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Lesson 01 Introduction to PDEs & Modeling of 1-D Wave Equations 

 

Introduction to PDEs 

■ Equation and differential equation 

Equation: f(x)=0, ⇒ unknown x is a number or set of numbers.  

Differential equation: f(u, u', u",…)=g(x), ⇒ unknown u is a function. Note that u', u",…are 

not “extra” unknowns for they can be derived by differentiation once u is determined. 

 

■ What’re ODEs? 

An equation containing derivative(s) of an unknown function (dependent variable) u with 

single independent variable. E.g. u"(x)+u(x)=0. 

 

■ What’re PDEs? 

An equation containing partial derivative(s) of an unknown function u with two or more 

independent variables. E.g. ut = uxx. 

 

■ Why PDEs? 

People sense the real world via four dimensions (x, y, z, t), therefore, physical quantities (e.g. 

electrical field, temperature, electron distribution in an atom) are fully described by four 

variables. ⇒ Most physical laws are described in terms of PDE’s, where the derivatives 

represent physical quantities. 

E.g. Electrostatics (potential theory), EM waves (Maxwell’s equations), quantum mechanics 

(Schrödinger’s equation), heat transfer (heat equation), fluid mechanics. 

 

■ Classification of PDEs 

1) Order of PDE: the order of the highest partial derivative. E.g. ut = uxx (2nd order); ut = ux 
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(1st order). 

2) Linearity: (i) linear algebraic equation: a0+a1x=b, where coefficients {ai} and b are 

constants independent of unknown x. (ii) linear ODE: L⋅UT=b(x), where L=[a0(x), 

a1(x),…], U=[u, u', u",…], coefficients {ai(x)} and b(x) are functions of x independent of 

unknown u(x). (iii) linear PDE: L⋅UT=b. E.g. A 1st-order linear PDE with two variables is 

of the form: L=[a0, a1, a2], U=[u, ux, uy], coefficients {ai(x,y)} and b(x,y) are functions of 

x and y independent of unknown u(x,y). E.g. An equation containing some nonlinear 

operation about the unknown u or its derivative(s), such as: u2, uxuy, sin(uxy), is nonlinear. 

3) Homogeneity: An equation only containing unknown function u and its derivative(s) is 

homogeneous. E.g. ux+xuy=exu is homogeneous; ux+xuy=ex is non-homogeneous. 

4) (∗) Linear 2nd-order PDEs in two variables Auxx+Buxy+Cuyy+Dux+Euy+Fu=G (A~G are 

functions of x, y) are categorized as (Appendix 1A): 

(i) Hyperbolic: if B2−4AC>0. E.g. wave equation utt = uxx 

(ii) Parabolic: if B2−4AC=0. E.g. heat flow and diffusion ut = uxx 

(iii) Elliptic: if B2−4AC<0. E.g. steady-state phenomena uxx + uyy=0 

The solutions of these three types of PDEs behave very differently (wave propagation, 

diffusion, steady-state). 

 

■ Solution to PDEs 

A function satisfying the equation everywhere in the region of interest (ROI). 

 

In general, infinite number of functions can satisfy the same PDE. Additional constraints, 

such as boundary conditions (BC, designate function values or its derivatives on the spatial 

boarders of ROI), and initial conditions (IC, designate function values or its derivatives at the 

temporal start) are necessary to get unique solution. E.g. u= x2−y2 and excos(y) satisfy uxx + 

uyy= 0. However, only x2−y2 satisfies both the PDE and BC: u(0,0)=0. 
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■ Fundamental theorem (superposition) 

If u1, u2 are solutions of a linear and homogeneous (齊次, source-free) PDE in some region 

R, then u=c1u1+c2u2 remains a solution to that equation in R. 

 

This theorem is useful in deriving the response of a linear system with various ICs or external 

sources. One can represent the final solution as superposition of modes (set of orthogonal 

functions satisfying the PDE and BCs) {u1, u2, ….}, then find the expansion coefficients {c1, 

c2, ….} using specified ICs or source functions (methods of separation of variables, 

eigenfunction expansion, see Lessons 2 and 4). 

 

 

■ Methods of solving PDEs 

1) (∗) Solving undetermined exponents: valid for linear PDEs of constant coefficients, 

homogeneous or nonhomogeneous, only get general solutions. (Appendix 1B) 

2) Separation of variables: reduce a PDE with n variables into n ODEs (EK 12.3) 

3) Eigenfunction expansion: expand the solution of a nonhomogeneous PDE as 

superposition of "spatial eigenfunctions" (satisfying homogeneous PDE and BCs), find 

the coefficients (functions of t) by solving a sequence of ODEs (SJF 9). 

4) Integral transforms: reduce the number of variables one at a time (n → n–1), repeat the 

process until n=1 (ODE). (EK 12.11). 

5) (∗) Numerical methods: transform a PDE into a system of difference equations (差分方程

式, with discrete independent variables), then solve it by iterative techniques. In many 

cases, this is the only method that will work (EK 21). 

6) (∗) Others: variational(變分) methods (solution of PDE→ minimum of functional, SJF 

45), perturbation methods (a nonlinear PDE→ sequence of linear PDEs, SJF 46)…. 
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Modeling of 1-D Wave Equation 

■ Problem: formulate a PDE governing the motion of a vibrating string. 

 

■ Assumptions 

1) Mass density (mass per unit length) ρ is uniform 

2) The string does not offer resistance to bending ⇒ no frictional nor restoring force 

3) The string is light ⇒ gravitational force is negligible 

4) Every particle of the string moves vertically ⇒ transverse wave 

5) Displacement and slope of the string are small 

 

■ Modeling 

 

1) No horizontal motion ⇒ net horizontal force is zero ⇒ T2cosβ = T1cosα =T…(1) 

2) Newton’s second law: vertical force=m×a ⇒ T2sinβ –T1sinα=(ρ ∆x)×utt…(2) 

3) 
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ρ
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(∗) Wave equation can be generalized to: utt = c2 uxx − βut − γ u + F(x,t), where β, γ, F describe 

friction, restoring, and external forces (F=g for gravitation force), respectively (SJF 16). 
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■ (∗) Intuitive interpretation (SJF 16) 

Eq. (1.1) implies that force (∝ utt) is proportional to the concavity (凹性 ∝ uxx) of the string. 

⇒ We can directly depict the force acting on the string by its shape. E.g. uxx<0, ⇒ utt<0, 

force acts downward (however, the particle at x can still move upward if ut>0). 

 

To have an insight, we approximate the derivative by the limit of difference quotient: 

uxx(x,t) = 
( )20

),(),(2),(lim
x

txxutxutxxu
x ∆

∆−+−∆+
→∆

= [ ]),(),(2
2 txutxu

x
−

∆
−   (1.2) 

where ),( txu ≡
2

),(),( txxutxxu ∆−+∆+  represents the average displacement of 

neighboring points. 

By comparing: (1) wave equation: utt = c2 uxx = [ ]),(),(2
2

2

txutxu
x
c

−
∆

− ; and (2) Hook’s law: 

F= –k⋅(y−y0), y0 denotes the equilibrium position of a spring, we conclude that the motion of 

a particle of a string at x is like that of an elastic spring, where (a) the equilibrium position is 

represented by the average position of the neighboring particles; (b) the elastic constant k ∝ 

c2. ⇒ The entire string is therefore a combination of coupled small springs, and will behave 

“oscillation”. 
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Appendix 1A − Canonical form of linear 2nd-order PDEs with 2 variables 

 

An arbitrary linear 2nd-order PDE with two variables can be represented as: 

A(x,y)uxx+ B(x,y)uxy + C(x,y)uyy + D(x,y)ux + E(x,y)uy + F(x,y)u = G(x,y)  (1A.1) 

By change of variables: 


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yx
yx

ηη
ξξ

             (1A.2) 

we may get a different PDE with new variables ξ, η: 

ux = uξ ξx + uη ηx, uy = uξ ξy + uη ηy; 

uxx = ( )xx uu ηξ
ξ ηξ +

∂
∂ ξx + ( )xx uu ηξ

η ηξ +
∂
∂ ηx + ( )xx uu

x
ηξ ηξ +

∂
∂  

= (ξx)2uξξ +2(ξxηx)uξη + (ηx)2uηη +(ξxx)uξ +(ηxx)uη; 

uxy = (ξxξy)uξξ +(ξxηy+ηxξy)uξη +(ηxηy)uηη +(ξxy)uξ +(ηxy)uη; 

uyy = (ξy)2uξξ +2(ξyηy)uξη +(ηy)2uηη +(ξyy)uξ +(ηyy)uη. ⇒ Eq. (1A.1) becomes:  

A uξξ + B uξη +C uηη + D uξ + E uη + F u =G     (1A.3) 

where A =(ξx)2A+ (ξxξy)B+ (ξy)2C, B =2(ξxηx)A+ (ξxηy+ηxξy)B+ 2(ξyηy)C, C =(ηx)2A+ 

(ηxηy)B+ (ηy)2C, D =(ξxx)A+ (ξxy)B+ (ξyy)C+(ξx)D +(ξy)E, E =(ηxx)A+ (ηxy)B+ (ηyy)C+ 

(ηx)D +(ηy)E, F =F, G =G. 

 

By choosing proper transformations ξ(x,y), η(x,y), we can make A =C =0 to simplify the 

PDE, ⇒ (µx)2A+ (µxµy)B+ (µy)2C=0, where µ  can be either ξ or η; ⇒ 
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A vertical/horizontal line in the ξη-plane, i.e. µ=constant, corresponds to a characteristic 

curve in the xy-plane, on which dµ=µx⋅dx+µy⋅dy=0, ⇒ 
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which leads two 1st-order nonhomogeneous ODEs: 

A
ACBB

dx
dy

2
42 −±

=       (1A.6) 

Solutions to eq. (1A.6) are of the form: f(x,y)=constant, ⇒ µ(x,y)=f(x,y), from which {ξ, η} 

are determined. 

 

Canonical forms: 

1) Hyperbolic (B2−4AC>0): eq. (1A.6) leads to two distinct solutions, from which ξ(x,y), 

η(x,y) are determined. ⇒ Eq. (1A.3) is simplified as: uξη =H(ξ ,η,u,uξ ,uη). Another 

change of variables: 

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 gives rise to the canonical form: 

uαα − uββ  = H(α ,β,u,uα ,uβ)     (1A.7) 

E.g. y2uxx − x2uyy =0, ⇒ A=y2, C=−x2, {B, D~G}=0. By eq. (1A.6), 
y
x

dx
dy
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⇒ uαα − uββ  = ( ) αβαβ βα 2uu ⋅+⋅− . 

2) Parabolic: if B2−4AC=0: Eq. (1A.6) only leads to one ODE: 
A

B
dx
dy

2
= , whose solution 

f(x,y)=constant is used to determine ξ(x,y), while η(x,y) can be arbitrarily chosen 

(normally just η=y). ⇒ Eq. (1A.3) is simplified as: 

uηη =H(ξ ,η,u,uξ ,uη)       (1A.8) 

E.g. uxx+2uxy+uyy=0, ⇒ A=1, B=2, C=1, {D−G}=0. By eq. (1A.6), 1=
dx
dy , ⇒ y−x= 

constant, ⇒ 


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=
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y
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η
ξ

, uηη =0. 

3) Elliptic: if B2−4AC<0: eq. (1A.6) leads to two distinct complex solutions, from which 

ξ(x,y), η(x,y) are determined. Another change of variables: 
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 gives rise to 

the canonical form: 
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uαα + uββ  = H(α ,β,u,uα ,uβ)     (1A.9) 

E.g. y2uxx + x2uyy =0, ⇒ A=y2, C=x2, {B, D-G}=0. By eq. (1A.6), 
y
xi
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⇒ uαα + uββ  = ( ) αβαβ βα 2uu ⋅+⋅− . 

Eq’s (1A.7−9) represent generalized wave equation, heat equation, and Laplace’s equation, 

respectively. By transforming a linear 2nd-order PDE into its canonical form, we can predict 

the behavior of its solution (wave propagation, diffusion, or steady-state). 
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Appendix 1B − General solutions to linear PDEs of constant coefficients 

 

An arbitrary 2nd-order linear PDE of constant coefficients can be represented as: 

Auxx+ Buxy + Cuyy + Dux + Euy + Fu = G(x,y)   (1B.1) 

where A~F are constants, and A~C cannot be zeros simultaneously. The general solution of eq. 

(1B.1) consists of homogeneous and particular solutions: u(x,y)= uh(x,y)+ up(x,y), which can 

be solved by the same procedures used in solving linear ODEs of constant coefficients. 

 

E.g. Solve: uxx+ uyy = 20e2x+y. 

Ans: Substitute uh(x,y)=eαx+β y into uxx+uyy=0, we have: α2+β 2=0, α=±iβ. ⇒ uh(x,y)= e±β (ix+y) 

= eiβ (x± i y). Since β is arbitrary, ⇒ uh(x,y)=f(x+iy)+g(x−iy), where f, g are arbitrary functions 

(check the consistency). 

By the method of undetermined coefficients, substitute up(x,y)=a⋅e2x+y into uxx+uyy=20e2x+y, 

we have: (4a+a)e2x+y=20e2x+y
, ⇒ a=4. u(x,y)= f(x+iy)+g(x−iy)+4e2x+y. 

Note: the exact forms of f, g should be determined by BCs and ICs. 

 

E.g. Solve: uxx− uyy − ux+ uy = 2cos(3x+2y). 

Ans: Substitute uh(x,y)=eαx+β y into uxx−uyy−ux+uy=0, we have: α2−β 2−α+β =0, α={β, 

1−β}.⇒ uh(x,y)=


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β

= f(x+y)+ex⋅g(x−y), where f, g are arbitrary functions. 

Substitute up(x,y)= a⋅cos(3x+2y)+ b⋅sin(3x+2y) into uxx−uyy−ux+uy = 2cos(3x+2y), we have: 

−(5a+b)cos(3x+2y)+ (a−5b)sin(3x+2y)= 2cos(3x+2y), ⇒ a=
13
5

− , 
13
1

− . 

u(x,y)= f(x+y)+ex⋅g(x−y)−
13
5 cos(3x+2y)−

13
1 sin(3x+2y). 


