# Lesson 10 Complex Integration (EK 14)

- Usefulness
- 1) Evaluate some difficult real integrals  $\int_{x_0}^{x_1} f(x) dx$ .
- 2) Represent derivatives of analytic functions [eq. (10.9)].

## Line Integral (EK 14.1)

### Definition

The line integral over curve *C*:  $\{z(t)=x(t)+iy(t)\}$  in the complex plane is defined as the limit of partial sum (部分和):

$$\int_{C} f(z) dz = \lim_{n \to \infty} S_n, \quad S_n = \sum_{m=1}^{n} f(\zeta_m) \Delta z_m$$
(10.1)

where  $z_m$  (m=0, 1, ..., n) are partition points of curve C,  $z_{m-1} < \zeta_m < z_m$ ,  $\Delta z_m = z_m - z_{m-1}$ .



### <Comment>

Work done by a force  $\vec{F} = (F_x(x,y), F_y(x,y))$  along a path *C* is:  $W = \int_C \vec{F} \cdot d\vec{x}$ , which can also be evaluated by the limit of partial sum. In this case,  $\vec{F}(\vec{\xi}_m) \cdot \Delta \vec{x}_m$  (inner product) is a real number, while  $f(\zeta_m) \cdot \Delta z_m$  (complex product) is a complex number.

- Methods of evaluating line integrals
- 1) Partial integration: By eq. (10.1), if f(z=x+iy)=u(x,y)+iv(x,y) is continuous (not necessarily

analytic) along a piecewise smooth path C,  $\Rightarrow$ 

$$\int_{C} f(z)dz = \int_{C} (udx - vdy) + i \int_{C} (udy + vdx)$$
(10.2)

Note:  $\int_C u dx = \int_{x_0}^{x_1} u(x, y(x)) dx$ , where  $x_0$ ,  $x_1$  are the real parts of end points of C: y(x).

Using parametric representation of the path: If C: {z(t), a≤t≤b} is piecewise smooth, and f(z) is continuous on C, ⇒

$$\int_{C} f(z) dz = \int_{a}^{b} f(z(t)) z'(t) dt$$
 (10.3)

Proof: 
$$\int_{a}^{b} f(z(t))z'(t)dt = \int_{a}^{b} [u(t) + iv(t)] \cdot [x'(t) + iy'(t)]dt = \int_{C} [u + iv] \cdot [dx + idy] = \int_{C} [udx - vdy] + i \int_{C} [udy + vdx] = eq. (10.2) = \int_{C} f(z)dz.$$

**E.g.** If *C* is a counterclockwise circle of radius 
$$\rho$$
 centered at  $z_0$ :  $\{z(t)=z_0+\rho e^{it}, 0\le t\le 2\pi\},$   

$$I=\oint_C (z-z_0)^m dz = \int_0^{2\pi} \rho^m e^{imt} \cdot i\rho e^{it} dt = i\rho^{(m+1)} \int_0^{2\pi} e^{i(m+1)t} dt = \begin{cases} 2\pi \ i, \text{ if } m=-1\\ 0, \text{ otherwise} \end{cases} \Rightarrow$$

$$\oint_C (z-z_0)^m dz = \begin{cases} 2\pi \ i, \text{ if } m=-1\\ 0, \text{ otherwise} \end{cases}$$
(10.4)

3) By antiderivative: If f(z) is **analytic** in a simply connected domain D (EK14.2), there exists an analytic antiderivative function F(z) (反導函數), such that F'(z) = f(z), and

$$\int_{C} f(z) dz = \int_{z_0}^{z_1} f(z) dz = F(z_1) - F(z_0)$$
(10.5)

for any integral path C within D. Eq. (10.5) depends only on end points  $z_0$ ,  $z_1$  of the path C (will be proved by Cauchy's integral theorem in EK 14.2).

**E.g.** 
$$I = \int_{0}^{1+i} z^2 dz = \frac{z^3}{3} \Big|_{0}^{1+i} = \frac{(1+i)^3}{3} = \frac{-2}{3} + i\frac{2}{3}$$
, for  $z^2$  is analytic everywhere.

**E.g.**  $I = \int_{-i}^{+i} z^{-1} dz$  along two paths  $C_1$ ,  $C_2$  (see below).



Since  $z^{-1}$  is analytic except for z=0 (check by CR equations), we can find a simply connected domain  $D_j$  containing path  $C_j$  (j=1, 2) in which  $z^{-1}$  is analytic everywhere. By eq. (10.5),  $I=\ln(z)|_{-i}^{+i}=\ln(i)-\ln(-i)$ .

However,  $\ln(z)$  is multi-valued [eq. (9.6)], and so is  $\ln(z)|_{-i}^{+i}$  (problematic). If principle value  $\operatorname{Ln}(z)$  is used [eq. (9.7)],  $I = \operatorname{Ln}(z)|_{-i}^{+i} = i[\operatorname{Arg}(i) - \operatorname{Arg}(-i)]$ . One has to properly define the range of argument such that path  $C_j$  does not cross the branch cut [i.e.  $\operatorname{Ln} z = \ln(|z|) + i\operatorname{Arg}(z)$  experiences no "jump" along  $C_j$ ].

For an arbitrary path  $C_1$  in  $D_1$ , define  $-\pi < \operatorname{Arg}(z) \le \pi$  (branch cut is negative real axis),  $\Rightarrow I_1 = i\frac{\pi}{2} - \left(-i\frac{\pi}{2}\right) = i\pi$ . For an arbitrary path  $C_2$  in  $D_2$ , define  $0 \le \operatorname{Arg}(z) \le 2\pi$  (branch cut is positive real axis),  $\Rightarrow I_2 = i\frac{\pi}{2} - i\frac{3\pi}{2} = -i\pi$ .

### <Comment>

- 1)  $I_1 \neq I_2$  for there is no simply connected domain *D* containing both  $C_1$  and  $C_2$ .
- A singular point has profound impact on complex integral even the path does not pass through it. ⇒ Singularity is the protagonist of complex functions.

## ■ *ML*-inequality

If  $|f(z)| \le M$  everywhere on a path *C* of length L,  $\Rightarrow$ 

$$\left| \int_{C} f(z) dz \right| \le ML \tag{10.6}$$

It is useful in proving integral theorems.

## Cauchy's Integral Theorem (EK14.2)



## Closed path

Simply and multiply connected domains

## ■ Theorem 1

If f(z) is analytic in a simply connected domain D,  $\Rightarrow$ 

$$\oint_C f(z)dz = 0 \tag{10.7}$$

for any simple closed path *C* in *D*.

Intuition: Analytic in  $D \Rightarrow$  antiderivative approach eq. (10.5) is valid (will be proven in Theorem 3):  $\int_C f(z)dz = F(z_1) - F(z_0)$ . Closed path C means  $z_1 = z_0$ ,  $\Rightarrow$  integral=0.

(\*) <u>Proof</u>: (1) By eq. (10.2),  $I = \oint_C f(z)dz = \oint_C (udx - vdy) + i \oint_C (udy + vdx)$ . (2) By Green's theorem in the plane (EK 10.4, i.e. a special case of Stoke's theorem in EK 10.9): Re $\{I\} = \oint_C (udx - vdy) = \iint_R (-v_x - u_y) dxdy$ , where  $v_x$ ,  $u_y$  are continuous for f'(z) is continuous in *D*. (3) By CR equations:  $u_y = -v_x$ , Re $\{I\} = \iint_R (0) dxdy = 0$ . Similarly, Im $\{I\} = 0$ .

### <Comment>

- 1) Inverse of Theorem 1 is not true. **E.g.** eq. (10.4).
- 2) (\*) If f(z) is continuous in a simply connected domain D, and  $\oint_C f(z)dz = 0$  for any

simple closed path *C* in *D*,  $\Rightarrow$  *f*(*z*) is analytic (Morera theorem).

### ■ Theorem 2

If f(z) is analytic in a simply connected domain D,  $\Rightarrow \int_C f(z)dz$  is independent of path C but its end points.



<u>Proof</u>: For two arbitrary paths  $C_1$ ,  $C_2$  with common endpoints  $z_1$ ,  $z_2$ , Theorem 1 gives  $\oint_C f(z)dz = \int_{C_1} f(z)dz + \int_{C_2^*} f(z)dz = 0, \implies \int_{C_1} f(z)dz = -\int_{C_2^*} f(z)dz = \int_{C_2} f(z)dz.$ 

■ Theorem 3 [enable eq. (10.5)]

If f(z) is analytic in a simply connected domain D,  $\Rightarrow$  (1) antiderivative  $F(z) \equiv \int_{z_0}^{z} f(z') dz'$ exists; (2) F'(z) = f(z); (3) F(z) is also analytic in D.

Note: Theorem 3 and Theorem 2 prove eq. (10.5).

(\*) <u>Proof</u>: (1) By Theorem 2, line integral from fixed  $z_0$  to arbitrary z (in D) is independent of path, therefore, can be uniquely determined,  $\Rightarrow F(z) \equiv \int_{z_0}^{z} f(z') dz'$  exists.



(2) By definition, 
$$F'(z) = \lim_{\Delta z \to 0} \frac{F(z + \Delta z) - F(z)}{\Delta z} = \lim_{\Delta z \to 0} \frac{1}{\Delta z} \left[ \int_{z_0}^{z + \Delta z} f(z') dz' - \int_{z_0}^{z} f(z') dz' \right] = \lim_{\Delta z \to 0} \frac{1}{\Delta z} \left[ \int_{z}^{z + \Delta z} f(z') dz' \right].$$
 Represent  $f(z)$  by integral form:  $f(z) = \lim_{\Delta z \to 0} \frac{1}{\Delta z} \left[ \int_{z}^{z + \Delta z} f(z) dz' \right]; \Rightarrow |F'(z) - f(z)| = \lim_{\Delta z \to 0} \frac{1}{|\Delta z|} \cdot \left| \int_{z}^{z + \Delta z} [f(z') - f(z)] dz' \right|,$  by *ML*-inequality,  $\leq \lim_{\Delta z \to 0} \left( \frac{1}{|\Delta z|} \cdot M \cdot |\Delta z| \right) = \lim_{\Delta z \to 0} M$ , where *M* is defined as:  $|f(z') - f(z)| \leq M$  along the infinitesimal path  $z \to z + \Delta z$ .  
Since  $f(z)$  is analytic, it must be continuous;  $\Rightarrow$  for any given  $\varepsilon > 0$ , we can always find  $\delta$ , such that  $|f(z') - f(z)| \leq \varepsilon$  for all  $|z' - z| < \delta$ . By choosing  $|\Delta z| < \delta$ , we have  $M = \varepsilon \to 0$ ,  $\Rightarrow$ 

$$|F'(z) - f(z)| \rightarrow 0$$
, and  $F'(z) = f(z)$ .

(3) For every point z in D, f(z) exists,  $\Rightarrow F'(z) = f(z)$  exists,  $\Rightarrow F(z)$  is also analytic.

### ■ Theorem 4

If f(z) is analytic in a multiply connected domain D defined by an outer contour  $C_1$  and multiple inner contours  $\{C_i, i=2,3,...,n\}$  (all are in counterclockwise sense),  $\Rightarrow$ 



<u>Proof</u>: Introducing three inner cuts  $\hat{C}_1$ ,  $\hat{C}_2$ ,  $\hat{C}_3$  to divide the domain *D* into two simply connected domains. Apply Theorem 1 to them; integral over cuts will be canceled, ...

**E.g.** 
$$\oint_C (z - z_0)^m dz = \begin{cases} 2\pi \ i, \text{ if } m = -1 \\ 0, \text{ otherwise} \end{cases}$$
, for **arbitrary** simple closed path C in

counterclockwise sense, which encircles  $z_0$ .

 $(z-z_0)^m$  is analytic in a **doubly connected** domain *D* bounded by *C* and *C*\* (a circle of sufficiently small radius  $\rho$  centered at  $z_0$ ). By eq. (10.8),  $\oint_C (z-z_0)^m dz = \oint_{C^*} (z-z_0)^m dz =$  eq. (10.4).



# Cauchy's Integral Formula (EK 14.3)

#### Formula

Let f(z) be analytic in a simply connected domain D. For **any** simple closed path C (not just circles) in D that encloses a point  $z_{0,} \Rightarrow$ 

$$\oint_C \frac{f(z)}{z - z_0} dz = 2\pi i f(z_0)$$
(10.9)

Note: eq. (10.9) is a special case of residue integration formula [eq. (13.2)].

Proof: 
$$f(z) = f(z_0) + [f(z) - f(z_0)] \implies \oint_C \frac{f(z)}{z - z_0} dz = f(z_0) \left( \oint_C \frac{1}{z - z_0} dz \right) + \oint_C \frac{f(z) - f(z_0)}{z - z_0} dz = f(z_0) \left( \int_C \frac{1}{z - z_0} dz \right) + \int_C \frac{f(z) - f(z_0)}{z - z_0} dz = f(z_0) \left( \int_C \frac{1}{z - z_0} dz \right) + \int_C \frac{f(z) - f(z_0)}{z - z_0} dz = f(z_0) \left( \int_C \frac{1}{z - z_0} dz \right) + \int_C \frac{f(z) - f(z_0)}{z - z_0} dz = f(z_0) \left( \int_C \frac{1}{z - z_0} dz \right) + \int_C \frac{f(z) - f(z_0)}{z - z_0} dz = f(z_0) \left( \int_C \frac{1}{z - z_0} dz \right) + \int_C \frac{f(z) - f(z_0)}{z - z_0} dz = f(z_0) \left( \int_C \frac{1}{z - z_0} dz \right) + \int_C \frac{f(z) - f(z_0)}{z - z_0} dz = f(z_0) \left( \int_C \frac{1}{z - z_0} dz \right) + \int_C \frac{f(z) - f(z_0)}{z - z_0} dz = f(z_0) \left( \int_C \frac{1}{z - z_0} dz \right) + \int_C \frac{f(z) - f(z_0)}{z - z_0} dz = f(z_0) \left( \int_C \frac{1}{z - z_0} dz \right) + \int_C \frac{f(z) - f(z_0)}{z - z_0} dz = f(z_0) \left( \int_C \frac{1}{z - z_0} dz \right) + \int_C \frac{f(z) - f(z_0)}{z - z_0} dz = f(z_0) \left( \int_C \frac{1}{z - z_0} dz \right) + \int_C \frac{f(z) - f(z_0)}{z - z_0} dz = f(z_0) \left( \int_C \frac{1}{z - z_0} dz \right) + \int_C \frac{f(z) - f(z_0)}{z - z_0} dz = f(z_0) \left( \int_C \frac{1}{z - z_0} dz \right) + \int_C \frac{f(z) - f(z_0)}{z - z_0} dz = f(z_0) \left( \int_C \frac{1}{z - z_0} dz \right) + \int_C \frac{f(z) - f(z_0)}{z - z_0} dz = f(z_0) \left( \int_C \frac{1}{z - z_0} dz \right) + \int_C \frac{f(z) - f(z_0)}{z - z_0} dz$$

 $2\pi i f(z_0) + p$ . Whether  $p \rightarrow 0$  (i.e.  $|p| \rightarrow 0$ )?

(\*) By eq. (10.8),  $p = \oint_C \frac{f(z) - f(z_0)}{z - z_0} dz = \oint_{C^*} \frac{f(z) - f(z_0)}{z - z_0} dz$ , where  $C^*: |z - z_0| = \rho$  is a circle

enclosed by C (see above figure). By *ML*-inequality,  $|p| \le M \cdot 2\pi\rho$ , where  $\left|\frac{f(z) - f(z_0)}{z - z_0}\right| \le M$ .

Since f(z) is analytic,  $\Rightarrow$  continuous,  $\lim_{z \to z_0} f(z) = f(z_0)$ , i.e.  $|z - z_0| < \delta$ ,  $\Rightarrow |f(z) - f(z_0)| < \varepsilon$ . For an

arbitrarily small  $\varepsilon$ , we can choose  $\rho < \delta$ , such that  $\left| \frac{f(z) - f(z_0)}{z - z_0} \right| \le \frac{\varepsilon}{\rho} = M$  on  $C^*$ .  $\Rightarrow |p| \le M \cdot 2\pi\rho$ 

$$= \frac{\varepsilon}{\rho} \cdot 2\pi\rho = 2\pi\varepsilon \to 0, \text{ as } \varepsilon \to 0.$$

**E.g.** Evaluate  $l = \oint_C \frac{z^2 + 1}{z^2 - 1} dz$  for the four contours shown below (in counterclockwise sense).



 $\frac{z^2+1}{z^2-1} = \frac{z^2+1}{(z+1)(z-1)}.$  Circles (a-b) only enclose  $z=z_0=1$ ,  $\Rightarrow f(z)=\frac{z^2+1}{z+1}$ ,  $l=2\pi i \cdot f(1)=2\pi i.$ Circle (c) only encloses  $z=z_0=-1$ ,  $\Rightarrow f(z)=\frac{z^2+1}{z-1}$ ,  $l=2\pi i \cdot f(-1)=-2\pi i.$  Circle (d) encloses no singularity,  $\Rightarrow \frac{z^2+1}{(z+1)(z-1)}$  is analytic inside circle (d), l=0.

## <Comment>

If f(z) is analytic in a doubly connected domain D bounded by two counterclockwise contours

 $C_1, C_2, \Rightarrow$ 

$$f(z_0) = \frac{1}{2\pi i} \left[ \oint_{C_1} \frac{f(z)}{z - z_0} dz - \oint_{C_2} \frac{f(z)}{z - z_0} dz \right]$$
(10.10)

Proof: Introducing two inner cuts. Used in proving Laurent's theorem (EK 16.1).



## **Derivatives of Analytic Functions (EK 14.4)**

• Analytic  $\Rightarrow$  differentiable for all orders

If f(z) is analytic in a simply connected domain *D*, its *n*-th order derivative  $f^{(n)}(z_0)$  exists and can be evaluated by a complex line integral over a simple closed path *C* in *D* that encloses  $z_0$ :

$$f^{(n)}(z_0) = \frac{n!}{2\pi i} \oint_C \frac{f(z)}{(z - z_0)^{n+1}} dz$$
(10.11)

<u>Proof</u>: For n=1,  $f'(z_0) = \lim_{\Delta z \to 0} \frac{f(z_0 + \Delta z) - f(z_0)}{\Delta z}$ ; represent  $f(z_0 + \Delta z)$ ,  $f(z_0)$  by eq. (10.9):

$$f'(z_0) = \lim_{\Delta z \to 0} \frac{1}{2\pi i \Delta z} \left[ \oint_C \frac{f(z)}{z - (z_0 + \Delta z)} dz - \oint_C \frac{f(z)}{z - z_0} dz \right] = \lim_{\Delta z \to 0} \frac{1}{2\pi i} \left[ \oint_C \frac{f(z)}{(z - z_0 - \Delta z)(z - z_0)} dz \right];$$

by *ML*-inequality,  $=\frac{1}{2\pi i}\oint_C \frac{f(z)}{(z-z_0)^2}dz$ . For *n*>1, prove by induction.

## <Comment>

- 1) Evaluation of  $f^{(n)}(x_0)$  involves with real function values in the vicinity of  $x_0$ , while evaluation of  $f^{(n)}(z_0)$  can involve with complex function values far from  $z_0$ .
- 2) The differentiability of a real function f(x) implies nothing about the differentiability of f'(x), f''(z), ... etc. E.g. f(x)= x<sup>1/3</sup> is differentiable for all x∈R, but f'(x)=1/3 x<sup>-2/3</sup> is singular at x=0.

### Cauchy's inequality

If f(z) is analytic on and within a circle C of radius r and center  $z_0$ , and  $|f(z)| \le M$  on C,  $\Rightarrow$ 

$$\left|f^{(n)}(z_0)\right| \le \frac{n!M}{r^n}$$
 (10.12)



<u>Proof</u>: By eq. (10.11),  $|f^{(n)}(z_0)| = \frac{n!}{2\pi} \left| \oint_C \frac{f(z)}{(z-z_0)^{n+1}} dz \right|$ , by *ML*-inequality,  $\leq \frac{n!}{2\pi} \frac{M}{r^{n+1}} 2\pi r...$ 

Cauchy's inequality will be used to set an upper bound for the coefficients of Taylor series representation of a complex function (EK 15.4).

### ■ Liouville's theorem

If f(z) is analytic and  $|f(z)| \le K$  (bounded) in the entire complex plane,  $\Rightarrow f(z)$  is constant.

<u>Proof</u>: By eq. (10.12),  $|f'(z_0)| \le \frac{K}{r}$  for arbitrary  $z_0$  and r. By letting  $r \to \infty$ ,  $|f'(z_0)| \le 0$ ,  $|f'(z_0)| = 0$ , i.e. f(z) is a constant.

## <Comment>

- 1) Bounded, differentiable real functions are not necessarily constant. E.g.  $(\sin x)$ .
- 2) Slight deviation of an analytic function from constant implies the existence of singularity somewhere in the complex plane,  $\Rightarrow$  singularity is almost inevitable!
- (\*) Fundamental theory of algebra

If  $p(z)=a_nz^n+a_{n-1}z^{n-1}+\ldots+a_1z+a_0$ ,  $n\geq 1$ ,  $a_n\neq 0$  (polynomial of order n)  $\Rightarrow p(z)=0$  has at least one root (actually *n* roots in total).

<u>Proof</u>: By contradiction. p(z) is unbounded and entire (i.e. analytic everywhere). Assume

 $p(z)\neq 0$  for all z (no root),  $\Rightarrow f(z)\equiv 1/p(z)$  is entire but bounded. By Liouville's theorem,  $\Rightarrow f(z)=$ constant,  $\Rightarrow p(z)=$ constant, violating  $n\geq 1$ ,  $a_n\neq 0$ .

## ■ (\*) Gauss mean-value property

Let f(z) is analytic in a simply connected domain D. If we take a circular contour  $C(\subset D)$ :  $z=z_0+re^{i\theta}, \ \theta=[0,2\pi], \ \text{by eq. (10.9)}, f(z_0)=\frac{1}{2\pi i}\oint_C \frac{f(z)}{z-z_0}dz = \frac{1}{2\pi}\int_0^{2\pi} f(z_0+re^{i\theta})d\theta, \Rightarrow f(z_0) \ \text{is}$ 

the mean-value of f(z) on circle C with arbitrary radius r (as long as  $C \subset D$ ).

### (\*) Maximum/minimum modulus principle

If f(z) is analytic on and within a simple closed path C,  $\Rightarrow$  the maximum and minimum of |f(z)| for the region R (union of C and its interior) must occur on C.

Proof: By Gauss mean-value principle.