Lesson 10 Complex Integration（EK 14）

Usefulness
1）Evaluate some difficult real integrals $\int_{x_{0}}^{x_{1}} f(x) d x$ ．
2）Represent derivatives of analytic functions［eq．（10．9）］．

Line Integral（EK 14．1）

Definition

The line integral over curve $C:\{z(t)=x(t)+i y(t)\}$ in the complex plane is defined as the limit of partial sum（部分和）：

$$
\begin{equation*}
\int_{C} f(z) d z \equiv \lim _{n \rightarrow \infty} S_{n}, \quad S_{n}=\sum_{m=1}^{n} f\left(\zeta_{m}\right) \Delta z_{m} \tag{10.1}
\end{equation*}
$$

where $z_{m}(m=0,1, \ldots, n)$ are partition points of curve $C, z_{m-1}<\zeta_{m}<z_{m}, \Delta z_{m}=z_{m}-z_{m-1}$ ．

＜Comment＞

Work done by a force $\vec{F}=\left(F_{x}(x, y), F_{y}(x, y)\right)$ along a path C is：$W=\int_{C} \vec{F} \cdot d \vec{x}$ ，which can also be evaluated by the limit of partial sum．In this case，$\vec{F}\left(\vec{\xi}_{m}\right) \cdot \Delta \vec{x}_{m}$（inner product）is a real number，while $f\left(\zeta_{m}\right) \cdot \Delta z_{m}$（complex product）is a complex number．
－Methods of evaluating line integrals
1）Partial integration：By eq．（10．1），if $f(z=x+i y)=u(x, y)+i v(x, y)$ is continuous（not necessarily
analytic）along a piecewise smooth path C, \Rightarrow

$$
\begin{equation*}
\int_{C} f(z) d z=\int_{C}(u d x-v d y)+i \int_{C}(u d y+v d x) \tag{10.2}
\end{equation*}
$$

Note： $\int_{C} u d x=\int_{x_{0}}^{x_{1}} u(x, y(x)) d x$ ，where x_{0}, x_{1} are the real parts of end points of $C: y(x)$ ．
2）Using parametric representation of the path：If $C:\{z(t), a \leq t \leq b\}$ is piecewise smooth，and $f(z)$ is continuous on C, \Rightarrow

$$
\begin{equation*}
\int_{C} f(z) d z=\int_{a}^{b} f(z(t)) z^{\prime}(t) d t \tag{10.3}
\end{equation*}
$$

Proof： $\int_{a}^{b} f(z(t)) z^{\prime}(t) d t=\int_{a}^{b}[u(t)+i v(t)] \cdot\left[x^{\prime}(t)+i y^{\prime}(t)\right] d t=\int_{C}[u+i v] \cdot[d x+i d y]=$ $\int_{C}[u d x-v d y]+i \int_{C}[u d y+v d x]=$ eq．$(10.2)=\int_{C} f(z) d z$.

E．g．If C is a counterclockwise circle of radius ρ centered at $z_{0}:\left\{z(t)=z_{0}+\rho e^{i t}, 0 \leq t \leq 2 \pi\right\}$,

$$
\begin{gather*}
I=\oint_{C}\left(z-z_{0}\right)^{m} d z=\int_{0}^{2 \pi} \rho^{m} e^{i m t} \cdot i \rho e^{i t} d t=i \rho^{(m+1)} \int_{0}^{2 \pi} e^{i(m+1) t} d t=\left\{\begin{array}{l}
2 \pi i, \text { if } m=-1 \\
0, \text { otherwise }
\end{array} . \Rightarrow\right. \\
\oint_{C}\left(z-z_{0}\right)^{m} d z=\left\{\begin{array}{l}
2 \pi i, \text { if } m=-1 \\
0, \text { otherwise }
\end{array}\right. \tag{10.4}
\end{gather*}
$$

3）By antiderivative：If $f(z)$ is analytic in a simply connected domain D（EK14．2），there exists an analytic antiderivative function $F(z)$（反導函數），such that $F^{\prime}(z)=f(z)$ ，and

$$
\begin{equation*}
\int_{C} f(z) d z=\int_{z_{0}}^{z_{1}} f(z) d z=F\left(z_{1}\right)-F\left(z_{0}\right) \tag{10.5}
\end{equation*}
$$

for any integral path C within D ．Eq．（10．5）depends only on end points z_{0}, z_{1} of the path C（will be proved by Cauchy＇s integral theorem in EK 14．2）．

E．g．$I=\int_{0}^{1+i} z^{2} d z=\left.\frac{z^{3}}{3}\right|_{0} ^{1+i}=\frac{(1+i)^{3}}{3}=\frac{-2}{3}+i \frac{2}{3}$ ，for z^{2} is analytic everywhere．

E．g．$I=\int_{-\mathrm{i}}^{+i} z^{-1} d z$ along two paths C_{1}, C_{2}（see below）．

Since z^{-1} is analytic except for $\boldsymbol{z}=\mathbf{0}$ (check by CR equations), we can find a simply connected domain D_{j} containing path $C_{j}(j=1,2)$ in which z^{-1} is analytic everywhere. By eq. (10.5), $I=\left.\ln (z)\right|_{-i} ^{+i}=\ln (i)-\ln (-i)$.

However, $\ln (z)$ is multi-valued [eq. (9.6)], and so is $\left.\ln (z)\right|_{-i} ^{+i}$ (problematic). If principle value $\operatorname{Ln}(z)$ is used [eq. (9.7)], $I=\left.\operatorname{Ln}(z)\right|_{-i} ^{+i}=i[\operatorname{Arg}(i)-\operatorname{Arg}(-i)]$. One has to properly define the range of argument such that path C_{j} does not cross the branch cut [i.e. Ln $z=$ $\ln (|z|)+i \operatorname{Arg}(z)$ experiences no "jump" along $\left.C_{j}\right]$.

For an arbitrary path C_{1} in D_{1}, define $-\pi<\operatorname{Arg}(z) \leq \pi$ (branch cut is negative real axis), \Rightarrow $I_{1}=i \frac{\pi}{2}-\left(-i \frac{\pi}{2}\right)=i \pi$. For an arbitrary path C_{2} in D_{2}, define $0 \leq \operatorname{Arg}(z) \leq 2 \pi$ (branch cut is positive real axis), $\Rightarrow I_{2}=i \frac{\pi}{2}-i \frac{3 \pi}{2}=-i \pi$.

<Comment>

1) $I_{1} \neq I_{2}$ for there is no simply connected domain D containing both C_{1} and C_{2}.
2) A singular point has profound impact on complex integral even the path does not pass through it. \Rightarrow Singularity is the protagonist of complex functions.

- $M L$-inequality

If $|f(z)| \leq M$ everywhere on a path C of length L, \Rightarrow

$$
\begin{equation*}
\left|\int_{C} f(z) d z\right| \leq M L \tag{10.6}
\end{equation*}
$$

It is useful in proving integral theorems.

Cauchy's Integral Theorem (EK14.2)

- Concepts

Simple

Simple

Not simple

Simply
connected

Simply
connected

Doubly
connected

Simply and multiply connected domains

Theorem 1
If $f(z)$ is analytic in a simply connected domain D, \Rightarrow

$$
\begin{equation*}
\oint_{C} f(z) d z=0 \tag{10.7}
\end{equation*}
$$

for any simple closed path C in D.
Intuition: Analytic in $D \Rightarrow$ antiderivative approach eq. (10.5) is valid (will be proven in Theorem 3): $\int_{C} f(z) d z=F\left(z_{1}\right)-F\left(z_{0}\right)$. Closed path C means $z_{1}=z_{0}, \Rightarrow$ integral $=0$.
(*) Proof: (1) By eq. (10.2), $I=\oint_{C} f(z) d z=\oint_{C}(u d x-v d y)+i \oint_{C}(u d y+v d x)$. (2) By Green's theorem in the plane (EK 10.4, i.e. a special case of Stoke's theorem in EK 10.9): $\operatorname{Re}\{I\}=\oint_{C}(u d x-v d y)=\iint_{R}\left(-v_{x}-u_{y}\right) d x d y$, where v_{x}, u_{y} are continuous for $f^{\prime}(z)$ is continuous in D. (3) By CR equations: $u_{y}=-v_{x}, \operatorname{Re}\{I\}=\iint_{R}(0) d x d y=0$. Similarly, $\operatorname{Im}\{I\}=0$.

<Comment>

1) Inverse of Theorem 1 is not true. E.g. eq. (10.4).
2) (*) If $f(z)$ is continuous in a simply connected domain D, and $\oint_{C} f(z) d z=0$ for any
simple closed path C in $D, \Rightarrow f(z)$ is analytic (Morera theorem).

Theorem 2

If $f(z)$ is analytic in a simply connected domain $D, \Rightarrow \int_{C} f(z) d z$ is independent of path C but its end points.

Proof: For two arbitrary paths C_{1}, C_{2} with common endpoints z_{1}, z_{2}, Theorem 1 gives $\oint_{C} f(z) d z=\int_{C_{1}} f(z) d z+\int_{C_{2}^{*}} f(z) d z=0, \Rightarrow \int_{C_{1}} f(z) d z=-\int_{C_{2}^{*}} f(z) d z=\int_{C 2} f(z) d z$.

Theorem 3 [enable eq. (10.5)]
If $f(z)$ is analytic in a simply connected domain $D, \Rightarrow(1)$ antiderivative $F(z) \equiv \int_{z_{0}}^{z} f\left(z^{\prime}\right) d z^{\prime}$ exists; (2) $F^{\prime}(z)=f(z) ;(3) F(z)$ is also analytic in D.

Note: Theorem 3 and Theorem 2 prove eq. (10.5).
(*) Proof: (1) By Theorem 2, line integral from fixed z_{0} to arbitrary z (in D) is independent of path, therefore, can be uniquely determined, $\Rightarrow F(z) \equiv \int_{z_{0}}^{z} f\left(z^{\prime}\right) d z^{\prime}$ exists.

(2) By definition, $F^{\prime}(z)=\lim _{\Delta z \rightarrow 0} \frac{F(z+\Delta z)-F(z)}{\Delta z}=\lim _{\Delta z \rightarrow 0} \frac{1}{\Delta z}\left[\int_{z_{0}}^{z+\Delta z} f\left(z^{\prime}\right) d z^{\prime}-\int_{z_{0}}^{z} f\left(z^{\prime}\right) d z^{\prime}\right]=$ $\lim _{\Delta z \rightarrow 0} \frac{1}{\Delta z}\left[\int_{z}^{z+\Delta z} f\left(z^{\prime}\right) d z^{\prime}\right]$. Represent $f(z)$ by integral form: $f(z)=\lim _{\Delta z \rightarrow 0} \frac{1}{\Delta z}\left[\int_{z}^{z+\Delta z} f(z) d z^{\prime}\right] ; \Rightarrow$ $\left|F^{\prime}(z)-f(z)\right|=\lim _{\Delta z \rightarrow 0} \frac{1}{|\Delta z|} \cdot\left|\int_{z}^{z+\Delta z}\left[f\left(z^{\prime}\right)-f(z)\right] d z^{\prime}\right|$, by $M L$-inequality, $\leq \lim _{\Delta z \rightarrow 0}\left(\frac{1}{|\Delta z|} \cdot M \cdot|\Delta z|\right)=$ $\lim _{\Delta z \rightarrow 0} M$, where M is defined as: $\left|f\left(z^{\prime}\right)-f(z)\right| \leq M$ along the infinitesimal path $z \rightarrow z+\Delta z$. Since $f(z)$ is analytic, it must be continuous; \Rightarrow for any given $\varepsilon>0$, we can always find δ, such that $\left|f\left(z^{\prime}\right)-f(z)\right| \leq \varepsilon$ for all $\left|z^{\prime}-z\right|<\delta$. By choosing $|\Delta z|<\delta$, we have $M=\varepsilon \rightarrow 0, \Rightarrow$ $\left|F^{\prime}(z)-f(z)\right| \rightarrow 0$, and $F^{\prime}(z)=f(z)$.
(3) For every point z in $D, f(z)$ exists, $\Rightarrow F^{\prime}(z)=f(z)$ exists, $\Rightarrow F(z)$ is also analytic.

- Theorem 4

If $f(z)$ is analytic in a multiply connected domain D defined by an outer contour C_{1} and multiple inner contours $\left\{C_{i}, i=2,3, \ldots, n\right\}$ (all are in counterclockwise sense), \Rightarrow

$$
\begin{equation*}
\oint_{C_{1}} f(z) d z=\sum_{i=2}^{n} \oint_{C_{i}} f(z) d z \tag{10.8}
\end{equation*}
$$

Proof: Introducing three inner cuts $\hat{\mathrm{C}}_{1}, \hat{\mathrm{C}}_{2}, \hat{\mathrm{C}}_{3}$ to divide the domain D into two simply connected domains. Apply Theorem 1 to them; integral over cuts will be canceled, ...
E.g. $\oint_{C}\left(z-z_{0}\right)^{m} d z=\left\{\begin{array}{l}2 \pi i, \text { if } m=-1 \\ 0, \text { otherwise }\end{array}\right.$, for arbitrary simple closed path C in
counterclockwise sense, which encircles z_{0}. $\left(z-z_{0}\right)^{m}$ is analytic in a doubly connected domain D bounded by C and C^{*} (a circle of sufficiently small radius ρ centered at z_{0}). By eq. (10.8), $\oint_{C}\left(z-z_{0}\right)^{m} d z=\oint_{C^{*}}\left(z-z_{0}\right)^{m} d z=$ eq. (10.4).

Cauchy's Integral Formula (EK 14.3)

- Formula

Let $f(z)$ be analytic in a simply connected domain D. For any simple closed path C (not just circles) in D that encloses a point z_{0}, \Rightarrow

$$
\begin{equation*}
\oint_{C} \frac{f(z)}{z-z_{0}} d z=2 \pi i f\left(z_{0}\right) \tag{10.9}
\end{equation*}
$$

Note: eq. (10.9) is a special case of residue integration formula [eq. (13.2)].
Proof: $f(z)=f\left(z_{0}\right)+\left[f(z)-f\left(z_{0}\right)\right] \Rightarrow \oint_{C} \frac{f(z)}{z-z_{0}} d z=f\left(z_{0}\right)\left(\oint_{C} \frac{1}{z-z_{0}} d z\right)+\oint_{C} \frac{f(z)-f\left(z_{0}\right)}{z-z_{0}} d z=$ $2 \pi i f\left(z_{0}\right)+p$. Whether $p \rightarrow 0$ (i.e. $\left.|p| \rightarrow 0\right)$?
(*) By eq. (10.8), $p=\oint_{C} \frac{f(z)-f\left(z_{0}\right)}{z-z_{0}} d z=\oint_{C^{*}} \frac{f(z)-f\left(z_{0}\right)}{z-z_{0}} d z$, where $C^{*}:\left|z-z_{0}\right|=\rho$ is a circle enclosed by C (see above figure). By $M L$-inequality, $|p| \leq M \cdot 2 \pi \rho$, where $\left|\frac{f(z)-f\left(z_{0}\right)}{z-z_{0}}\right| \leq M$. Since $f(z)$ is analytic, \Rightarrow continuous, $\lim _{z \rightarrow z_{0}} f(z)=f\left(z_{0}\right)$, i.e. $\left|z-z_{0}\right|<\delta, \Rightarrow\left|f(z)-f\left(z_{0}\right)\right|<\varepsilon$. For an
arbitrarily small ε, we can choose $\rho<\delta$, such that $\left|\frac{f(z)-f\left(z_{0}\right)}{z-z_{0}}\right| \leq \frac{\varepsilon}{\rho}=M$ on C^{*}. $\Rightarrow|p| \leq M \cdot 2 \pi \rho$ $=\frac{\varepsilon}{\rho} \cdot 2 \pi \rho=2 \pi \varepsilon \rightarrow 0$, as $\varepsilon \rightarrow 0$.
E.g. Evaluate $l=\oint_{C} \frac{z^{2}+1}{z^{2}-1} d z$ for the four contours shown below (in counterclockwise sense).

$\frac{z^{2}+1}{z^{2}-1}=\frac{z^{2}+1}{(z+1)(z-1)}$. Circles $(a-b)$ only enclose $z=z_{0}=1, \Rightarrow f(z)=\frac{z^{2}+1}{z+1}, l=2 \pi i \cdot f(1)=2 \pi i$. Circle (c) only encloses $z=z_{0}=-1, \Rightarrow f(z)=\frac{z^{2}+1}{z-1}, l=2 \pi i \cdot f(-1)=-2 \pi i$. Circle (d) encloses no singularity, $\Rightarrow \frac{z^{2}+1}{(z+1)(z-1)}$ is analytic inside circle $(d), l=0$.

<Comment>

If $f(z)$ is analytic in a doubly connected domain D bounded by two counterclockwise contours $C_{1}, C_{2}, \Rightarrow$

$$
\begin{equation*}
f\left(z_{0}\right)=\frac{1}{2 \pi i}\left[\oint_{C_{1}} \frac{f(z)}{z-z_{0}} d z-\oint_{C_{2}} \frac{f(z)}{z-z_{0}} d z\right] \tag{10.10}
\end{equation*}
$$

Proof: Introducing two inner cuts. Used in proving Laurent's theorem (EK 16.1).

Derivatives of Analytic Functions (EK 14.4)

Analytic \Rightarrow differentiable for all orders
If $f(z)$ is analytic in a simply connected domain D, its n-th order derivative $f^{(n)}\left(z_{0}\right)$ exists and can be evaluated by a complex line integral over a simple closed path C in D that encloses z_{0} :

$$
\begin{equation*}
f^{(n)}\left(z_{0}\right)=\frac{n!}{2 \pi i} \oint_{C} \frac{f(z)}{\left(z-z_{0}\right)^{n+1}} d z \tag{10.11}
\end{equation*}
$$

Proof: For $n=1, f^{\prime}\left(z_{0}\right)=\lim _{\Delta z \rightarrow 0} \frac{f\left(z_{0}+\Delta z\right)-f\left(z_{0}\right)}{\Delta z}$; represent $f\left(z_{0}+\Delta z\right), f\left(z_{0}\right)$ by eq. (10.9):

$$
f^{\prime}\left(z_{0}\right)=\lim _{\Delta z \rightarrow 0} \frac{1}{2 \pi i \Delta z}\left[\oint_{C} \frac{f(z)}{z-\left(z_{0}+\Delta z\right)} d z-\oint_{C} \frac{f(z)}{z-z_{0}} d z\right]=\lim _{\Delta z \rightarrow 0} \frac{1}{2 \pi i}\left[\oint_{C} \frac{f(z)}{\left(z-z_{0}-\Delta z\right)\left(z-z_{0}\right)} d z\right] ;
$$ by $M L$-inequality, $=\frac{1}{2 \pi i} \oint_{C} \frac{f(z)}{\left(z-z_{0}\right)^{2}} d z$. For $n>1$, prove by induction.

<Comment>

1) Evaluation of $f^{(n)}\left(x_{0}\right)$ involves with real function values in the vicinity of x_{0}, while evaluation of $f^{(n)}\left(z_{0}\right)$ can involve with complex function values far from z_{0}.
2) The differentiability of a real function $f(x)$ implies nothing about the differentiability of $f^{\prime}(x), f^{\prime \prime}(z), \ldots$ etc. E.g. $f(x)=x^{1 / 3}$ is differentiable for all $x \in R$, but $f^{\prime}(x)=\frac{1}{3} x^{-2 / 3}$ is singular at $x=0$.

■ (*) Cauchy's inequality
If $f(z)$ is analytic on and within a circle C of radius r and center z_{0}, and $|f(z)| \leq M$ on C, \Rightarrow

$$
\begin{equation*}
\left|f^{(n)}\left(z_{0}\right)\right| \leq \frac{n!M}{r^{n}} \tag{10.12}
\end{equation*}
$$

Proof: By eq. (10.11), $\left|f^{(n)}\left(z_{0}\right)\right|=\frac{n!}{2 \pi}\left|\oint_{C} \frac{f(z)}{\left(z-z_{0}\right)^{n+1}} d z\right|$, by $M L$-inequality, $\leq \frac{n!}{2 \pi} \frac{M}{r^{n+1}} 2 \pi r \ldots$ Cauchy's inequality will be used to set an upper bound for the coefficients of Taylor series representation of a complex function (EK 15.4).

Liouville's theorem
If $f(z)$ is analytic and $|f(z)|<K$ (bounded) in the entire complex plane, $\Rightarrow f(z)$ is constant.
Proof: By eq. (10.12), $\left|f^{\prime}\left(z_{0}\right)\right| \leq \frac{K}{r}$ for arbitrary z_{0} and r. By letting $r \rightarrow \infty,\left|f^{\prime}\left(z_{0}\right)\right| \leq 0$, $\left|f^{\prime}\left(z_{0}\right)\right|=0$, i.e. $f(z)$ is a constant.

<Comment>

1) Bounded, differentiable real functions are not necessarily constant. E.g. $(\sin x)$.
2) Slight deviation of an analytic function from constant implies the existence of singularity somewhere in the complex plane, \Rightarrow singularity is almost inevitable!

- (*) Fundamental theory of algebra

If $p(z)=a_{n} z^{n}+a_{n-1} z^{n-1}+\ldots+a_{1} z+a_{0}, n \geq 1, a_{n} \neq 0$ (polynomial of order $\left.n\right) \Rightarrow p(z)=0$ has at least one root (actually n roots in total).

Proof: By contradiction. $p(z)$ is unbounded and entire (i.e. analytic everywhere). Assume
$p(z) \neq 0$ for all z (no root), $\Rightarrow f(z) \equiv 1 / p(z)$ is entire but bounded. By Liouville's theorem, \Rightarrow $f(z)=$ constant,$\Rightarrow p(z)=$ constant, violating $n \geq 1, a_{n} \neq 0$.

■ (*) Gauss mean-value property
Let $f(z)$ is analytic in a simply connected domain D. If we take a circular contour $C(\subset D)$: $z=z_{0}+r e^{i \theta}, \theta=[0,2 \pi]$, by eq. (10.9), $f\left(z_{0}\right)=\frac{1}{2 \pi i} \oint_{C} \frac{f(z)}{z-z_{0}} d z=\frac{1}{2 \pi} \int_{0}^{2 \pi} f\left(z_{0}+r e^{i \theta}\right) d \theta, \Rightarrow f\left(z_{0}\right)$ is the mean-value of $f(\mathrm{z})$ on circle C with arbitrary radius r (as long as $C \subset D$).

- (*) Maximum/minimum modulus principle

If $f(z)$ is analytic on and within a simple closed path C, \Rightarrow the maximum and minimum of $|f(z)|$ for the region R (union of C and its interior) must occur on C.

Proof: By Gauss mean-value principle.

