1)a^n - (nb)a^{n-1}$ $=(b-a)^{2}\left(\sum_{m=0}^{n-2}c_{m}a^{m}b^{n-m-2}\right)=\{c_{0}b^{n}+(c_{1}-2c_{0})b^{n-1}a+(c_{2}-2c_{1}+c_{0})b^{n-2}a^{2}+\ldots+(-2c_{n-2}+c_{n-3})ba^{n-1}a^{$ + $c_{n-2} a^n$ }. By comparing the corresponding coefficients: { $c_0=1, c_1=2c_0=2, ..., c_m=m+1, ...,$ $c_{n-2} = n-1$ $\Rightarrow c_m = m+1$. Consequently, $q = \sum_{n=2}^{\infty} a_n (b-a) A_n = \sum_{n=2}^{\infty} \left| a_n \Delta z \left(\sum_{m=0}^{n-2} (m+1) z^m (z+\Delta z)^{n-m-2} \right) \right|$, by the triangular inequality $\left(\sum z_n\right| \le \sum |z_n|$, $|q| \le |\Delta z| \cdot \sum_{n=1}^{\infty} \left[|a_n| \cdot \left(\sum_{n=1}^{n-2} (m+1)|z|^m \cdot |z + \Delta z|^{n-m-2} \right) \right]$. iy selected circle

For any point z in the ROC ($|z| \le R$), we can choose some $R_0 \le R$, such that $\{|z|, |z+\Delta z|\} \le R_0$, \Rightarrow

$$\begin{aligned} |z|^{m} \cdot |z+\Delta z|^{n-m-2} &\leq R_{0}^{n-2} , \Rightarrow |q| \leq |\Delta z| \cdot \sum_{n=2}^{\infty} \left[\left| a_{n} \right| \cdot R_{0}^{n-2} \left(\sum_{m=0}^{n-2} (m+1) \right) \right] = |\Delta z| \cdot \sum_{n=2}^{\infty} |a_{n}| \cdot R_{0}^{n-2} \frac{n(n-1)}{2} \\ |\Delta z| \cdot \left[\sum_{n=2}^{\infty} n(n-1) |a_{n}| R_{0}^{n-2} \right]. \end{aligned}$$
Since the series $\sum_{n=2}^{\infty} n(n-1) a_{n} z^{n-2} = \sum_{n=0}^{\infty} (a_{n} z^{n})''$, and $\sum_{n=0}^{\infty} a_{n} z^{n}$ is absolutely convergent for $|z| = R_{0} < R$, (i.e. $\sum_{n=0}^{\infty} |a_{n}| R_{0}^{n}$ is convergent), by operation 3 (see below), $\Rightarrow \sum_{n=2}^{\infty} n(n-1) a_{n} z^{n-2}$ is also absolutely convergent for $|z| = R_{0}$, (i.e. $\sum_{n=2}^{\infty} n(n-1) |a_{n}| R_{0}^{n-2} = K$). $\Rightarrow |q| \leq |\Delta z| \cdot K$, $\lim_{\Delta z \to 0} |q| = 0$.

<Comment>

As will be proved in the Taylor theorem (EK 15.4), for every point z in "the domain **D** where function f(z) is analytic", there is a unique power series $\sum_{n=0}^{\infty} a_n (z - z_0)^n$, such that $f(z) = \sum_{n=0}^{\infty} a_n (z - z_0)^n$ ($z \in \text{ROC}$ of the power series). However, for different points in D, the corresponding power series could be **different**. **E.g.** A point $z_1 \in D$ lying outside the ROC of $\sum_{n=0}^{\infty} a_n (z - z_0)^n$ (i.e. $\sum_{n=0}^{\infty} a_n (z_1 - z_0)^n \neq f(z_1)$) should correspond to another series $\sum_{n=0}^{\infty} b_n (z - z'_0)^n$ with different center z'_0 .

Operations on power series

1) If
$$f(z) = \sum_{n=0}^{\infty} a_n z^n$$
, for $|z| < R_a$, $g(z) = \sum_{n=0}^{\infty} b_n z^n$, for $|z| < R_b$, $\Rightarrow f(z) \pm g(z) = \sum_{n=0}^{\infty} a_n z^n \pm \sum_{n=0}^{\infty} b_n z^n = \sum_{n=0}^{\infty} (a_n \pm b_n) z^n$, where the new radius of convergence $R \ge \min\{R_a, R_b\}$.
2) If $f(z) = \sum_{n=0}^{\infty} a_n z^n$, for $|z| < R_a$, $g(z) = \sum_{n=0}^{\infty} b_n z^n$, for $|z| < R_b$, $\Rightarrow f(z) \cdot g(z) = \sum_{n=0}^{\infty} a_n z^n \times \sum_{n=0}^{\infty} b_n z^n = \sum_{n=0}^{\infty} c_n z^n$, for $|z| < R$, where

$$c_n = \sum_{k=0}^n a_{n-k} b_k \tag{11.2}$$

is the Cauchy product (convolution) of $\{a_n\}$, $\{b_n\}$; and $R \ge \min\{R_a, R_b\}$.

3) If
$$f(z) = \sum_{n=0}^{\infty} a_n z^n$$
, for $|z| < R$, \Rightarrow

$$f'(z) = \sum_{n=1}^{\infty} n a_n z^{n-1}$$
(11.3)

(derived series), which is valid for |z| < R.

$$\mathbf{E.g.} f(z) = \sum_{n=2}^{\infty} \binom{n}{2} z^n = \frac{z^2}{2} g''(z), \text{ where } g(z) = \sum_{n=0}^{\infty} z^n \Rightarrow \text{By 3}, \quad f(z), g(z) \text{ have the same } R=1.$$

You can arrive at the same R by Cauchy-Hadamard formula.

4) Termwise integration of $\sum_{n=0}^{\infty} a_n z^n$ is $\sum_{n=0}^{\infty} \frac{a_n}{n+1} z^{n+1}$, which has the same radius of convergence *R*.