Lesson 09 Complex Numbers and Functions (EK 13)

■ Overview
Contents: complex numbers, analytic functions, complex series, complex integral.

Applications:

1) Evaluate complicated real and complex integrals (EK 16).
2) Derive Fourier and Laplace transforms in closed form.
3) Solve 2-D Laplace's equation (EK 17, 18).

Complex Numbers (EK13.1-2)

Representations

1) Cartesian form: $z=x+i y$, where $x=\operatorname{Re}\{z\}, y=\operatorname{Im}\{z\}, i=\sqrt{-1}$; a point in the complex plane.
2) Polar form: $z=r e^{i \theta}$, where $r=|z|=\sqrt{x^{2}+y^{2}}=$ modulus of $z, \theta=\operatorname{Arg}(z)=\tan ^{-1}\left(\frac{y}{x}\right)=$ argument (幅角) of z. Since $\tan ^{-1}$ gives values between $-\frac{\pi}{2}$ and $\frac{\pi}{2}$ (I and IV quadrants), $\tan ^{-1}\left(\frac{y}{x}\right)$ cannot tell the arguments of z and $-z, \Rightarrow \theta=\tan ^{-1}\left(\frac{y}{x}\right)+\pi$, if $x<0$.

- Properties

1) Addition/subtraction: Cartesian form is preferable. $z_{1} \pm z_{2}=\left(x_{1} \pm x_{2}\right)+i\left(y_{1} \pm y_{2}\right)$.
2) Multiplication/division: Polar form is preferable. $z_{1} z_{2}=\left(r_{1} r_{2}\right) e^{i\left(\theta_{1}+\theta_{2}\right)}, \frac{z_{1}}{z_{2}}=\frac{r_{1}}{r_{2}} e^{i\left(\theta_{1}-\theta_{2}\right)}$.
3) Complex conjugate: $z^{*}=(x-i y)=r e^{-i \theta}$. The conjugate pairs z and z^{*} can be used to express parameters in Cartesian and polar forms:
$x=\frac{z+z^{*}}{2}, y=\frac{z-z^{*}}{2 i}, r=\sqrt{z \cdot z^{*}}, \theta=\frac{1}{2} \operatorname{Arg}\left(\frac{z}{z^{*}}\right)$.
4) Integral powers: $z^{n}=r^{n} e^{i n \theta}$ (proved by induction).

Applications: expressing $\cos (n \theta), \sin (n \theta)$ in terms of powers of $\cos \theta, \sin \theta$.
E.g. $\cos (2 \theta)=\operatorname{Re}\left\{e^{i 2 \theta}\right\}=\operatorname{Re}\left\{(\cos \theta+i \sin \theta)^{2}\right\}=\cos ^{2} \theta-\sin ^{2} \theta$.
5) Integral roots: $\sqrt[n]{z}=\sqrt[n]{r} \exp \left[i \frac{\theta+2 k \pi}{n}\right], k=0,1, \ldots, n-1$ (multivalued function).

Proof: Let $z=r e^{i \theta}, w=R e^{i \phi}=\sqrt[n]{z} \Rightarrow w^{n}=z, R^{n} e^{i n \phi}=r e^{i \theta}, R=\sqrt[n]{r}, \phi=\frac{\theta+2 k \pi}{n}, k=0, \ldots, n-1$.

Analytic Functions (EK13.3)

- Sets in the complex plane

1) Neighborhood of a : $\{z,|z-a|<\rho\}$ (open circular disk).
2) Open set S : every point of S has a neighborhood only consisting of points belonging to S. E.g. $|z|<1$ is open, $|z| \leq 1$ is not open.
3) Connected set S : any two of its points can be joined by a broken line (linear segments) within S. E.g. $\{|z|<1$ and $|z-3|<1\}$ is NOT connected.
4) Domain: an open connected set.

- Complex functions
$w=f(z=x+i y)=u(x, y)+i v(x, y)$. A complex function w of single complex variable z is equivalent
to a pair of real functions $u(x, y)$ and $v(x, y)$, each depending on two real variables x, y.

Limit

$\lim _{z \rightarrow z_{0}} f(z)=l$: for every real $\varepsilon>0$, we can find a real $\delta>0$, such that $|f(z)-l|<\varepsilon$ if $0<\left|z-z_{0}\right|<\delta$.

Unlike the limit of real functions: $\lim _{x \rightarrow x_{0}} f(x)=l$, where x can only approach x_{0} from left and right hand sides (1-D); z can approach z_{0} from infinitely many directions in the complex plane (2-D, draw a plot). The limit exists only if $f(z)$ approaches the same l from all possible paths.

- Continuous

A function $f(z)$ is continuous at $z=z_{0}$, if $\lim _{z \rightarrow z_{0}} f(z)=f\left(z_{0}\right)$.

Derivative
$f(z)$ is differentiable at z_{0}, if the derivative (limit of difference quotient):

$$
\begin{equation*}
f^{\prime}\left(z_{0}\right)=\lim _{\Delta z \rightarrow 0} \frac{f\left(z_{0}+\Delta z\right)-f\left(z_{0}\right)}{\Delta z} \tag{9.1}
\end{equation*}
$$

approaches the same value as $\Delta z \rightarrow 0$ along all paths.
E.g. $f(z)=z^{2} . f^{\prime}(z)=\lim _{\Delta z \rightarrow 0} \frac{(z+\Delta z)^{2}-z^{2}}{\Delta z}=\lim _{\Delta z \rightarrow 0} \frac{2 z(\Delta z)+(\Delta z)^{2}}{\Delta z}=2 z$, for all $z \in C$.
E.g. $f(z)=z^{*} . f^{\prime}(z)=\lim _{\Delta z \rightarrow 0} \frac{(z+\Delta z)^{*}-z^{*}}{\Delta z}=\lim _{\Delta z \rightarrow 0} \frac{(\Delta z)^{*}}{\Delta z}=\lim _{\Delta z \rightarrow 0} \frac{\Delta x-i \Delta y}{\Delta x+i \Delta y}$, whose value depends on
the path (see figure below). \Rightarrow The derivative does not exist for all $\boldsymbol{z} \in \boldsymbol{C}$. Unlike real functions, differentiability is a rather strict requirement for complex functions.

For path I, $\Delta y=0, \Delta z=\Delta x \rightarrow 0$, causing a limit of
+1 . For path II, $\Delta x=0, \Delta z=i \Delta y \rightarrow 0$, causing a limit of -1 .

Note we cannot let $\Delta x=\Delta y=0$ simultaneously, which violates the definition of "limit".
$f(z)$ is analytic in a domain D, if $f(z)$ is differentiable at all points of $D . f(z)$ is analytic at a point z_{0}, if $f(z)$ is analytic in a neighborhood of z_{0}.

Cauchy-Riemann (CR) Equations (EK13.4)

■ $f(z=x+i y)=u(x, y)+i v(x, y)$ is analytic \Leftrightarrow CR equations are satisfied:

$$
\begin{equation*}
\left\{u_{x}=v_{y}, \quad u_{y}=-v_{x}\right\} \tag{9.2}
\end{equation*}
$$

Proof (\Rightarrow) : Analytic \Rightarrow differentiable, $f^{\prime}(z)=\lim _{\Delta z \rightarrow 0} \frac{f(z+\Delta z)-f(z)}{\Delta z}$ has the same value for all possible paths $\Delta z \rightarrow 0$. We examine the two special paths I and II illustrated above:
(i) For path I, $\Delta z=\Delta x \rightarrow 0, f^{\prime}(z)=\lim _{\Delta x \rightarrow 0} \frac{[u(x+\Delta x, y)+i v(x+\Delta x, y)]-[u(x, y)+i v(x, y)]}{\Delta x}=$ $u_{x}+i v_{x}$. (ii) For path II, $\Delta z=i \Delta y \rightarrow 0, \Rightarrow f^{\prime}(z)=v_{y}-i u_{y}$. Equating their real and imaginary parts gives rise to eq. (9.2).
E.g. $f(z)=z^{*}=(x-i y),\{u=x, v=-y\} ; u_{x}=1 \neq v_{y}=-1, \Rightarrow f(z)=z^{*}$ is not analytic.

<Comment>

The relations derived during the proof of CR equations:

$$
\begin{equation*}
f^{\prime}(z)=u_{x}+i v_{x}=v_{y}-i u_{y} \tag{9.3}
\end{equation*}
$$

can be used to evaluate complex derivative.

■ Real and imaginary parts of an analytic function satisfy 2-D Laplace's equation.
Proof: $f(z)=u(x, y)+i v(x, y)$ is analytic, by eq. (9.2), $\Rightarrow\left\{u_{x}=v_{y}, u_{y}=-v_{x}\right\} . \Rightarrow\left\{u_{x x}=v_{y x}, u_{y y}=-v_{x y}\right\}$; $u_{x x}+u_{y y}=\nabla^{2} u=0 ;$ Similarly, $\nabla^{2} v=0$.

<Comment>

$\nabla^{2} u=0, \nabla^{2} v=0$ does not guarantee that $f(z)=u(x, y)+i v(x, y)$ is analytic.

Exponential Function (EK13.5)

- Definition:

$$
\begin{equation*}
e^{z} \equiv e^{x}(\cos y+i \sin y), \text { or } \sum_{n=0}^{\infty} z^{n} / n! \tag{9.4}
\end{equation*}
$$

- Properties:

1) e^{z} is analytic for all z. Proof: $u=e^{x} \cdot \cos (y), v=e^{x} \cdot \sin (y)$, by eq. (9.2), \ldots.
2) $\frac{d}{d z} e^{z}=e^{z}$. Proof: by eq. (9.3), $\frac{d}{d z} e^{z}=u_{x}+i v_{x}=u+i v=e^{z}$.
3) $e^{z_{1}+z_{2}}=e^{z_{1}} \cdot e^{z_{2}}$. Proof: let $z_{1}=x_{1}+i y_{1}, z_{2}=x_{2}+i y_{2}$, apply $e^{x_{1}+x_{2}}=e^{x_{1}} e^{x_{2}}$ and trigonometric equalities,
4) $e^{z+i 2 n \pi}=e^{z}$, hence the fundamental strip $(x,-\pi<y \leq \pi)$ is mapped onto the entire w-plane.

5) The left half-plane $\{x \leq 0\}$ is mapped onto the unit circle in the w-plane.

Trigonometric Functions (EK13.6)

- Definition:

$$
\begin{equation*}
\cos z \equiv \frac{e^{i z}+e^{-i z}}{2}, \sin z \equiv \frac{e^{i z}-e^{-i z}}{2 i}, \tan z \equiv \frac{\sin z}{\cos z} \tag{9.5}
\end{equation*}
$$

<Comment>

Real functions $\sin x, \cos x$ are unrelated to real function e^{x}.

- Properties:

1) $\cos z, \sin z$ are analytic for all z, but $(\tan z)$ is not wherever $\cos z=0$.
2) $\cos z=(\cos x \cdot \cosh y)-i(\sin x \cdot \sinh y), \sin z=(\sin x \cdot \cosh y)+i(\cos x \cdot \sinh y)$. Proof: by $\cos z$ $=\frac{1}{2}\left[e^{i(x+i y)}+e^{-i(x+i)}\right]=\ldots$
3) $|\cos z|^{2}=\cos ^{2} x+\sinh ^{2} y,|\sin z|^{2}=\sin ^{2} x+\sinh ^{2} y$, not bounded by 1 .

Proof: by $|\cos z|^{2}=(\cos x \cdot \cosh y)^{2}+(\sin x \cdot \sinh y)^{2} ; \cosh ^{2} y=1+\sinh ^{2} y, \Rightarrow|\cos z|^{2}=\cos ^{2} x(1+$ $\left.\sinh ^{2} y\right)+\sin ^{2} x \cdot \sinh ^{2} y=\ldots$
4) $\cos z=0$, for $z=\frac{2 n+1}{2} \pi ; \sin z=0$, for $z=n \pi$. Proof: by property 2 .

6) General formulas of real trigonometric functions remain valid for complex counterparts.

Logarithm Function (EK13.7)

- Definition:

Inverse of exponential function. $w=\ln z \Leftrightarrow z=e^{w}$. Let $z=r e^{i \theta}, w=u+i v, \Rightarrow r e^{i \theta}=e^{u+i v}=e^{u} e^{i v}, \Rightarrow$ $e^{u}=r, v=\theta+2 n \pi . \Rightarrow$

$$
\begin{equation*}
\ln z=\ln r+i(\theta+2 n \pi) \tag{9.6}
\end{equation*}
$$

which is a multi-valued "function" [i.e. $r e^{i \theta}$ and $r e^{i(\theta+2 n \pi)}$ represent the same point in the z-plane, but are mapped onto different points in the w-plane. Strictly speaking, it is not a function]. E.g. $\ln (i)=\ln (1)+i(0.5+2 n) \pi$.

The principal value of $\ln z$ is defined as:

$$
\begin{equation*}
\operatorname{Ln} z=\ln |z|+i \operatorname{Arg}(z), \quad-\pi<\operatorname{Arg}(z) \leq \pi \tag{9.7}
\end{equation*}
$$

Though (Lnz) is single-valued, the restriction of argument $[-\pi<\operatorname{Arg}(z) \leq \pi]$ makes the function discontinuous (and non-analytic) when the variable z passes through a branch cut (negative real axis).

- Properties:

1) If z is negatively real (where real logarithm is undefined), $\operatorname{Ln} z=\ln |z|+i \pi$.

2) The branch cut of $(\operatorname{Ln} z)$ depends on the choice of argument range.
E.g. if $0 \leq \operatorname{Arg}(z)<2 \pi$ is used, branch cut becomes the positive real axis. In this case, $(\operatorname{Ln} z)$ is continuous and analytic on the negative real axis.
3) $\ln \left(z_{1} z_{2}\right)=\ln z_{1}+\ln z_{2}, \ln \left(\frac{z_{1}}{z_{2}}\right)=\ln z_{1}-\ln z_{2}$. Proof: by $z_{1}=r_{1} e^{i \theta_{1}}, \ldots$
4) $\frac{d}{d z} \operatorname{Ln} z=\frac{1}{z}$, except for points on the branch cut. Proof: by $u=\operatorname{Ln}|z|=\frac{1}{2} \ln \left(x^{2}+y^{2}\right)$,
$v=\operatorname{Arg}\{z\}=\left\{\begin{array}{l}\tan ^{-1}(y / x), \text { if } x \geq 0 \\ \tan ^{-1}(y / x)+\pi, \text { if } x<0\end{array}\right.$; by eq. (9.3), $\frac{d}{d z} \operatorname{Ln} z=u_{x}+i v_{x}=\frac{x-i y}{\left(x^{2}+y^{2}\right)}=\frac{1}{z}$.
5) General powers:

$$
\begin{equation*}
z^{c}=e^{c \ln z} ; \quad a^{z}=e^{z \ln a} \tag{9.8}
\end{equation*}
$$

E.g. $i^{i}=e^{i \ln i}=e^{i[0+i(\pi / 2+2 n \pi)]}=e^{-(\pi / 2+2 n \pi)} \in R$.

Appendix 9A - Conformal Mapping (EK 17)

Mapping
For each point z in the domain of definition D, function $f(z)$ assigns a point $f(z)$ (image of z) in the w-plane, $\Rightarrow f$ defines a mapping of D in the z-plane onto the w-plane.
E.g. $w=z^{2}$. (i) $R e^{i \phi}=\left(r e^{i \theta}\right)^{2}=\left(r^{2} e^{i 2 \theta}\right), \Rightarrow\left\{R=r^{2}, \phi=2 \theta\right\}$ (lower left figure). (ii) $u+i v=(x+i y)^{2} \Rightarrow$ $\left\{u=x^{2}-y^{2}, v=2 x y\right\}$. A vertical line in the $x y$-plane $\left(x=x_{0}\right)$ is mapped onto a parabola in the $u v$-plane: $u=x_{0}^{2}-\left(v^{2} / 4 x_{0}^{2}\right)$. A horizontal line $\left(y=y_{0}\right)$ is mapped onto a parabola: $u=$ $\left(v^{2} / 4 y_{0}^{2}\right)-y_{0}^{2}$ (lower right figure).

(z-plane)

- Conformal mapping

Mapping defined by an analytic function preserves the included angle (夾角, magnitude and sense) between any oriented curves.

Proof: Let curve C in the z-plane have a parametric representation: $z(t)=x(t)+i y(t)$. The tangential at $z=z_{0}=z\left(t_{0}\right)$ makes an angle θ with respect to the x-axis, where $\tan \theta$

$$
\begin{align*}
\left.=\lim _{\Delta t \rightarrow 0} \frac{\Delta y=y\left(t_{0}+\Delta t\right)-y\left(t_{0}\right)}{\Delta x=x\left(t_{0}+\Delta t\right)-x\left(t_{0}\right)}\right) & =\lim _{\Delta t \rightarrow 0} \frac{\left[y\left(t_{0}+\Delta t\right)-y\left(t_{0}\right) / \Delta t\right]}{\left[x\left(t_{0}+\Delta t\right)-x\left(t_{0}\right) / \Delta t\right]}=\frac{y^{\prime}\left(t_{0}\right)}{x^{\prime}\left(t_{0}\right)}, \text { i.e. } \\
\theta & =\operatorname{Arg}\left\{x^{\prime}\left(t_{0}\right)+i y^{\prime}\left(t_{0}\right)\right\}=\operatorname{Arg}\left\{z^{\prime}\left(t_{0}\right)\right\} \tag{9A.1}
\end{align*}
$$

Analytic function $f(z)$ maps curve C onto its image $C^{*}: w(t)=f(z(t))=u(t)+i v(t)$ in the w-plane. The tangential at $w_{0}=f\left(z_{0}\right)$ makes an angle ϕ with respect to the u-axis, where $\phi=\operatorname{Arg}\left\{w^{\prime}\left(t_{0}\right)\right\}$. By the chain rule, $w^{\prime}\left(t_{0}\right)=f^{\prime}\left(z_{0}\right) \cdot z^{\prime}\left(t_{0}\right) \Rightarrow \operatorname{Arg}\left\{w^{\prime}\left(t_{0}\right)\right\}=\operatorname{Arg}\left\{f^{\prime}\left(z_{0}\right)\right\}+\operatorname{Arg}\left\{z^{\prime}\left(t_{0}\right)\right\}$,

$$
\begin{equation*}
\phi=\delta+\theta, \quad \delta=\operatorname{Arg}\left\{f^{\prime}\left(z_{0}\right)\right\} \tag{9A.2}
\end{equation*}
$$

Since δ is only determined by the mapping function, $f(z)$ rotates any oriented curve by the same angle δ, as long as $f^{\prime}\left(z_{0}\right) \neq 0$ (i.e. $\operatorname{Arg}\left\{f^{\prime}\left(z_{0}\right)\right\}$ exists).
E.g. $f(z)=e^{z}, z=x+i y ; w=R e^{i \phi},=f(z)=e^{x+i y}=e^{x} e^{i y}, \Rightarrow\left\{R=e^{x}, \phi=y\right\}$. Vertical line $x=a$ in the z-plane is mapped onto a circle of radius e^{a} in the w-plane. Horizontal line $y=b$ is mapped onto a ray of angle $\phi=b$. The included angles of $\{x=a, y=b\}$ and $\left\{R=e^{a}, \phi=b\right\}$ are the same $\left(90^{\circ}\right)$.

Conformal mapping is historically important in solving 2-D Laplace's equation. However, it relies on symmetry of the problem, and gives way to the more powerful numerical methods.

