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Homework Solutions # 6 
 

1) ∑ n
n za  has radius of convergence R： 
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 Similarly, 
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 So we obtain Rz < , i.e. ∑ n
nza 2  has radius of convergence R . 
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So the region of convergence is 3<− iz  

 

 

 

3) No, if this is true, we would have convergence at a point from point (0+0i) than 

(30-10i), but it diverges at point (31-6i). [From Theorem 1 at P674] 
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4) (A) Using Cauchy-Hadamard formula: 

  1

1

lim <








 +








 ++

∞→
z

m
mn

m
mn

n
 

  1
)1)(2)...((

)2)(3)...()(1(lim <
+++

+++++
⇒

∞→
z

nnmn
nnmnmn

n
 

  11
)1(

)1(lim <⇒<
+
++

⇒
∞→

zz
n

mn
n

 

  The radius of convergence R is 1. 

 

 (B) Using Theorem 3 at P680: Termwise Integration of a Power Series. 
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  Do integration term by term: 
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  The radius of convergence R is 1. 
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6) (a,c) [See Ref 1] For Fibonacci numbers, we get the following sequence of numbers: 

  L,233,144,89,55,34,21,13,8,5,3,2,1,1  

The sequence of ratios of consecutive Fibonacci numbers: 
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This sequence converges, that is, there is a single real number which the terms 

of this sequence approach more and more closely, eventually arbitrarily closely.  

 

We may discover this number by exploiting the recursive definition of the 

Fibonacci sequence in the following way. Let us denote the nth term of the 

sequence of ratios by xn, that is, 
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Then using the recursive definition of F(n) given above, we have: 
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Now supposing for the moment that the sequence converges to a real number x 

(a fact which requires proof, but we'll leave that aside), we may observe that 
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both nx and 1−nx  have the same limit, that is, 

xxx nnnn
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Consequently, the real number x to which the sequence of ratios converges 

must satisfy the following equation: 

0111 2 =−−⇒+= xx
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This is a simple equation to solve for x: it is really a quadratic equation, and its 

positive root is the value we are looking for: 
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 Perform integration term by term, we can obtain the series of ∫
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 (b) The nearest singularity is 0. So the distance d is the length between 0 and -1+i. 

  2=d  

   
 

(c) Yes, the distance between expanded center and the nearest singularity stands for 

radius of convergence. 

 

 

 

9) Let 11 +=⇒−= tzzt  

 
t

e
z
ezf

tz 1

1
)(

+

=
−

=  

 







+

+
+

+
+++=⇒ L

!3
)1(

!2
)1()1(11)(

32 ttt
t

tf  

 







++++

−
=⇒ L

!3!2
1

1
1)(

32 zzz
z

zf , Rz <−< 10  

 

i+−1

Rd == 2



 

 

Edited by Sheng-Ju Ho 

6

10) 
)1(

11
11

1

)( 223

3

−
=

−
=

−
=

zzzz
z

zzf  

 So, 0=z  is 2nd-order pole and 1=z  is 1st-order pole. 

Properties of singularity z0 are verified by the Laurent series centered at z0 and 

having an ROC “nearest” to z0: −∑
∞
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1
n

nz
 ( 0=z  is 2nd-order pole). However, the 

given series 3
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+… has an ROC of |z|>1 (not the nearest). 
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 [ 0=z  and 1−=z  are 1st-order pole] 
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 [ 0=z  is 1st-order pole] 

 Do not consider iz 3= , it isn’t located in C 
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