Lesson 07 Laplace's Equation

Overview

Laplace's equation describes the "potential" in gravitation, electrostatics, and steady-state behavior of various physical phenomena. Its solutions are called harmonic functions.

Physical meaning (SJF 31): Laplacian operator ∇^2 is a multi-dimensional generalization of 2nd-order derivative $\frac{d^2}{dx^2}$. Its difference quotient representation, as implied by eq. (1.2), is:

$$u_{xx} + u_{yy} = \lim_{\Delta \to 0} \left\{ \frac{u(x + \Delta, y) - 2u(x, y) + u(x - \Delta, y)}{\Delta^2} + \frac{u(x, y + \Delta) - 2u(x, y) + u(x, y - \Delta)}{\Delta^2} \right\}$$

$$= \lim_{\Delta \to 0} \frac{-4}{\Delta^2} [u(x, y) - \overline{u}(x, y)]$$
(7.1)

where $\overline{u}(x,y) \equiv \frac{u(x-\Delta,y) + u(x+\Delta x,y) + u(x,y-\Delta) + u(x,y+\Delta)}{4}$ represents the average of neighboring points (2D). As a result, $\nabla^2 u = 0$ implies that the function value at any point is equal to the average of its neighboring values (dynamic equilibrium, or steady-state).

<Comment>

- 1) $\nabla^2 u = 0$ does not necessarily mean $u_{xx}=0$ and $u_{yy}=0$.
- 2) Not all continuous functions satisfy $\nabla^2 u = 0$. **E.g.** $u = x^2 y$, $\Rightarrow \nabla^2 u = 2y \neq 0$.
- **(*)** Three types of BCs for Laplace's equation (similar with those in Lesson 3):
- 1) Dirichlet: *u* is specified on the boundary surface *S* (curve *C*). **E.g.** Find the electrostatic potential within/outside a circle where the potential on the circular rim is specified.
- 2) Neumann: outward normal derivative $u_n = \frac{\partial u}{\partial n}$ (physically, inward flux) is specified on S(C). **E.g.** Find steady-state temperature within a circle if the heat inflow varies around

the boundary C according to: $\frac{\partial u}{\partial r} = \sin \theta$.

<Comment>

- (a) Total flux across the boundary must vanish [in this case: $\int_C u_n = \int_0^{2\pi} (\sin \theta) \rho d\theta = 0$]. Otherwise, gain or loss exists in the region of interest, and physical quantity varies with time (no longer steady-state).
- (b) Solutions to Neumann problems are **not unique**. **E.g.** $\{\nabla^2 u=0, u_r(r=1,\theta)=\cos(2\theta)\}$ have solutions of the form: $u(r,\theta)=r^2\cos(2\theta)+c$, c is an arbitrary constant. Additional information (such as the value of u at some point) is required.
- 3) Mixed: a mixture of the first two types. **E.g.** $u_n + \gamma(u+g) = 0$ (Newton's law of cooling).

Laplace's Equation in Cartesian Coordinate (EK 12.5)

■ Problem: steady state temperature distribution on a rectangular plate.

PDE:
$$u_t = \alpha^2 (u_{xx} + u_{yy}) = 0 \Rightarrow u_{xx} + u_{yy} = 0, \{0 < x < a, 0 < y < b\}$$

Four Dirichlet BCs: u(0,y)=0, u(a,y)=0, u(x,0)=0, u(x,b)=f(x).

- Solving Cartesian Laplace's equation by separation of variables:
- 1) Separation of variables:

Let
$$u(x,y)=X(x)\cdot Y(y)$$
, $\Rightarrow X''Y + X\ddot{Y} = 0$, divide by XY , $\Rightarrow \frac{X''}{X} = -\frac{\ddot{Y}}{Y} = -k^2 < 0$
 $\Rightarrow X'' + k^2 X = 0$, $\ddot{Y} - k^2 Y = 0$ (one PDE \rightarrow two ODEs)

- 2) Solving the normal modes by **homogeneous** BCs:
 - (i) To avoid trivial solution u(x,y)=0, homogeneous BCs of $u(x,y) \to BCs$ of X(x), Y(y): $\{u(0,y)=0, u(a,y)=0, u(x,0)=0\} \to \{X(0)=0, X(a)=0, Y(0)=0\}$
 - (ii) $X'' + k^2 X = 0$, $\Rightarrow X(x) = A\cos(kx) + B\sin(kx)$; By BCs: (i) $X(0) = 0 \Rightarrow A = 0$; (ii) $X(a) = 0 \Rightarrow k = k_n = \frac{n\pi}{a}$, $n = 1, 2, ... \Rightarrow X_n(x) = \sin(k_n x)$;

(iii)
$$\ddot{Y}_n - k_n^2 Y_n = 0 \implies Y_n(y) = A_n e^{k_n y} + B_n e^{-k_n y}$$
;

By BC:
$$Y(0)=0 \Rightarrow B_n = -A_n, \Rightarrow Y_n(y)=A_n \cdot \sinh(k_n y)$$

 \Rightarrow The *n*-th normal mode is $u_n(x,y) = X_n(x) \cdot Y_n(y)$:

$$u_n(x,y) = A_n \cdot \sin(k_n x) \cdot \sinh(k_n y) \tag{7.2}$$

We have only one unknown coefficient A_n for each mode. The more homogeneous BCs, the fewer coefficients to be determined.

3) Determining the exact solution by the **nonhomogeneous BC** (similar to the role of ICs in *t*-dependent PDEs):

$$u(x,t) = \sum_{n=1}^{\infty} u_n(x,y) = \sum_{n=1}^{\infty} A_n \sin(k_n x) \cdot \sinh(k_n y)$$
 (7.3)

Substitute the nonhomogeneous BC into eq. (7.3): $u(x,b) = \sum_{n=1}^{\infty} A_n \sinh(k_n b) \cdot \sin(k_n x) = f(x)$.

By Fourier sine series, \Rightarrow

$$A_n = \frac{2}{a \cdot \sinh(n\pi b/a)} \int_0^a f(x) \cdot \sin(k_n x) dx \tag{7.4}$$

Laplace's Equation in Polar Coordinates (EK 12.10, SJF 33, 34)

Overview

In solving circular membrane problem, we have seen that ∇^2 in polar coordinates leading to different ODEs and normal modes compared to ∇^2 in Cartesian coordinates. In this subsection, we will examine the normal modes of Laplace's equation with circular geometry, including interior, exterior, and annulus problems.

■ (A) Interior problem (SJF 33):

Find the electrostatic potential **within** a circle of radius ρ , given that the potential at boundary is specified.

PDE:
$$\nabla^2 u = u_{rr} + \frac{1}{r}u_r + \frac{1}{r^2}u_{\theta\theta} = 0$$
 [eq. (6.5)], where ROI = $\{0 < r < \rho, 0 < \theta < 2\pi\}$.

BC: $u(\rho,\theta)=g(\theta)$ [implicit BC: $|u(0,\theta)|<\infty$, periodic BC: $u(r,\theta+2n\pi)=u(r,\theta)$].

1) Separation of variables:

Let
$$u(r,\theta) = R(r) \cdot \Theta(\theta) \Rightarrow R''\Theta + \frac{1}{r}R'\Theta + \frac{1}{r^2}R\ddot{\Theta} = 0$$
; divide by $\frac{R\Theta}{r^2}$,

$$\Rightarrow \frac{r^2R'' + rR'}{R} = -\frac{\ddot{\Theta}}{\Theta} = k^2 \ge 0 \text{ (why? Because of BCs)}$$

$$\Rightarrow (i) \quad r^2R'' + rR' - k^2R = 0 \quad \text{(Euler's eq.)}; (ii) \quad \ddot{\Theta} + k^2\Theta = 0.$$

- 2) Solving the normal modes by periodic and implicit BCs:
 - (i) $\ddot{\Theta} + k^2 \Theta = 0$, $\Rightarrow \Theta(\theta) = c \cdot \cos(k\theta) + d \cdot \sin(k\theta)$;

Transformation of periodic BC: $u(r,\theta+2n\pi)=u(r,\theta) \rightarrow \Theta(\theta+2n\pi)=\Theta(\theta)$;

$$\Rightarrow k = k_n = n = 0, 1, ... \Rightarrow$$

$$\Theta_n(\theta) = c \cdot \cos(n\theta) + d \cdot \sin(n\theta) \tag{7.5}$$

(ii) $r^2R'' + rR' - n^2R = 0$, \Rightarrow

$$R_n(r) = \begin{cases} a + b(\ln r), & \text{if } n = 0; \\ ar^n + b(1/r^n), & \text{if } n = 1, 2, \dots \end{cases}$$
 (7.6)

Transformation of implicit BC: $|u(0,\theta)| < \infty \rightarrow |R(0)| < \infty$;

- \Rightarrow b=0 (for arbitrary n), $R_n(r)=a\cdot r^n$; for simplicity, we use $R_n(r)=a\left(r/\rho\right)^n$
- \Rightarrow The *n*-th normal mode: $u_n(r,\theta)=R_n(r)\cdot\Theta_n(\theta)$,

$$u_n(r,\theta) = (r/\rho)^n [c_n \cdot \cos(n\theta) + d_n \cdot \sin(n\theta)]$$
(7.7)

3) Determining the exact solution by the nonhomogeneous BC:

$$u(r,\theta) = \sum_{n=0}^{\infty} u_n(r,\theta) = \sum_{n=0}^{\infty} (r/\rho)^n \left[c_n \cos(n\theta) + d_n \sin(n\theta) \right]$$
 (7.8)

Substitute the nonhomogeneous BC into eq. (7.8): $u(\rho,\theta) = \sum_{n=1}^{\infty} 1^n [c_n \cos(n\theta) + d_n \sin(n\theta)]$

 $=g(\theta)$, by Fourier sine-cosine series, \Rightarrow

$$c_0 = \frac{1}{2\pi} \int_0^{2\pi} g(\theta) d\theta , \quad c_n = \frac{1}{\pi} \int_0^{2\pi} g(\theta) \cos(n\theta) d\theta , \quad d_n = \frac{1}{\pi} \int_0^{2\pi} g(\theta) \sin(n\theta) d\theta$$

$$(7.9)$$

<Comment>

Solution $u(r,\theta)$ can also be regarded as superposition of "eigen-response":

- 1) Expand the BC $g(\theta)$ by Fourier series: $g(\theta) = \sum_{n=1}^{\infty} c_n \cos(n\theta) + d_n \sin(n\theta)$
- 2) Find the solutions of PDE + "eigen-BCs":

$$\begin{cases} \nabla^2 u = 0 \\ u(\rho, \theta) = \sin(n\theta) \text{ or } \cos(n\theta) \end{cases}, \Rightarrow \text{ eigen-response is: } u(r, \theta) = \left(\frac{r}{\rho}\right)^n [\sin(n\theta) \text{ or } \cos(n\theta)];$$

3) Superposition:
$$u(r,\theta) = \sum_{n=0}^{\infty} (r/\rho)^n [c_n \cos(n\theta) + d_n \sin(n\theta)]$$

■ (B) Exterior problem (SJF 34):

Find the electrostatic potential **outside** a circle of radius ρ with type1 BC.

PDE:
$$\nabla^2 u = u_{rr} + \frac{1}{r}u_r + \frac{1}{r^2}u_{\theta\theta} = 0$$
, ROI: $\{\rho < r < \infty, 0 < \theta < 2\pi\}$

BC: $u(\rho,\theta)=g(\theta)$ [implicit BCs: $|u(\infty,\theta)|<\infty$, and $u(r,\theta+2n\pi)=u(r,\theta)$]

As in solving the interior Dirichlet problem, separation of variables leads to eq's (7.5-6):

$$\Rightarrow \Theta_n(\theta) = c \cdot \cos(n\theta) + d \cdot \sin(n\theta), \qquad R_n(r) = \begin{cases} a + b(\ln r), & \text{if } n = 0; \\ ar^n + b(1/r^n), & \text{if } n = 1, 2, \dots \end{cases}$$

Transformation of implicit BC: $\{|u(\infty,\theta)| < \infty \rightarrow |R(\infty)| < \infty\}$, $\Rightarrow \{b=0 \text{ if } n=0; a=0, \text{ if } n=1, 2, \ldots\}$

$$\Rightarrow R_n(r) = \frac{b}{r^n}$$
, for simplicity, we use $R_n(r) = b(\rho/r)^n$ [$R_n(r) = a(r/\rho)^n$ in the interior problem].

 \Rightarrow The *n*-th normal mode: $u_n(r,\theta)=R_n(r)\cdot\Theta_n(\theta)$,

$$u_n(r,\theta) = (\rho/r)^n \left[c_n \cdot \cos(n\theta) + d_n \cdot \sin(n\theta) \right]$$
 (7.10)

$$u(r,\theta) = \sum_{n=0}^{\infty} u_n(r,\theta) = \sum_{n=0}^{\infty} (\rho/r)^n \left[c_n \cos(n\theta) + d_n \sin(n\theta) \right]$$
 (7.11)

Substitute the nonhomogeneous BC into eq. (7.11): $u(\rho,\theta) = \sum_{n=1}^{\infty} 1^n [c_n \cos(n\theta) + d_n \sin(n\theta)] = g(\theta)$; by Fourier sine-cosine series, $\Rightarrow c_0, c_n, d_n$ are determined by eq. (7.9).

■ (*) (C) Annulus problem (SJF 34):

Find the electrostatic potential **between** two circles of radii ρ_1 , ρ_2 with type 1 BCs.

PDE:
$$\nabla^2 u = u_{rr} + \frac{1}{r}u_r + \frac{1}{r^2}u_{\theta\theta} = 0$$
, $\{\rho_1 < r < \rho_2, 0 < \theta < 2\pi\}$

BCs: $u(\rho_1, \theta) = g_1(\theta)$, $u(\rho_2, \theta) = g_2(\theta)$ [periodic BC: $u(r, \theta + 2n\pi) = u(r, \theta)$].

As in solving the interior Dirichlet problem, separation of variables leads to eq's (7.5-6):

$$\Rightarrow \Theta_n(\theta) = c \cdot \cos(n\theta) + d \cdot \sin(n\theta), \qquad R_n(r) = \begin{cases} a + b(\ln r), & \text{if } n = 0; \\ ar^n + b(1/r^n), & \text{if } n = 1, 2, ... \end{cases}$$

Since the ROI is $\rho_1 < r < \rho_2$, **neither** a **nor** b **should be zero**, the general form of $R_n(r)$ is used, and the general solution $u(r, \theta)$ becomes:

$$u(r,\theta) = a_0 + b_0 \ln(r) + \sum_{n=1}^{\infty} \left\{ \left[a_n r^n + b_n r^{-n} \right] \cos(n\theta) + \left[c_n r^n + d_n r^{-n} \right] \sin(n\theta) \right\}$$
(7.12)

Substitute the nonhomogeneous BCs into eq. (7.12):

$$u(\rho_{1},\theta) = [a_{0} + b_{0} \ln(\rho_{1})] + \sum_{n=1}^{\infty} \{ [a_{n}\rho_{1}^{n} + b_{n}\rho_{1}^{-n}] \cos(n\theta) + [c_{n}\rho_{1}^{n} + d_{n}\rho_{1}^{-n}] \sin(n\theta) \} = g_{1}(\theta);$$

$$u(\rho_{2},\theta) = [a_{0} + b_{0} \ln(\rho_{2})] + \sum_{n=1}^{\infty} \{ [a_{n}\rho_{2}^{n} + b_{n}\rho_{2}^{-n}] \cos(n\theta) + [c_{n}\rho_{2}^{n} + d_{n}\rho_{2}^{-n}] \sin(n\theta) \} = g_{2}(\theta);$$

$$\Rightarrow \begin{cases} a_{0} + b_{0} \ln(\rho_{1}) = \frac{1}{2\pi} \int_{0}^{2\pi} g_{1}(\phi) d\phi \\ a_{0} + b_{0} \ln(\rho_{2}) = \frac{1}{2\pi} \int_{0}^{2\pi} g_{2}(\phi) d\phi \end{cases}; \text{ used to solve } a_{0}, b_{0};$$

$$\Rightarrow \begin{cases} a_{n}\rho_{1}^{n} + b_{n}\rho_{1}^{-n} = \frac{1}{\pi} \int_{0}^{2\pi} g_{1}(\phi) \cos(n\phi) d\phi \\ a_{n}\rho_{2}^{n} + b_{n}\rho_{2}^{-n} = \frac{1}{\pi} \int_{0}^{2\pi} g_{2}(\phi) \cos(n\phi) d\phi \end{cases}; \text{ used to solve } a_{n}, b_{n};$$

$$\Rightarrow \begin{cases} c_n \rho_1^n + d_n \rho_1^{-n} = \frac{1}{\pi} \int_0^{2\pi} g_1(\phi) \sin(n\phi) d\phi \\ c_n \rho_2^n + d_n \rho_2^{-n} = \frac{1}{\pi} \int_0^{2\pi} g_2(\phi) \sin(n\phi) d\phi \end{cases}; \text{ used to solve } c_n, d_n;$$

For lack of implicit BCs to simplify the eigenfunctions $R_n(r)$, we have four unknown coefficients $\{a_n, b_n, c_n, d_n\}$ for each mode. The more homogeneous/implicit BCs, the less unknown coefficients to be determined.

E.g. Find the electrostatic potential in the dielectric region of a coaxial cable if the inner and outer conductors have constant potentials V_1 and V_2 , respectively.

PDE:
$$\nabla^2 u = 0$$
, $\{\rho_1 < r < \rho_2, 0 < \theta < 2\pi\}$

BCs:
$$u(\rho_1, \theta) = V_1, u(\rho_2, \theta) = V_2$$

(Method 1) Since the boundary potentials are independent of θ , the governing PDE can be reduced to an ODE: $u_{rr}+(1/r)u_r=0$.

Let
$$U(r)=u_r$$
, $\Rightarrow U'(r)+\frac{U(r)}{r}=0$, $\Rightarrow U(r)=\frac{b}{r}$, $u(r)=a+b\cdot\ln(r)$.

The coefficients a, b are determined by the BCs: $a = \frac{V_1 \ln(\rho_2) - V_2 \ln(\rho_1)}{\ln(\rho_2/\rho_1)}$, $b = \frac{V_2 - V_1}{\ln(\rho_2/\rho_1)}$.

(Method 2) By the series solution formula eq. (7.12):

$$\begin{cases} a_0 + b_0 \ln(\rho_1) = (1/2\pi) \int_0^{2\pi} V_1 d\phi = V_1 \\ a_0 + b_0 \ln(\rho_2) = (1/2\pi) \int_0^{2\pi} V_2 d\phi = V_2 \end{cases} \Rightarrow a_0 = \frac{V_1 \ln(\rho_2) - V_2 \ln(\rho_1)}{\ln(\rho_2/\rho_1)}, b_0 = \frac{V_2 - V_1}{\ln(\rho_2/\rho_1)};$$

$$\begin{cases} a_{n}\rho_{1}^{n} + b_{n}\rho_{1}^{-n} = (1/\pi)\int_{0}^{2\pi} V_{1}\cos(n\phi)d\phi = 0 \\ a_{n}\rho_{2}^{n} + b_{n}\rho_{2}^{-n} = (1/\pi)\int_{0}^{2\pi} V_{2}\cos(n\phi)d\phi = 0 \end{cases} \Rightarrow \{a_{n}=0, b_{n}=0\}; \text{ similarly, } \{c_{n}=0, d_{n}=0\}.$$

Laplace's Equation in Spherical Coordinates (EK. 12.10)

Problem: Find the electrostatic potential of a sphere of radius ρ with prescribed surface potential $f(\phi)$ (assuming **no** θ -dependence for simplicity).

PDE:
$$\nabla^2 u = u_{rr} + \frac{2}{r} u_r + \frac{1}{r^2} u_{\phi\phi} + \frac{\cot \phi}{r^2} u_{\phi} = (r^2 u_r)_r + \frac{1}{\sin \phi} (\sin \phi \cdot u_{\phi})_{\phi} = 0;$$

BC: $u(\rho,\phi)=f(\phi)$ [implicit BCs: $|u(r;\phi=0,\pi)|<\infty$; $|u(r=0,\infty;\phi)|<\infty$ for interior and exterior problems, respectively).

- Solving spherical Laplace's equation by separation of variables:
- 1) Separation of variables:

$$u(r,\phi)=R(r)\cdot\Phi(\phi) \Rightarrow \frac{r^2R''+2rR'}{R}=\frac{-(\Phi''+\cot\phi\cdot\Phi')}{\Phi}=k. \Rightarrow$$

(i) $r^2R'' + 2rR' - kR = 0$ (Euler's equation);

(ii) $\Phi'' + \cot \phi \cdot \Phi' + k\Phi = 0$ (after change of variable, \Rightarrow Legendre equation)

- 2) Solving the "modes" by implicit BCs:
 - (i) Let $\cos \phi = w$, the ODE about $\Phi(\phi)$ becomes: $(1-w^2)\Phi''(w) 2w\Phi'(w) + k\Phi(w) = 0$. By implicit BC: $|\Phi(\phi=0, \pi)| < \infty$, i.e. $|\Phi(w=\pm 1)| < \infty$, we have discrete eigenvalues k=n(n+1), where $n=0, 1, 2, \ldots$

Solutions to the Legendre equation: $(1-w^2) \Phi''(w) - 2w \Phi'(w) + n(n+1)\Phi(w) = 0$ are Legendre polynomials (EK 5.3): $\Phi_n(w) = P_n(w)$, $\Rightarrow \Phi_n(\phi) = P_n(\cos \phi)$.

(ii) The ODE about R(r) becomes: $r^2R'' + 2rR' - n(n+1)R = 0$.

Let $R(r)=r^{\alpha}$, $\Rightarrow \alpha=n$, -(n+1), $R_n(r)=ar^n+br^{-(n+1)}$ [b=0 for interior problems $(r < \rho)$, a=0 for exterior problems $(r>\rho)$]. \Rightarrow The n-th normal mode: $u_n(r,\phi)=R_n(r)\cdot\Phi_n(\phi)$,

$$u_n(r,\phi) = [a_n r^n + b_n r^{-(n+1)}] \cdot P_n(\cos \phi)$$
 (7.13)

- 3) Solving the entire problem by nonhomogeneous BCs:
 - (i) $u(r,\phi) = \sum_{n=0}^{\infty} a_n (r/\rho)^n P_n(\cos \phi)$, for **interior** problems $(r < \rho)$;
 - (ii) $u(r,\phi) = \sum_{n=0}^{\infty} b_n (\rho/r)^{n+1} P_n(\cos\phi)$, for **exterior** problems $(r > \rho)$;
 - (iii) $u(r,\phi) = \sum_{n=0}^{\infty} (a_n r^n + b_n r^{-(n+1)}) P_n(\cos\phi)$, for **annulus** problems $(\rho_1 < r < \rho_2)$;

In cases (i-ii), substitute nonhomogeneous BC into eq. (7.13):

$$u(\rho,\phi) = \sum_{n=0}^{\infty} {a_n \choose b_n} P_n(\cos\phi) = f(\phi). \text{ By orthogonality of Legendre's polynomials,} \Rightarrow$$

$${a_n \choose b_n} = \frac{2n+1}{2} \int_0^{\pi} f(\phi) P_n(\cos\phi) \sin(\phi) d\phi \qquad (7.14)$$

In case (iii), a system of equations has to be solved to get $\{a_n,b_n\}$ for each n.

<Comment>

- 1) In cases (i-ii), the solution can be derived by: (1) expand the BC $f(\phi)$ by Legendre's polynomials: $f(\phi) = \sum_{n=0}^{\infty} \binom{a_n}{b_n} P_n(\cos \phi)$, where coefficients $\binom{a_n}{b_n}$ are determined by eq. (7.14). (2) Solve $\begin{cases} \nabla^2 u = 0 \\ u(\rho, \phi) = P_n(\cos \phi) \end{cases}$, leading to $u(r, \phi) = \sum_{n=0}^{\infty} \binom{(r/\rho)^n}{(\rho/r)^{n+1}} P_n(\cos \phi)$. (3) By superposition, $\Rightarrow u(r, \phi) = \sum_{n=0}^{\infty} \binom{a_n(r/\rho)^n}{b_n(\rho/r)^{n+1}} P_n(\cos \phi)$.
- 2) For interior problem, the solution at the spherical center is: $u(r=0,\phi)=a_0\cdot 1\cdot P_0(\cos\phi)=a_0$, by eq. (7.14), $=\frac{1}{2}\int_0^{\pi}f(\phi)\sin(\phi)d\phi$, which is the average of the boundary function $f(\phi)$ weighted by $\frac{\sin\phi}{2}d\phi$.
- 3) For exterior problem with constant BC: $f(\phi)=V_0$, eq. (7.14) gives $b_n=0$, except for $b_0=\frac{1}{2}\int_0^{\pi}V_0P_0(\cos\phi)\sin(\phi)d\phi=V_0$, \Rightarrow the solution $u(r,\phi)=\frac{V_0\rho}{r}\propto\frac{1}{r}$, which dies off as $r\rightarrow\infty$. This is in opposite to its 2-D polar (or 3-D cylindrical) counterpart, where the exterior solution due to a constant BC is a constant: $u(r,\theta)=V_0$ [eq's (7.9), (7.11)].
- 4) For exterior problem, the solution in the far-field $(r >> \rho$, i.e. $\frac{\rho}{r} <<1$) is approximated by: $u(r,\phi) \approx \frac{b_0 \rho}{r}$. \Rightarrow The spherical BC (source) is approximated by a point source located at the center of strength $b_0 = \frac{1}{2} \int_0^{\pi} f(\phi) \sin(\phi) d\phi$.

Appendix 7A - Poisson integral formula for Polar Laplace's Equation

Eq. (7.8) can be simplified as:
$$u(r,\theta) = c_0 + \sum_{n=1}^{\infty} (r/\rho)^n \left[c_n \cos(n\theta) + d_n \sin(n\theta) \right]$$
, by eq. (7.9),
$$= \left(\frac{1}{2\pi} \int_0^{2\pi} g(\phi) d\phi \right) + \frac{1}{\pi} \sum_{n=1}^{\infty} (r/\rho)^n \left[\int_0^{2\pi} g(\phi) \cos(n\phi) \cos(n\phi) d\phi + \int_0^{2\pi} g(\phi) \sin(n\phi) \sin(n\theta) d\phi \right]$$

$$= \frac{1}{2\pi} \left\{ \int_0^{2\pi} \left[1 + 2 \sum_{n=1}^{\infty} \left(\frac{r}{\rho} \right)^n \cos[n(\theta - \phi)] \right] g(\phi) d\phi \right\} = \frac{1}{2\pi} \left\{ \int_0^{2\pi} \left[1 + \sum_{n=1}^{\infty} \left(\frac{r}{\rho} \right)^n \left(e^{in(\theta - \phi)} + c.c. \right) \right] g(\phi) d\phi \right\}$$

$$= \frac{1}{2\pi} \left\{ \int_0^{2\pi} \left[1 + \sum_{n=1}^{\infty} \left\{ \left(\frac{r}{\rho} e^{i(\theta - \phi)} \right)^n + \left(\frac{r}{\rho} e^{-i(\theta - \phi)} \right)^n \right\} \right] g(\phi) d\phi \right\}$$
, by geometric series (等比級數),
$$= \frac{1}{2\pi} \left\{ \int_0^{2\pi} \left[1 + \frac{re^{i(\theta - \phi)}}{\rho - re^{i(\theta - \phi)}} + \frac{re^{-i(\theta - \phi)}}{\rho - re^{-i(\theta - \phi)}} \right] g(\phi) d\phi \right\}$$
, by quotient of complex numbers, \Rightarrow

Poisson integral formula:

$$u(r,\theta) = \frac{1}{2\pi} \left\{ \int_0^{2\pi} \left[\frac{\rho^2 - r^2}{\rho^2 - 2r\rho\cos(\theta - \phi) + r^2} \right] g(\phi) d\phi \right\}$$
 (7A.1)

The potential u at observation point (r,θ) is the weighted average of the boundary potential $g(\theta)$, where the weighting kernel is:

$$K(r,\theta;\phi) = \frac{\rho^2 - r^2}{2\pi d^2}$$
 (7A.2)

 $d=[\rho^2-2r\rho\cos(\theta-\phi)+r^2]^{1/2}$ is the distance between observation point (r,θ) and source point (ρ,ϕ) .

<Comment>

- 1) If we observe the circle **center**: r=0, $d=\rho$, $K(r,\theta;\phi)=\frac{1}{2\pi}$, $u(0,\theta)=\frac{1}{2\pi}\int_0^{2\pi}g(\phi)d\phi$ $\left[=\int_0^{2\pi}g(\phi)\frac{\rho d\phi}{2\pi\rho}\right]. \Rightarrow \text{The solution is the average of BC weighted by arc length.}$
- 2) If we observe the circular **rim**: $r = \rho$, $d \ge 0$, $K(\rho, \theta, \phi) = 0$, except for d = 0 ($\theta = \phi$). \Rightarrow $K(\rho, \theta, \phi) \sim \delta(\phi \theta)$, $u(\rho, \theta) \sim \int_0^{2\pi} g(\phi) \delta(\phi \theta) d\phi = g(\theta)$, \Rightarrow satisfying the specified BC.