Lesson 07 Laplace's Equation

- Overview

Laplace's equation describes the "potential" in gravitation, electrostatics, and steady-state behavior of various physical phenomena. Its solutions are called harmonic functions.

Physical meaning (SJF 31): Laplacian operator ∇^{2} is a multi-dimensional generalization of 2nd-order derivative $\frac{d^{2}}{d x^{2}}$. Its difference quotient representation, as implied by eq. (1.2), is:

$$
\begin{gather*}
u_{x x}+u_{y y}=\lim _{\Delta \rightarrow 0}\left\{\frac{u(x+\Delta, y)-2 u(x, y)+u(x-\Delta, y)}{\Delta^{2}}+\frac{u(x, y+\Delta)-2 u(x, y)+u(x, y-\Delta)}{\Delta^{2}}\right\} \\
=\lim _{\Delta \rightarrow 0} \frac{-4}{\Delta^{2}}[u(x, y)-\bar{u}(x, y)] \tag{7.1}
\end{gather*}
$$

where $\bar{u}(x, y) \equiv \frac{u(x-\Delta, y)+u(x+\Delta x, y)+u(x, y-\Delta)+u(x, y+\Delta)}{4}$ represents the average of neighboring points (2D). As a result, $\nabla^{2} u=0$ implies that the function value at any point is equal to the average of its neighboring values (dynamic equilibrium, or steady-state).

<Comment>

1) $\nabla^{2} u=0$ does not necessarily mean $u_{x x}=0$ and $u_{y y}=0$.
2) Not all continuous functions satisfy $\nabla^{2} u=0$. E.g. $u=x^{2} y, \Rightarrow \nabla^{2} u=2 y \neq 0$.

■ (*) Three types of BCs for Laplace's equation (similar with those in Lesson 3):

1) Dirichlet: u is specified on the boundary surface S (curve C). E.g. Find the electrostatic potential within/outside a circle where the potential on the circular rim is specified.
2) Neumann: outward normal derivative $u_{n}=\frac{\partial u}{\partial n}$ (physically, inward flux) is specified on $S(C)$. E.g. Find steady-state temperature within a circle if the heat inflow varies around
the boundary C according to: $\frac{\partial u}{\partial r}=\sin \theta$.

<Comment>

(a) Total flux across the boundary must vanish [in this case: $\int_{C} u_{n}=\int_{0}^{2 \pi}(\sin \theta) \rho d \theta=0$]. Otherwise, gain or loss exists in the region of interest, and physical quantity varies with time (no longer steady-state).
(b) Solutions to Neumann problems are not unique. E.g. $\left\{\nabla^{2} u=0, u_{r}(r=1, \theta)=\cos (2 \theta)\right\}$ have solutions of the form: $u(r, \theta)=r^{2} \cos (2 \theta)+c, c$ is an arbitrary constant. Additional information (such as the value of u at some point) is required.
3) Mixed: a mixture of the first two types. E.g. $u_{n}+\gamma(u+g)=0$ (Newton's law of cooling).

Laplace's Equation in Cartesian Coordinate (EK 12.5)

Problem: steady state temperature distribution on a rectangular plate.
PDE: $u_{t}=\alpha^{2}\left(u_{x x}+u_{y y}\right)=0 \Rightarrow u_{x x}+u_{y y}=0,\{0<x<a, 0<y<b\}$
Four Dirichlet BCs: $u(0, y)=0, u(a, y)=0, u(x, 0)=0, u(x, b)=f(x)$.

- Solving Cartesian Laplace's equation by separation of variables:

1) Separation of variables:

Let $u(x, y)=X(x) \cdot Y(y), \Rightarrow X^{\prime \prime} Y+X \ddot{Y}=0$, divide by $X Y, \Rightarrow \frac{X^{\prime \prime}}{X}=-\frac{\ddot{Y}}{Y}=-\boldsymbol{k}^{2}<0$
$\Rightarrow X^{\prime \prime}+k^{2} X=0, \quad \ddot{Y}-k^{2} Y=0$ (one PDE \rightarrow two ODEs)
2) Solving the normal modes by homogeneous BCs:
(i) To avoid trivial solution $u(x, y)=0$, homogeneous BCs of $u(x, y) \rightarrow \mathrm{BCs}$ of $X(x), Y(y)$:

$$
\{u(0, y)=0, u(a, y)=0, u(x, 0)=0\} \rightarrow\{X(0)=0, X(a)=0, Y(0)=0\}
$$

(ii) $X^{\prime \prime}+k^{2} X=0, \Rightarrow X(x)=A \cos (k x)+B \sin (k x)$;

By BCs: (i) $X(0)=0 \Rightarrow A=0$; (ii) $X(a)=0 \Rightarrow k=k_{n}=\frac{n \pi}{a}, n=\mathbf{1}, 2, \ldots \Rightarrow X_{n}(x)=\sin \left(k_{n} x\right)$;
(iii) $\ddot{Y}_{n}-k_{n}^{2} Y_{n}=0 \Rightarrow Y_{n}(y)=A_{n} e^{k_{n} y}+B_{n} e^{-k_{n} y}$;

By BC: $Y(0)=0 \Rightarrow B_{n}=-A_{n}, \Rightarrow Y_{n}(y)=A_{n} \cdot \sinh \left(k_{n} y\right)$
\Rightarrow The n-th normal mode is $u_{n}(x, y)=X_{n}(x) \cdot Y_{n}(y)$:

$$
\begin{equation*}
u_{n}(x, y)=A_{n} \cdot \sin \left(k_{n} x\right) \cdot \sinh \left(k_{n} y\right) \tag{7.2}
\end{equation*}
$$

We have only one unknown coefficient A_{n} for each mode. The more homogeneous BCs, the fewer coefficients to be determined.
3) Determining the exact solution by the nonhomogeneous BC (similar to the role of ICs in t-dependent PDEs):

$$
\begin{equation*}
u(x, t)=\sum_{n=1}^{\infty} u_{n}(x, y)=\sum_{n=1}^{\infty} A_{n} \sin \left(k_{n} x\right) \cdot \sinh \left(k_{n} y\right) \tag{7.3}
\end{equation*}
$$

Substitute the nonhomogeneous BC into eq. (7.3): $u(x, b)=\sum_{n=1}^{\infty} A_{n} \sinh \left(k_{n} b\right) \cdot \sin \left(k_{n} x\right)=f(x)$. By Fourier sine series, \Rightarrow

$$
\begin{equation*}
A_{n}=\frac{2}{a \cdot \sinh (n \pi b / a)} \int_{0}^{a} f(x) \cdot \sin \left(k_{n} x\right) d x \tag{7.4}
\end{equation*}
$$

Laplace's Equation in Polar Coordinates (EK 12.10, SJF 33, 34)

- Overview

In solving circular membrane problem, we have seen that ∇^{2} in polar coordinates leading to different ODEs and normal modes compared to ∇^{2} in Cartesian coordinates. In this subsection, we will examine the normal modes of Laplace's equation with circular geometry, including interior, exterior, and annulus problems.

- (A) Interior problem (SJF 33):

Find the electrostatic potential within a circle of radius ρ, given that the potential at boundary is specified.

PDE: $\nabla^{2} u=u_{r r}+\frac{1}{r} u_{r}+\frac{1}{r^{2}} u_{\theta \theta}=0$ [eq. (6.5)], where ROI $=\{0<r<\rho, 0<\theta<2 \pi\}$.
BC: $u(\rho, \theta)=g(\theta)[$ implicit BC: $|u(0, \theta)|<\infty$, periodic BC: $u(r, \theta+2 n \pi)=u(r, \theta)]$.

1) Separation of variables:

Let $u(r, \theta)=R(r) \cdot \Theta(\theta) \Rightarrow R^{\prime \prime} \Theta+\frac{1}{r} R^{\prime} \Theta+\frac{1}{r^{2}} R \ddot{\Theta}=0$; divide by $\frac{R \Theta}{r^{2}}$,
$\Rightarrow \frac{r^{2} R^{\prime \prime}+r R^{\prime}}{R}=-\frac{\ddot{\Theta}}{\Theta}=\boldsymbol{k}^{2} \geq 0$ (why? Because of BCs)
\Rightarrow (i) $r^{2} R^{\prime \prime}+r R^{\prime}-k^{2} R=0$ (Euler's eq.); (ii) $\ddot{\Theta}+k^{2} \Theta=0$.
2) Solving the normal modes by periodic and implicit BCs:
(i) $\ddot{\Theta}+k^{2} \Theta=0, \Rightarrow \Theta(\theta)=c \cdot \cos (k \theta)+d \cdot \sin (k \theta)$;

Transformation of periodic BC: $u(r, \theta+2 n \pi)=u(r, \theta) \rightarrow \Theta(\theta+2 n \pi)=\Theta(\theta)$;

$$
\Rightarrow k=k_{n}=n=\mathbf{0}, 1, \ldots \Rightarrow
$$

$$
\begin{equation*}
\Theta_{n}(\theta)=c \cdot \cos (n \theta)+d \cdot \sin (n \theta) \tag{7.5}
\end{equation*}
$$

(ii) $r^{2} R^{\prime \prime}+r R^{\prime}-n^{2} R=0 \Rightarrow$

$$
R_{n}(r)=\left\{\begin{array}{l}
a+b(\ln r), \text { if } n=0 \tag{7.6}\\
a r^{n}+b\left(1 / r^{n}\right), \text { if } n=1,2, \ldots
\end{array}\right.
$$

Transformation of implicit $\mathrm{BC}:|u(0, \theta)|<\infty \rightarrow|R(0)|<\infty$;
$\Rightarrow b=0($ for arbitrary $n), R_{n}(r)=a \cdot r^{n}$; for simplicity, we use $R_{n}(r)=a(r / \rho)^{n}$
\Rightarrow The n-th normal mode: $u_{n}(r, \theta)=R_{n}(r) \cdot \Theta_{n}(\theta)$,

$$
\begin{equation*}
u_{n}(r, \theta)=(r / \rho)^{n}\left[c_{n} \cdot \cos (n \theta)+d_{n} \cdot \sin (n \theta)\right] \tag{7.7}
\end{equation*}
$$

3) Determining the exact solution by the nonhomogeneous BC :

$$
\begin{equation*}
u(r, \theta)=\sum_{n=0}^{\infty} u_{n}(r, \theta)=\sum_{n=0}^{\infty}(r / \rho)^{n}\left[c_{n} \cos (n \theta)+d_{n} \sin (n \theta)\right] \tag{7.8}
\end{equation*}
$$

Substitute the nonhomogeneous BC into eq. (7.8): $u(\rho, \theta)=\sum_{n=1}^{\infty} 1^{n}\left[c_{n} \cos (n \theta)+d_{n} \sin (n \theta)\right]$ $=g(\theta)$, by Fourier sine-cosine series, \Rightarrow

$$
\begin{equation*}
c_{0}=\frac{1}{2 \pi} \int_{0}^{2 \pi} g(\theta) d \theta, \quad c_{n}=\frac{1}{\pi} \int_{0}^{2 \pi} g(\theta) \cos (n \theta) d \theta, \quad d_{n}=\frac{1}{\pi} \int_{0}^{2 \pi} g(\theta) \sin (n \theta) d \theta \tag{7.9}
\end{equation*}
$$

<Comment>

Solution $u(r, \theta)$ can also be regarded as superposition of "eigen-response":

1) Expand the $\mathrm{BC} g(\theta)$ by Fourier series: $g(\theta)=\sum_{n=1}^{\infty} c_{n} \cos (n \theta)+d_{n} \sin (n \theta)$
2) Find the solutions of PDE + "eigen-BCs":

$$
\left\{\begin{array}{l}
\nabla^{2} u=0 \\
u(\rho, \theta)=\sin (n \theta) \text { or } \cos (n \theta)
\end{array}, \Rightarrow \text { eigen-response is: } u(r, \theta)=\left(\frac{r}{\rho}\right)^{n}[\sin (n \theta) \text { or } \cos (n \theta)]\right.
$$

3) Superposition: $u(r, \theta)=\sum_{n=0}^{\infty}(r / \rho)^{n}\left[c_{n} \cos (n \theta)+d_{n} \sin (n \theta)\right]$
(B) Exterior problem (SJF 34):

Find the electrostatic potential outside a circle of radius ρ with typel BC.
PDE: $\nabla^{2} u=u_{r r}+\frac{1}{r} u_{r}+\frac{1}{r^{2}} u_{\theta \theta}=0$, ROI: $\{\rho<r<\infty, 0<\theta<2 \pi\}$
BC: $u(\rho, \theta)=g(\theta)$ [implicit BCs: $|u(\infty, \theta)|<\infty$, and $u(r, \theta+2 n \pi)=u(r, \theta)]$

As in solving the interior Dirichlet problem, separation of variables leads to eq's (7.5-6):
$\Rightarrow \Theta_{n}(\theta)=c \cdot \cos (n \theta)+d \cdot \sin (n \theta), \quad R_{n}(r)=\left\{\begin{array}{l}a+b(\ln r), \text { if } n=0 ; \\ a r^{n}+b\left(1 / r^{n}\right), \text { if } n=1,2, \ldots\end{array}\right.$
Transformation of implicit BC: $\{|u(\infty, \theta)|<\infty \rightarrow|R(\infty)|<\infty\}, \Rightarrow\{b=0$ if $n=0 ; a=0$, if $n=1,2, \ldots\}$ $\Rightarrow R_{n}(r)=\frac{b}{r^{n}}$, for simplicity, we use $R_{n}(r)=b(\rho / r)^{n} \quad\left[R_{n}(r)=a(r / \rho)^{n}\right.$ in the interior problem $]$. \Rightarrow The n-th normal mode: $u_{n}(r, \theta)=R_{n}(r) \cdot \Theta_{n}(\theta)$,

$$
\begin{gather*}
u_{n}(r, \theta)=(\rho / r)^{n}\left[c_{n} \cdot \cos (n \theta)+d_{n} \cdot \sin (n \theta)\right] \tag{7.10}\\
u(r, \theta)=\sum_{n=0}^{\infty} u_{n}(r, \theta)=\sum_{n=0}^{\infty}(\rho / r)^{n}\left[c_{n} \cos (n \theta)+d_{n} \sin (n \theta)\right] \tag{7.11}
\end{gather*}
$$

Substitute the nonhomogeneous BC into eq. (7.11): $u(\rho, \theta)=\sum_{n=1}^{\infty} 1^{n}\left[c_{n} \cos (n \theta)+d_{n} \sin (n \theta)\right]=$ $g(\theta)$; by Fourier sine-cosine series, $\Rightarrow c_{0}, c_{n}, d_{n}$ are determined by eq. (7.9).

■ (*) (C) Annulus problem (SJF 34):
Find the electrostatic potential between two circles of radii ρ_{l}, ρ_{2} with type 1 BCs .
PDE: $\nabla^{2} u=u_{r r}+\frac{1}{r} u_{r}+\frac{1}{r^{2}} u_{\theta \theta}=0,\left\{\rho_{1}<r<\rho_{2}, 0<\theta<2 \pi\right\}$
BCs: $u\left(\rho_{1}, \theta\right)=g_{1}(\theta), u\left(\rho_{2}, \theta\right)=g_{2}(\theta)$ [periodic BC: $\left.u(r, \theta+2 n \pi)=u(r, \theta)\right]$.

As in solving the interior Dirichlet problem, separation of variables leads to eq's (7.5-6):
$\Rightarrow \Theta_{n}(\theta)=c \cdot \cos (n \theta)+d \cdot \sin (n \theta), \quad R_{n}(r)=\left\{\begin{array}{l}a+b(\ln r), \text { if } n=0 ; \\ a r^{n}+b\left(1 / r^{n}\right), \text { if } n=1,2, \ldots\end{array}\right.$
Since the ROI is $\rho_{1}<r<\rho_{2}$, neither \boldsymbol{a} nor \boldsymbol{b} should be zero, the general form of $R_{n}(r)$ is used, and the general solution $u(r, \theta)$ becomes:

$$
\begin{equation*}
u(r, \theta)=a_{0}+b_{0} \ln (r)+\sum_{n=1}^{\infty}\left\{\left[a_{n} r^{n}+b_{n} r^{-n}\right] \cos (n \theta)+\left[c_{n} r^{n}+d_{n} r^{-n}\right] \sin (n \theta)\right\} \tag{7.12}
\end{equation*}
$$

Substitute the nonhomogeneous BCs into eq. (7.12):
$u\left(\rho_{1}, \theta\right)=\left[a_{0}+b_{0} \ln \left(\rho_{1}\right)\right]+\sum_{n=1}^{\infty}\left\{\left[a_{n} \rho_{1}^{n}+b_{n} \rho_{1}^{-n}\right] \cos (n \theta)+\left[c_{n} \rho_{1}^{n}+d_{n} \rho_{1}^{-n}\right] \sin (n \theta)\right\}=g_{1}(\theta) ;$
$u\left(\rho_{2}, \theta\right)=\left[a_{0}+b_{0} \ln \left(\rho_{2}\right)\right]+\sum_{n=1}^{\infty}\left\{\left[a_{n} \rho_{2}^{n}+b_{n} \rho_{2}^{-n}\right] \cos (n \theta)+\left[c_{n} \rho_{2}^{n}+d_{n} \rho_{2}^{-n}\right] \sin (n \theta)\right\}=g_{2}(\theta) ;$
$\Rightarrow\left\{\begin{array}{l}a_{0}+b_{0} \ln \left(\rho_{1}\right)=\frac{1}{2 \pi} \int_{0}^{2 \pi} g_{1}(\phi) d \phi \\ a_{0}+b_{0} \ln \left(\rho_{2}\right)=\frac{1}{2 \pi} \int_{0}^{2 \pi} g_{2}(\phi) d \phi\end{array} ;\right.$ used to solve $\boldsymbol{a}_{\mathbf{0}}, \boldsymbol{b}_{\mathbf{0}} ;$
$\Rightarrow\left\{\begin{array}{l}a_{n} \rho_{1}^{n}+b_{n} \rho_{1}^{-n}=\frac{1}{\pi} \int_{0}^{2 \pi} g_{1}(\phi) \cos (n \phi) d \phi \\ a_{n} \rho_{2}^{n}+b_{n} \rho_{2}^{-n}=\frac{1}{\pi} \int_{0}^{2 \pi} g_{2}(\phi) \cos (n \phi) d \phi\end{array} ;\right.$ used to solve $\boldsymbol{a}_{n}, \boldsymbol{b}_{\boldsymbol{n}} ;$
$\Rightarrow\left\{\begin{array}{l}c_{n} \rho_{1}^{n}+d_{n} \rho_{1}^{-n}=\frac{1}{\pi} \int_{0}^{2 \pi} g_{1}(\phi) \sin (n \phi) d \phi \\ c_{n} \rho_{2}^{n}+d_{n} \rho_{2}^{-n}=\frac{1}{\pi} \int_{0}^{2 \pi} g_{2}(\phi) \sin (n \phi) d \phi\end{array} ;\right.$ used to solve $\boldsymbol{c}_{n}, \boldsymbol{d}_{n} ;$

For lack of implicit BCs to simplify the eigenfunctions $R_{n}(r)$, we have four unknown coefficients $\left\{a_{n}, b_{n}, c_{n}, d_{n}\right\}$ for each mode. The more homogeneous/implicit BCs, the less unknown coefficients to be determined.
E.g. Find the electrostatic potential in the dielectric region of a coaxial cable if the inner and outer conductors have constant potentials V_{1} and V_{2}, respectively.

PDE: $\nabla^{2} u=0,\left\{\rho_{1}<r<\rho_{2}, 0<\theta<2 \pi\right\}$
BCs: $u\left(\rho_{1}, \theta\right)=V_{1}, u\left(\rho_{2}, \theta\right)=V_{2}$
(Method 1) Since the boundary potentials are independent of θ, the governing PDE can be reduced to an ODE: $u_{r r}+(1 / r) u_{r}=0$.

Let $U(r)=u_{r}, \Rightarrow U^{\prime}(r)+\frac{U(r)}{r}=0, \Rightarrow U(r)=\frac{b}{r}, u(r)=a+b \cdot \ln (r)$.
The coefficients a, b are determined by the BCs: $a=\frac{V_{1} \ln \left(\rho_{2}\right)-V_{2} \ln \left(\rho_{1}\right)}{\ln \left(\rho_{2} / \rho_{1}\right)}, b=\frac{V_{2}-V_{1}}{\ln \left(\rho_{2} / \rho_{1}\right)}$.
(Method 2) By the series solution formula eq. (7.12):
$\left\{\begin{array}{l}a_{0}+b_{0} \ln \left(\rho_{1}\right)=(1 / 2 \pi) \int_{0}^{2 \pi} V_{1} d \phi=V_{1} \\ a_{0}+b_{0} \ln \left(\rho_{2}\right)=(1 / 2 \pi) \int_{0}^{2 \pi} V_{2} d \phi=V_{2}\end{array} \Rightarrow a_{0}=\frac{V_{1} \ln \left(\rho_{2}\right)-V_{2} \ln \left(\rho_{1}\right)}{\ln \left(\rho_{2} / \rho_{1}\right)}, b_{0}=\frac{V_{2}-V_{1}}{\ln \left(\rho_{2} / \rho_{1}\right)} ;\right.$
$\left\{\begin{array}{l}a_{n} \rho_{1}^{n}+b_{n} \rho_{1}^{-n}=(1 / \pi) \int_{0}^{2 \pi} V_{1} \cos (n \phi) d \phi=0 \\ a_{n} \rho_{2}^{n}+b_{n} \rho_{2}^{-n}=(1 / \pi) \int_{0}^{2 \pi} V_{2} \cos (n \phi) d \phi=0\end{array} \Rightarrow\left\{a_{n}=0, b_{n}=0\right\} ;\right.$ similarly, $\left\{c_{n}=0, d_{n}=0\right\}$.

Laplace's Equation in Spherical Coordinates (EK. 12.10)

■ Problem: Find the electrostatic potential of a sphere of radius ρ with prescribed surface potential $f(\phi)$ (assuming no θ-dependence for simplicity).
PDE: $\nabla^{2} u=u_{r r}+\frac{2}{r} u_{r}+\frac{1}{r^{2}} u_{\phi \phi}+\frac{\cot \phi}{r^{2}} u_{\phi}=\left(r^{2} u_{r}\right)_{r}+\frac{1}{\sin \phi}\left(\sin \phi \cdot u_{\phi}\right)_{\phi}=0$;
BC: $u(\rho, \phi)=f(\phi)$ [implicit BCs: $|u(r ; \phi=0, \pi)|<\infty ;|u(r=0, \infty ; \phi)|<\infty$ for interior and exterior problems, respectively).

- Solving spherical Laplace's equation by separation of variables:

1) Separation of variables: $u(r, \phi)=R(r) \cdot \Phi(\phi) \Rightarrow \frac{r^{2} R^{\prime \prime}+2 r R^{\prime}}{R}=\frac{-\left(\Phi^{\prime \prime}+\cot \phi \cdot \Phi^{\prime}\right)}{\Phi}=k . \Rightarrow$
(i) $r^{2} R^{\prime \prime}+2 r R^{\prime}-k R=0$ (Euler's equation);
(ii) $\Phi^{\prime \prime}+\cot \phi \cdot \Phi^{\prime}+k \Phi=0 \quad$ (after change of variable, \Rightarrow Legendre equation)
2) Solving the "modes" by implicit BCs:
(i) Let $\cos \phi=w$, the ODE about $\Phi(\phi)$ becomes: $\left(1-w^{2}\right) \Phi^{\prime \prime}(w)-2 w \Phi^{\prime}(w)+k \Phi(w)=0$.

By implicit BC: $|\Phi(\phi=0, \pi)|<\infty$, i.e. $|\Phi(w= \pm 1)|<\infty$, we have discrete eigenvalues $k=n(n+1)$, where $n=0,1,2, \ldots$

Solutions to the Legendre equation: $\left(1-w^{2}\right) \Phi^{\prime \prime}(w)-2 w \Phi^{\prime}(w)+n(n+1) \Phi(w)=0$ are Legendre polynomials (EK 5.3): $\Phi_{n}(w)=P_{n}(w), \Rightarrow \Phi_{n}(\phi)=P_{n}(\cos \phi)$.

(ii) The ODE about $R(r)$ becomes: $r^{2} R^{\prime \prime}+2 r R^{\prime}-n(n+1) R=0$.

Let $R(r)=r^{\alpha}, \Rightarrow \alpha=n,-(n+1), R_{n}(r)=a r^{n}+b r^{-(n+1)}[b=0$ for interior problems $(r<\rho)$, $a=0$ for exterior problems $(r>\rho)] . \Rightarrow$ The n-th normal mode: $u_{n}(r, \phi)=R_{n}(r) \cdot \Phi_{n}(\phi)$,

$$
\begin{equation*}
u_{n}(r, \phi)=\left[a_{n} r^{n}+b_{n} r^{-(n+1)}\right] \cdot P_{n}(\cos \phi) \tag{7.13}
\end{equation*}
$$

3) Solving the entire problem by nonhomogeneous BCs:
(i) $u(r, \phi)=\sum_{n=0}^{\infty} a_{n}(r / \rho)^{n} P_{n}(\cos \phi)$, for interior problems $(r<\rho)$;
(ii) $u(r, \phi)=\sum_{n=0}^{\infty} b_{n}(\rho / r)^{n+1} P_{n}(\cos \phi)$, for exterior problems $(r>\rho)$;
(iii) $u(r, \phi)=\sum_{n=0}^{\infty}\left(a_{n} r^{n}+b_{n} r^{-(n+1)}\right) P_{n}(\cos \phi)$, for annulus problems $\left(\rho_{1}<r<\rho_{2}\right)$;

In cases (i-ii), substitute nonhomogeneous BC into eq. (7.13):

$$
\begin{gather*}
u(\rho, \phi)=\sum_{n=0}^{\infty}\binom{a_{n}}{b_{n}} P_{n}(\cos \phi)=f(\phi) . \text { By orthogonality of Legendre's polynomials, } \Rightarrow \\
\binom{a_{n}}{b_{n}}=\frac{2 n+1}{2} \int_{0}^{\pi} f(\phi) P_{n}(\cos \phi) \sin (\phi) d \phi \tag{7.14}
\end{gather*}
$$

In case (iii), a system of equations has to be solved to get $\left\{a_{n}, b_{n}\right\}$ for each n.

<Comment>

1) In cases (i-ii), the solution can be derived by: (1) expand the $\mathrm{BC} f(\phi)$ by Legendre's polynomials: $f(\phi)=\sum_{n=0}^{\infty}\binom{a_{n}}{b_{n}} P_{n}(\cos \phi)$, where coefficients $\binom{a_{n}}{b_{n}}$ are determined by eq. (7.14). (2) Solve $\left\{\begin{array}{l}\nabla^{2} u=0 \\ u(\rho, \phi)=P_{n}(\cos \phi)\end{array}\right.$, leading to $u(r, \phi)=\sum_{n=0}^{\infty}\left[\begin{array}{c}(r / \rho)^{n} \\ (\rho / r)^{n+1}\end{array}\right] P_{n}(\cos \phi) \cdot$ (3) By superposition, $\Rightarrow u(r, \phi)=\sum_{n=0}^{\infty}\left[\begin{array}{c}a_{n}(r / \rho)^{n} \\ b_{n}(\rho / r)^{n+1}\end{array}\right] P_{n}(\cos \phi)$.
2) For interior problem, the solution at the spherical center is: $u(r=0, \phi)=a_{0} \cdot 1 \cdot P_{0}(\cos \phi)=a_{0}$, by eq. (7.14), $=\frac{1}{2} \int_{0}^{\pi} f(\phi) \sin (\phi) d \phi$, which is the average of the boundary function $f(\phi)$ weighted by $\frac{\sin \phi}{2} d \phi$.
3) For exterior problem with constant $\mathrm{BC}: f(\phi)=V_{0}$, eq. (7.14) gives $b_{n}=0$, except for $b_{0}=\frac{1}{2} \int_{0}^{\pi} V_{0} P_{0}(\cos \phi) \sin (\phi) d \phi=V_{0}, \Rightarrow$ the solution $u(r, \phi)=\frac{V_{0} \rho}{r} \propto \frac{1}{r}$, which dies off as $r \rightarrow$ ∞. This is in opposite to its 2-D polar (or 3-D cylindrical) counterpart, where the exterior solution due to a constant BC is a constant: $u(r, \theta)=V_{0}[$ eq's (7.9), (7.11)].
4) For exterior problem, the solution in the far-field ($r \gg \rho$, i.e. $\frac{\rho}{r} \ll 1$) is approximated by: $u(r, \phi) \approx \frac{b_{0} \rho}{r} . \Rightarrow$ The spherical BC (source) is approximated by a point source located at the center of strength $b_{0}=\frac{1}{2} \int_{0}^{\pi} f(\phi) \sin (\phi) d \phi$.

Appendix 7A－Poisson integral formula for Polar Laplace＇s Equation

Eq．（7．8）can be simplified as：$u(r, \theta)=c_{0}+\sum_{n=1}^{\infty}(r / \rho)^{n}\left[c_{n} \cos (n \theta)+d_{n} \sin (n \theta)\right]$ ，by eq．（7．9）， $=\left(\frac{1}{2 \pi} \int_{0}^{2 \pi} g(\phi) d \phi\right)+\frac{1}{\pi} \sum_{n=1}^{\infty}(r / \rho)^{n}\left[\int_{0}^{2 \pi} g(\phi) \cos (n \phi) \cos (n \theta) d \phi+\int_{0}^{2 \pi} g(\phi) \sin (n \phi) \sin (n \theta) d \phi\right]$ $=\frac{1}{2 \pi}\left\{\int_{0}^{2 \pi}\left[1+2 \sum_{n=1}^{\infty}\left(\frac{r}{\rho}\right)^{n} \cos [n(\theta-\phi)]\right] g(\phi) d \phi\right\}=\frac{1}{2 \pi}\left\{\int_{0}^{2 \pi}\left[1+\sum_{n=1}^{\infty}\left(\frac{r}{\rho}\right)^{n}\left(e^{i n(\theta-\phi)}+c . c.\right)\right] g(\phi) d \phi\right\}$ $=\frac{1}{2 \pi}\left\{\int_{0}^{2 \pi}\left[1+\sum_{n=1}^{\infty}\left\{\left(\frac{r}{\rho} e^{i(\theta-\phi)}\right)^{n}+\left(\frac{r}{\rho} e^{-i(\theta-\phi)}\right)^{n}\right\}\right] g(\phi) d \phi\right\}$ ，by geometric series（等比級數）， $=\frac{1}{2 \pi}\left\{\int_{0}^{2 \pi}\left[1+\frac{r e^{i(\theta-\phi)}}{\rho-r e^{i(\theta-\phi)}}+\frac{r e^{-i(\theta-\phi)}}{\rho-r e^{-i(\theta-\phi)}}\right] g(\phi) d \phi\right\}$ ，by quotient of complex numbers，\Rightarrow Poisson integral formula：

$$
\begin{equation*}
u(r, \theta)=\frac{1}{2 \pi}\left\{\int_{0}^{2 \pi}\left[\frac{\rho^{2}-r^{2}}{\rho^{2}-2 r \rho \cos (\theta-\phi)+r^{2}}\right] g(\phi) d \phi\right\} \tag{7A.1}
\end{equation*}
$$

The potential u at observation point (r, θ) is the weighted average of the boundary potential $g(\theta)$ ，where the weighting kernel is：

$$
\begin{equation*}
K(r, \theta ; \phi)=\frac{\rho^{2}-r^{2}}{2 \pi d^{2}} \tag{7A.2}
\end{equation*}
$$

$d=\left[\rho^{2}-2 r \rho \cos (\theta-\phi)+r^{2}\right]^{1 / 2}$ is the distance between observation point (r, θ) and source point (ρ, ϕ) ．

<Comment>

1) If we observe the circle center: $r=0, d=\rho, K(r, \theta ; \phi)=\frac{1}{2 \pi}, u(0, \theta)=\frac{1}{2 \pi} \int_{0}^{2 \pi} g(\phi) d \phi$ $\left[=\int_{0}^{2 \pi} g(\phi) \frac{\rho d \phi}{2 \pi \rho}\right] . \Rightarrow$ The solution is the average of BC weighted by arc length.
2) If we observe the circular rim: $r=\rho, d \geq 0, K(\rho, \theta ; \phi)=0$, except for $d=0(\theta=\phi)$. \Rightarrow $K(\rho, \theta ; \phi) \sim \delta(\phi-\theta), u(\rho, \theta) \sim \int_{0}^{2 \pi} g(\phi) \delta(\phi-\theta) d \phi=g(\theta), \Rightarrow$ satisfying the specified BC.
