
PDE & Complex Variables               P3-1 

Edited by: Shang-Da Yang 

Lesson 03 Heat Equation with Different BCs 

 

■ (∗) Physical meaning (SJF 2) 

Let u(x,t) represent the temperature of a thin rod governed by the (conduction) heat equation: 

ut =α2 uxx         (3.1) 

where α2 is the thermal diffusivity (derived by conservation of energy, Appendix 3A). Eq. 

(3.1) means that the time-rate of change in temperature (ut) is proportional to the concavity 

(uxx) of the temperature distribution. By eq. (1.2), we have: 

ut ∝ [ ]),(),( txutxu −−        (3.2) 

Therefore, eq. (3.1) models two facts: (1) heat always flows from high- to low-temperature 

regions; (2) the flow rate is proportional to the temperature gradient. 

E.g. if the temperature at x is higher than its surrounding average, ⇒ u>u , uxx<0, ut<0, 

temperature is decreasing at a rate proportional to [ ]),(),( txutxu − . 

 

In steady state, ut=0, ⇒ uxx=0, i.e. heat flow tends to neutralize the curvature of the 

temperature distribution, leading to a linear temperature spatial profile. 

 

<Comment> 

In wave equation [eq. (1.1)], uxx<0 does not guarantee ut<0 (but utt<0). The solutions to wave 

equation and heat equation behave very differently (vibration vs. diffusion). 
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Heat Equation with Various BCs (EK 12.5, SJF 3) 

■ Type1 (Dirichlet) BC: temperature is specified on the boundary, i.e. u=g(t). 

Consider a thin rod of length L with two ends fixed at zero temperature. 

PDE: ut =α2 uxx 

Two homogeneous BCs: {u(0, t)=0, u(L, t)=0} 

One IC: u(x,0)=φ(x), for only first-order partial derivative with respect to t is involved. 

 

Solving heat equation by separation of variables: 

1) Separation of variables: 

Let u(x,t)=X(x)⋅T(t) ⇒ 02 =+′′ XkX , 022 =+ TkT α&  (Lesson 2) 

2) Solving the normal modes by homogeneous BCs: 

(1) To avoid trivial solution u(x,t)=0, homogeneous BCs of u(x,t) → BCs of X(x): 

{u(0,t)=0, u(L,t)=0} → {X(0)=0, X(L)=0} 

(2) The spatial ODE: 02 =+′′ XkX , ⇒ X(x)=Acos(kx)+Bsin(kx); 

By BCs, ⇒ (i) X(0)=0 ⇒ A=0; (ii) X(L)=0 ⇒ k = kn= L
nπ , n=1,2, …⇒ Xn(x)=sin(knx); 

The temporal ODE: 02 =+ TT nλ& , λn=αkn= L
nπα ; ⇒ Tn(t)= ( )tn

2exp λ− ; 

⇒ n-th normal mode is un(x,t)= Xn(x)⋅Tn(t): 

un(x,t) = An⋅ ( ) ( )txk nn
2expsin λ−⋅      (3.3) 

 

<Comment> 

(a) Eq’s (2.1) and (3.3) have the same spatial shape (due to same spatial ODE and BCs) 

but different forms of temporal evolution (oscillation vs. decaying), for the orders of 

temporal ODEs are two and one, respectively. 

(b) Higher order modes [un(x,t) with larger n] will decay faster, for the decay constant 
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2
nλ ∝ n2. ⇒ Temperature profile will be smoother as time elapses (low-pass filtering). 

3) Determining the exact solution by IC: 

u(x,t)=∑
∞

=1
),(

n
n txu = ( ) ( )txkA n

n
nn

2

1
expsin λ−⋅∑

∞

=

     (3.4) 

Substitute the IC into eq. (3.4): u(x,0)= ( )xkA n
n

n sin
0

∑
∞

=

=φ(x). By Fourier sine series, ⇒ 

An = ∫ ⋅
L

n dxxkx
L

 

0 
)sin()(2 φ       (3.5) 

 

E.g. Let initial temperature distribution is triangular: u(x,0)=φ(x)=




<<−

<<

LxLxL

Lxx

/2for  ,

2/0for  ,
. By 

eq. (3.5), An =












− −

even is  if ,0

odd is  if ,4)1( 22
2/)1(

n

n
n

Ln

π . As shown below, exact solution (left) will 

converge to the fundamental mode (right) as time elapses. [T= 2
1
−λ  represents decay time 

constant of fundamental mode: u1(x,T)=e-1u1(x,0).] 

 

 

 

■ Type2 (Neumann) BC: 

By (experimental) Fourier’s law of cooling, heat flows in the direction where temperature 

),( tru v  decreases most rapidly, and the flow rate is proportional to the rate of temperature 

change in that direction. ⇒ Heat flux ),( trq vv  (W/m2)= −κ (W/mK)⋅ ),( tru v∇  (Appendix 3A). 
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On the boundary, heat flux is in parallel with the outward normal direction nv : qv =q nv = 

−κ ( )u∇ . Taking inner product with nv , ⇒ q=
n
u

∂
∂

− κ , i.e. 
n
u

∂
∂ =

κ
)(tq

− =g(t). 

 

 

Consider a thin rod of length L with two “insulated” ends. 

PDE: ut =α2 uxx 

Two homogeneous BCs: {ux(0,t)=0, ux(L,t)=0} 

One IC: u(x,0)=φ(x). 

1) Separation of variables: 02 =+′′ XkX , 022 =+ TkT α& ; 

2) Solving the normal modes by homogeneous BCs: 

Spatial ODE: 02 =+′′ XkX , ⇒ X=Acos(kx)+Bsin(kx), )(xX ′ =−k[Asin(kx)−Bcos(kx)]; 

Transformation of BCs: {ux(0,t)=ux(L,t)=0} → { )0(X ′ = )(LX ′ =0}; 

By BCs: (i) )0(X ′ =0 ⇒ B=0, (ii) )(LX ′ =0 ⇒ k = kn= L
nπ , n= 0,1,2, …  

⇒ Xn(x)=cos(knx), different BCs produce different modes! 

Temporal ODE: 02 =+ TT nλ& , λn=αkn= L
nπα ; ⇒ Tn(t)= ( )tn

2exp λ− ; 

⇒ n-th normal mode is un(x,t)= Xn(x)⋅Tn(t): 

un(x,t) = ( ) ( )txkA nnn
2expcos λ−⋅       (3.6) 

3) Determining the exact solution by IC: 

u(x,t)=∑
∞

=1
),(

n
n txu = ( ) ( )txkA n

n
nn

2

1
expcos λ−⋅∑

∞

=

    (3.7) 

Substitute the IC into eq. (3.7): u(x,0)= ( )xkA n
n

n cos
0

∑
∞

=

=φ(x). By Fourier sine series, ⇒ 
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A0 = ∫
L

dxx
L

 

0 
)(1 φ ,  An = ∫ ⋅

L

n dxxkx
L

 

0 
)cos()(2 φ     (3.8) 

 

E.g. Let initial temperature distribution is triangular: u(x,0)=φ(x)=




<<−

<<

LxLxL

Lxx

/2for  ,

2/0for  ,
. By 

eq’s (3.7−8), exact solution will converge to A0 (average temperature of initial distribution) as 

time elapses. This makes sense, for no energy escapes from the rod, and heat flow tends to 

remove any temperature curvature. 

 

 

 

■ (∗) Type3 (mixed) BC: temperature of the surrounding medium is specified, i.e. 
n
u

∂
∂  

+γ[u+g(t)]=0, where γ =
κ
h , h is heat-exchange coefficient, κ is thermal conductivity. 

 

1) By the Newton’s law of cooling: heat flux is in the direction from high- to low- 
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temperature T, and is proportional to its difference ∆T “across” the boundary. 

Outward heat flux at x=0: h[u(0,t)–g1(t)], outward heat flux at x=L: h[u(L,t)–g2(t)]. 

2) By the Fourier’s law of cooling (experimental): q=
n
u

∂
∂

− κ . 

 Outward heat flux at x=0: −κ
)(
),0(

x
tu

−∂
∂ =

x
tu

∂
∂ ),0( , outward heat flux at x=L: –κ

x
tLu

∂
∂ ),( . 

3) Equating 1 & 2, we have: 

[ ]
[ ]




−−=
−=

)(),(),(
)(),0(),0(

2

1

tgtLutLu
tgtutu

x

x

γ
γ

, where γ =
κ
h      (3.9) 

 

Consider a thin rod of length L with one end fixed at zero temperature, the other end 

immersed in a liquid of zero temperature (SJF 7). 

PDE: ut =α2 uxx 

Two homogeneous BCs: {u(0,t)=0, ux(L,t)+γ u(L,t)=0} 

One IC: u(x,0)=φ(x). 

 

1) Separation of variables: u(x,t)=X(x)⋅T(t) ⇒ 02 =+′′ XkX , 022 =+ TkT α&   

2) Solving the normal modes by homogeneous BCs: 

Spatial ODE: 02 =+′′ XkX , ⇒ X(x)=Acos(kx)+Bsin(kx); 

Transformation of BCs: {u(0,t)=0, ux(L,t)+γ u(L,t)=0} → {X(0)=0, X'(L)+γ X(L)=0} 

By BCs: (i) A=0, (ii) k=kn, where {kn} are irregularly-spaced discrete roots of a nonlinear 

equation: 

tan(kL)=
γ
k

−         (3.10) 

⇒ Xn(x)=sin(knx) [different from that of eq. (3.3)]. 
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Temporal ODE: 02 =+ TT nλ& , λn=αkn; ⇒ Tn(t)= ( )tn
2exp λ− ; 

⇒ n-th normal mode: 

un(x,t) = ( ) ( )txkA nnn
2expsin λ−⋅      (3.11) 

3) Determining the exact solution by IC: 

u(x,t)=∑
∞

=1
),(

n
n txu = ( ) ( )txkA n

n
nn

2

1
expsin λ−⋅∑

∞

=

    (3.12) 

Substitute the IC into eq. (3.12): u(x,0)= ( )xkA n
n

n sin
0

∑
∞

=

=φ(x); 

By orthogonality of Xn(x) in [0,L] (for the spatial ODE is a Sturm-Liouville 

problem): ∫ ⋅
L

mn dxxkxk
 

0 
)sin()sin( = 

n

n
mn k

LkL
4

)2sin(
2

δ− = ( )[ ]LkL
nmn 2sinc1

2
δ− , where 

δmn=


 =

otherwise ,0
 if ,1 nm

, sinc(x)≡
x

xsin , ⇒ 

 An = [ ] ∫ ⋅
−

L

n
n

dxxkx
LkL

 

0 
)sin()(

)2(sinc1
2 φ     (3.13) 

 

E.g. Let initial temperature distribution is triangular: u(x,0)=φ(x)=




<<−

<<

LxLxL

Lxx

/2for  ,

2/0for  ,
. By 

eq’s (3.12−13), exact solution behaves differently with those in type-1 and type-2 BCs. Can 

you justify why u(L,t)≠0 even the right end is immersed in a liquid of zero-temperature and 

u(L,0)=0? 
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Heat Equation without Boundary (EK 12.6) 

■ Problem: heat diffusion along a thin rod of infinite length. 

PDE: ut = α 2uxx 

No BC 

One IC: u(x,0)=φ(x) 

 

■ Solving heat equations by separation of variables & Fourier integrals: 

1) Separation of variables: u(x,t)=X(x)T(t) ⇒ 02 =+′′ XkX , 022 =+ TkT α&  

2) No BC ⇒ eigenvalue k is NOT quantized, but continuous: 

Spatial ODE: 02 =+′′ XkX ⇒ Xk(x)=A(k)cos(kx)+B(k)sin(kx) [A(k), B(k) are justified by 

substitution]; temporal ODE:  022 =+ TkT α&  ⇒ Tk(t)= ( )tk 22exp α− , 

 ⇒ n-th normal mode: 

uk(x,t) = [A(k)⋅cos(kx)+B(k)⋅sin(kx)]⋅ ( )tk 22exp α−      (3.14) 

3) Determining the exact solution by IC: 

u(x,t)= ∫
∞ 

0 
);,( dkktxuk = [ ]∫

∞ −⋅⋅+⋅
 

0 

22

)sin()()cos()( dkekxkBkxkA tkα   (3.15) 

Substitute the IC into eq. (3.15): u(x,0)= [ ]∫
∞

⋅+⋅
 

0 
)sin()()cos()( dkkxkBkxkA =φ(x); by 
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Fourier integrals (EK 11.7), ⇒ 

A(k) = ∫
∞

∞−
⋅

 
)cos()(1 ξξξφ

π
dk , B(k) = ∫

∞

∞−
⋅

 
)sin()(1 ξξξφ

π
dk    (3.16) 

 

 

 (∗) Green’s function 

Integral solution of the form of eq. (3.15) can be simplified as (EK 12.6): 

u(x,t) = ∫
∞

∞− 






 −
−

⋅

 

 2

2

4
)(exp)(

2
1 ξ

α
ξξφ

πα
d

t
x

t
= φ(x) ⊗G(x,t)    (3.17) 

where G(x,t)= 






−
⋅ t

x
t 2

2

4
exp

2
1

απα
 is called the Green’s function of the system, which can 

be interpreted as the temperature response to an initial temperature impulse: φ(x)=δ(x). 

 

Since linear homogeneous PDE + linear homogeneous BCs (like this particular problem) 

describe linear and time invariant (LTI) systems, ⇒ an input of c1δ(x−x1)+c2δ(x−x2) results in 

an output of c1G(x−x1, t)+c2G(x−x2, t). 

 

We can decompose the initial distribution φ(x) as a continuum of impulses: 

φ(x)= ∫
∞

∞−
−⋅

 

 
)()( ξξδξφ dx . Each impulse φ(ξ)⋅δ(x−ξ) [located at x=ξ and with magnitude 

φ(ξ)] has an output φ(ξ)⋅G(x−ξ ,t), and their superposition gives the overall response u(x,t). 

 

You may find that another equivalent formula is useful in some practical evaluations: 

u(x,t)= ( )∫
∞

∞−

−+
 

 

2

)2(1 dzetzx zαφπ      (3.18) 
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E.g. Find u(x,t) if initial temperature distribution φ(x)= 


 <<−

otherwise  ,0

11for  ,0 xU
 

Ans: By eq. (3.18): u(x,t)= ∫
−

+−

−tx

tx

z dze
α

απ

2/)1( 

2/)1( 

21 =














 −−

−





 −

t
xerf

t
xerf

αα 2
1

2
1

2
1 , ⇒ 

temperature profile u(x) gets smoother as t increases. 

 

Error function is defined as: erf(x)≡ ∫ −x t dte
 

0 

22
π

. 
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Appendix 3A − Derivation of conductive heat equation (by D. W. Trim) 

 

To describe conductive heat flow in a medium, we define a 3-D heat flux vector ),( trq vv  

(W/m2). Its direction and magnitude represent the direction of heat flow and the amount of 

heat per unit time crossing unit area normal to the direction of qv . By the (experimental) 

Fourier’s law of cooling, heat flows in the direction where temperature ),( tru v  decreases 

most rapidly, and the flow rate is proportional to the rate of temperature change in that 

direction: 

),( trq vv = ),( tru v∇⋅− κ       (3A.1) 

where κ (W/mK)>0 is the thermal conductivity. 

 

Heat is accumulated in a volume V enclosed by surface S because of: (i) flux across S, (ii) 

internal heat source ),( trg v  (W/m3): 

( )∫∫ −⋅
S

sdq
 

vv + ∫∫∫ ⋅
V

dvg
 

 (W) 

The heat accumulation causes temperature increase to maintain energy conservation: 

∫∫∫ ∂
∂

V
dvs

t
u

 
ρ = ( )∫∫ −⋅

S
sdq

 

vv + ∫∫∫ ⋅
V

dvg
 

 

where s (J/kgK) and ρ (Kg/m3) are specific heat and density of the medium. By eq. (3A.1) 

and divergence theorem, ( )∫∫ −⋅
S

sdq
 

vv = ( )∫∫∫ ∇⋅∇
V

dvu
 

κ , ⇒ 

( )[ ]∫∫∫ ∇⋅∇−−
V t dvugsu
 

κρ =0     (3A.2) 

If the integrand is continuous throughout an arbitrarily small volume V, eq. (3A.2) becomes: 

ut = 





 +∇

κ
α gu22        (3A.3) 

where α2 (m2/sec) is the thermal diffusivity. 


