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Lesson 10 Complex Integration (EK 14) 

 

 Usefulness 

1) Evaluate some difficult real integrals ∫
1

0

 

 
)(

x

x
dxxf . 

2) Represent derivatives of analytic functions [eq. (10.9)]. 

 

Line Integral (EK 14.1) 

 Definition 

The line integral over curve C: {z(t)=x(t)+iy(t)} in the complex plane is defined as the limit of 

partial sum (部分和): 

∫C
dzzf

 
)( ≡ nn

S
∞→

lim ,   Sn=∑
=

∆
n

m
mm zf

1
)(ζ     (10.1) 

where zm (m=0, 1, …, n) are partition points of curve C, zm-1<ζ m<zm, ∆zm= zm−zm-1. 

 

 

<Comment> 

Work done by a force F
v

=(Fx(x,y), Fy(x,y)) along a path C is: W= ∫ ⋅
C

xdF
 

vv
, which can also be 

evaluated by the limit of partial sum. In this case, mm xF vvv
∆⋅)(ξ  (inner product) is a real 

number, while f(ζm)⋅∆zm (complex product) is a complex number. 

 

 

 Methods of evaluating line integrals 

1) Partial integration: By eq. (10.1), if f(z=x+iy)=u(x,y)+iv(x,y) is continuous (not necessarily 
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analytic) along a piecewise smooth path C, ⇒ 

∫C
dzzf

 
)( = )(

 
vdyudx

C
−∫ +i )(

 
vdxudy

C
+∫       (10.2) 

Note: ∫C
udx

 
  = ∫

1

0

 

 
),(

x

x
dxxu )(xy , where x0 , x1 are the real parts of end points of C: y(x). 

2) Using parametric representation of the path: If C: {z(t), a≤t≤b} is piecewise smooth, and 

f(z) is continuous on C, ⇒ 

∫C
dzzf
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b

a
dttztzf

 

 
)())((         (10.3) 

 Proof: ∫ ′
b

a
dttztzf

 

 
)())(( = [ ] [ ]∫ ′+′⋅+
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dttyitxtivtu

 

 
)()()()( = [ ] [ ]∫ +⋅+

C
idydxivu
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[ ]∫ −
C

vdyudx
 

+ i [ ]∫ +
C

vdxudy
 

= eq. (10.2) = ∫C
dzzf

 
)( . 

 

E.g. If C is a counterclockwise circle of radius ρ centered at z0: {z(t)=z0+ρ eit, 0≤t≤2π}, 

I= ∫ −
C

m dzzz
 0 )(  = ∫ ⋅

π
ρρ

2 

0 
dteie itimtm =iρ (m+1) ∫ +π2 

0 

)1( dte tmi =


 −=

otherwise ,0
1 if , 2 miπ

. ⇒ 

∫ −
C

m dzzz
 0 )( =



 −=

otherwise ,0
1 if , 2 miπ

      (10.4) 

3) By antiderivative: If f(z) is analytic in a simply connected domain D (EK14.2), there 

exists an analytic antiderivative function F(z) (反導函數), such that )(zF ′ = f(z), and 

 ∫C
dzzf

 
)( = ∫

1

0

 

 
)(

z

z
dzzf =F(z1)−F(z0)     (10.5) 

for any integral path C within D. Eq. (10.5) depends only on end points z0, z1 of the path 

C (will be proved by Cauchy’s integral theorem in EK 14.2). 

 

E.g. I= ∫
+i

dzz
1 

0 

2 =
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z
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3
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)1( 3i+ =

3
2− +i

3
2 , for z2 is analytic everywhere. 

 

E.g. I= ∫
+

−

−i
dzz

 

i 

1  along two paths C1, C2 (see below). 
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Since z -1 is analytic except for z=0 (check by CR equations), we can find a simply 

connected domain Dj containing path Cj (j=1, 2) in which z -1 is analytic everywhere. By 

eq. (10.5), I= i
iz +

−)(ln =ln(i)−ln(-i). 

However, ln(z) is multi-valued [eq. (9.6)], and so is i
iz +

−)(ln  (problematic). If principle 

value Ln(z) is used [eq. (9.7)], I= i
iz +

−)(Ln = i[Arg(i)−Arg(-i)]. One has to properly define 

the range of argument such that path Cj does not cross the branch cut [i.e. Ln z = 

ln(|z|)+iArg(z) experiences no “jump” along Cj]. 

For an arbitrary path C1 in D1, define –π<Arg(z)≤π (branch cut is negative real axis), ⇒ 

I1= 2
πi − 






−

2
πi = iπ . For an arbitrary path C2 in D2, define 0≤Arg(z)≤2π (branch cut is 

positive real axis), ⇒ I2= 2
πi −

2
3πi = −iπ . 

 

<Comment> 

1) I1≠ I2 for there is no simply connected domain D containing both C1 and C2. 

2) A singular point has profound impact on complex integral even the path does not pass 

through it. ⇒ Singularity is the protagonist of complex functions. 

 

 ML-inequality 

If | f(z)|≤M everywhere on a path C of length L, ⇒ 

∫C
dzzf

 
)( ≤ML       (10.6) 
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It is useful in proving integral theorems. 

 

 

Cauchy’s Integral Theorem (EK14.2) 

 Concepts 

Closed path Simply and multiply connected domains

 

 Theorem 1 

If f(z) is analytic in a simply connected domain D, ⇒ 

∫C
dzzf

 
)( =0        (10.7) 

for any simple closed path C in D. 

Intuition: Analytic in D ⇒ antiderivative approach eq. (10.5) is valid (will be proven in 

Theorem 3): ∫C
dzzf

 
)( =F(z1)−F(z0). Closed path C means z1=z0, ⇒ integral=0. 

(*) Proof: (1) By eq. (10.2), I= ∫C
dzzf

 
)( = ∫ −

C
vdyudx

 
)( + i ∫ +

C
vdxudy

 
)( . (2) By Green’s 

theorem in the plane (EK 10.4, i.e. a special case of Stoke’s theorem in EK 10.9): 

Re{I}= ∫ −
C

vdyudx
 

)( = ( )∫∫ −−
R

yx dxdyuv , where vx, uy are continuous for )(zf ′  is 

continuous in D. (3) By CR equations: uy=−vx, Re{I}= ( )∫∫
R

dxdy0 =0. Similarly, Im{I}=0. 

 

<Comment> 

1) Inverse of Theorem 1 is not true. E.g. eq. (10.4). 

2) (*) If f(z) is continuous in a simply connected domain D, and ∫C
dzzf

 
)( =0 for any 
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simple closed path C in D, ⇒ f(z) is analytic (Morera theorem). 

 

 

 Theorem 2 

If f(z) is analytic in a simply connected domain D, ⇒ ∫C
dzzf

 
)(  is independent of path C 

but its end points. 

 

Proof: For two arbitrary paths C1, C2 with common endpoints z1, z2, Theorem 1 gives 

∫C
dzzf

 
)( = ∫

1 
)(

C
dzzf + ∫ *

2 
)(

C
dzzf =0, ⇒ ∫

1 
)(

C
dzzf = − ∫ *

2 
)(

C
dzzf = ∫ 2 

)(
C

dzzf . 

 

 

 Theorem 3 [enable eq. (10.5)] 

If f(z) is analytic in a simply connected domain D, ⇒ (1) antiderivative F(z)≡ ∫ ′′
z

z
zdzf

 

 0

)(  

exists; (2) )(zF ′ = f(z); (3) F(z) is also analytic in D. 

Note: Theorem 3 and Theorem 2 prove eq. (10.5). 

(*) Proof: (1) By Theorem 2, line integral from fixed z0 to arbitrary z (in D) is independent of 

path, therefore, can be uniquely determined, ⇒ F(z)≡ ∫ ′′
z

z
zdzf

 

 0

)(  exists. 
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(2) By definition, )(zF ′ =
z

zFzzF
z ∆

−∆+
→∆

)()(lim
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 ′′−′′

∆ ∫∫
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)()(1lim = 





 ′′

∆ ∫
∆+

→∆

zz

zz
zdzf

z
 

 0
)(1lim . Represent f(z) by integral form: f(z)= 



 ′

∆ ∫
∆+

→∆

zz

zz
zdzf

z
 

 0
)(1lim ; ⇒ 

)()( zfzF −′ = [ ]∫
∆+

→∆
′−′⋅

∆

zz

zz
zdzfzf

z
 

 0
)()(1lim , by ML-inequality, ≤ 










∆⋅⋅

∆→∆
zM

zz

1lim
0

= 

M
z 0

lim
→∆

, where M is defined as: )()( zfzf −′ ≤ M along the infinitesimal path z→ z+∆z. 

Since f(z) is analytic, it must be continuous; ⇒ for any given ε>0, we can always find δ, such 

that )()( zfzf −′ ≤ε  for all zz −′ <δ. By choosing |∆z| <δ, we have M=ε→0, ⇒ 

)()( zfzF −′ →0, and )(zF ′ = f(z). 

(3) For every point z in D, f(z) exists, ⇒ )(zF ′ = f(z) exists, ⇒ F(z) is also analytic. 

 

 

 Theorem 4 

If f(z) is analytic in a multiply connected domain D defined by an outer contour C1 and 

multiple inner contours {Ci, i=2,3,….,n} (all are in counterclockwise sense), ⇒ 

∫
1 

)(
C

dzzf =∑∫
=

n

i
Ci

dzzf
2

 
)(       (10.8) 

 

Proof: Introducing three inner cuts Ĉ1, Ĉ2, Ĉ3 to divide the domain D into two simply 

connected domains. Apply Theorem 1 to them; integral over cuts will be canceled, … 

 

E.g. ∫ −
C

m dzzz
 0 )( =



 −=

otherwise ,0
1 if , 2 miπ

, for arbitrary simple closed path C in 
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counterclockwise sense, which encircles z0. 

(z−z0)m is analytic in a doubly connected domain D bounded by C and C* (a circle of 

sufficiently small radius ρ  centered at z0). By eq. (10.8), ∫ −
C

m dzzz
 0 )( = ∫ −

* 0 )(
C

m dzzz = 

eq. (10.4). 

 

 

 

Cauchy’s Integral Formula (EK 14.3) 

 Formula 

Let f(z) be analytic in a simply connected domain D. For any simple closed path C (not just 

circles) in D that encloses a point z0, ⇒ 

∫ −C
dz

zz
zf

 
0

)( =2π i f(z0)             (10.9) 

Note: eq. (10.9) is a special case of residue integration formula [eq. (13.2)]. 

Proof: f(z)=f(z0)+[ f(z)−f(z0)] ⇒ ∫ −C
dz

zz
zf

 
0

)( = 







−∫C

dz
zz

zf
 

0
0

1)( + ∫ −
−

C
dz

zz
zfzf

 
0

0 )()(
= 

2π if(z0)+p. Whether p→0 (i.e. |p|→0)? 

(*) By eq. (10.8), p= ∫ −
−

C
dz

zz
zfzf

 
0

0 )()(
= ∫ −

−
* 

0

0 )()(
C

dz
zz

zfzf , where C*: |z−z0|=ρ  is a circle 

enclosed by C (see above figure). By ML-inequality, |p|≤M·2πρ, where 
0

0 )()(
zz

zfzf
−
−

≤M. 

Since f(z) is analytic, ⇒ continuous, )(lim
0

zf
zz→

= f(z0), i.e. |z−z0|<δ, ⇒ | f(z)−f(z0)|<ε. For an 
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arbitrarily small ε, we can choose ρ<δ , such that 
0

0 )()(
zz

zfzf
−
−

≤
ρ
ε =M on C*. ⇒ |p|≤M·2πρ 

=
ρ
ε
·2πρ =2πε→0, as ε→0. 

 

E.g. Evaluate l= ∫ −
+

C
dz

z
z

 2

2

1
1  for the four contours shown below (in counterclockwise sense). 

 

1
1

2

2

−
+

z
z =

)1)(1(
12

−+
+
zz

z . Circles (a-b) only enclose z=z0=1, ⇒ f(z)=
1
12

+
+

z
z , l=2πi ·f(1)=2πi . 

Circle (c) only encloses z= z0=−1, ⇒ f(z)=
1
12

−
+

z
z , l=2πi ·f(−1)= −2πi . Circle (d) encloses no 

singularity, ⇒ 
)1)(1(

12

−+
+
zz

z  is analytic inside circle (d), l=0. 

 

<Comment> 

If f(z) is analytic in a doubly connected domain D bounded by two counterclockwise contours 

C1, C2, ⇒ 

f(z0)= 







−

−
− ∫∫

21  
0

 
0

)()(
2
1

CC
dz

zz
zfdz

zz
zf

iπ
       (10.10) 

Proof: Introducing two inner cuts. Used in proving Laurent’s theorem (EK 16.1). 
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Derivatives of Analytic Functions (EK 14.4) 

 Analytic ⇒ differentiable for all orders 

If f(z) is analytic in a simply connected domain D, its n-th order derivative f (n)(z0) exists and 

can be evaluated by a complex line integral over a simple closed path C in D that encloses z0: 

 ∫ +−
=

C n
n dz

zz
zf

i
nzf

 1
0

0
)(

)(
)(

 2
!)(

π
      (10.11) 

Proof: For n=1, )( 0zf ′ =
z

zfzzf
z ∆

−∆+
→∆

)()(lim 00
0

; represent f(z0+∆z), f(z0) by eq. (10.9): 

)( 0zf ′ = 







−

−
∆+−∆ ∫∫→∆ CCz

dz
zz
zfdz

zzz
zf

zi  
0

 
0

0

)(
)(

)(
 2
1lim

π
= 








−∆−−∫→∆ Cz

dz
zzzzz

zf
i  

00
0 ))((

)(
 2

1lim
π

; 

by ML-inequality, = ∫ −C
dz

zz
zf

i  2
0 )(
)(

2
1
π

. For n>1, prove by induction. 

 

<Comment> 

1) Evaluation of )( 0
)( xf n  involves with real function values in the vicinity of x0, while 

evaluation of )( 0
)( zf n  can involve with complex function values far from z0. 

2) The differentiability of a real function f(x) implies nothing about the differentiability of 

)(xf ′ , )(zf ′′ , …etc. E.g. f(x)= 3/1x  is differentiable for all x∈R, but )(xf ′ = 3/2

3
1 −x  is 

singular at x=0. 

 

 

 (*) Cauchy’s inequality 

If f(z) is analytic on and within a circle C of radius r and center z0, and |f(z)|≤M on C, ⇒ 

n
n

r
Mnzf !)( 0

)( ≤         (10.12) 
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Proof: By eq. (10.11), )( 0
)( zf n = ∫ +−C n dz

zz
zfn

 1
0 )(
)(

2
!
π

, by ML-inequality, ≤ 
π2
!n

1+nr
M 2πr… 

Cauchy’s inequality will be used to set an upper bound for the coefficients of Taylor series 

representation of a complex function (EK 15.4). 

 

 

 Liouville’s theorem 

If f(z) is analytic and |f(z)|<K (bounded) in the entire complex plane,⇒ f(z) is constant. 

Proof: By eq. (10.12), 
r
Kzf ≤′ )( 0  for arbitrary z0 and r. By letting r→∞, )( 0zf ′ ≤0, 

)( 0zf ′ =0, i.e. f(z) is a constant. 

 

<Comment> 

1) Bounded, differentiable real functions are not necessarily constant. E.g. (sin x). 

2) Slight deviation of an analytic function from constant implies the existence of singularity 

somewhere in the complex plane, ⇒ singularity is almost inevitable! 

 

 

 (*) Fundamental theory of algebra 

If p(z)=anzn+ an-1zn-1+…+ a1z+a0, n≥1, an≠0 (polynomial of order n) ⇒ p(z)=0 has at least one 

root (actually n roots in total). 

Proof: By contradiction. p(z) is unbounded and entire (i.e. analytic everywhere). Assume 
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p(z)≠0 for all z (no root), ⇒ f(z)≡1/p(z) is entire but bounded. By Liouville’s theorem, ⇒ 

f(z)=constant, ⇒ p(z)=constant, violating n≥1, an≠0. 

 

 

 (*) Gauss mean-value property 

Let f(z) is analytic in a simply connected domain D. If we take a circular contour C(⊂D): 

z=z0+reiθ, θ=[0,2π], by eq. (10.9), f(z0)= ∫ −C
dz

zz
zf

i  
0

)(
2
1
π

= ∫ +
π θ θ

π
2 

0 0 )(
2
1 drezf i , ⇒ f(z0) is 

the mean-value of f(z) on circle C with arbitrary radius r (as long as C⊂D). 

 

 

 (*) Maximum/minimum modulus principle 

If f(z) is analytic on and within a simple closed path C, ⇒ the maximum and minimum of 

|f(z)| for the region R (union of C and its interior) must occur on C. 

Proof: By Gauss mean-value principle. 


