Homework Problem Set \#5

(Due by 2008/05/12)

This problem set covers the content of Lessons $9-10$ or EK 12-13.

1) (10%) For $-1<p<1$, prove that:

$$
\sum_{n=0}^{\infty} p^{n}(\cos n x)=\frac{1-p \cos x}{1-2 p \cos x+p^{2}}, \sum_{n=0}^{\infty} p^{n}(\sin n x)=\frac{p \sin x}{1-2 p \cos x+p^{2}} .
$$

2) (5\%) Problem 13.2.29. Are the two roots a complex conjugate pair as in polynomial equations of real coefficients?
3) (10%) Problem $\mathbf{1 3 . 3 . 2 6}(\mathbf{e}-\mathbf{f})$.
4) (10%) Problem 13.4.11.
5) Two curves $C_{1}: z_{1}(t)=1+i t, C_{2}: z_{2}(t)=t+i t$ in the z-plane are mapped by $f(z)=e^{z}$ onto $C_{1}{ }^{*}$, $C_{2}{ }^{*}$ in the w-plane.

5a) (5\%) Plot C_{1}, C_{2}, and evaluate the included angle θ between them at $z=1+i$.
5b) (5\%) Derive the mathematical forms of $C_{1}{ }^{*}, C_{2}{ }^{*}$, and plot them in the w-plane.
5c) (10%) Evaluate the included angle ϕ between $C_{1}{ }^{*}, C_{2}{ }^{*}$ at $w=e^{1+i}$. Whether $\phi=\theta$?
6) (10\%) Problem 13.7.30(a).
7) Evaluate $\int_{C} z^{*} d z$ (z^{*} means complex conjugate), if contour C is:

7a) (5\%) A unit circle centered at $z=0$ in counterclockwise sense;

7b) (10\%) A wedge shown in Fig. 1.

Fig. 1

8a) (5\%) Evaluate $I=\int_{-\mathrm{i}}^{+i} z^{-1} d z$ by eq. (10.3) if the integral path C is a unit circular arc in counterclockwise sense (Fig. 2).

8b) (5\%) Can you still apply antiderivative approach [eq. (10.5)] to evaluate I ? Justify your answer.

Fig. 2

9a) $\quad(5 \%)$ Evaluate $I=\oint_{C} \frac{e^{z}}{z(z+1)} d z$, where $C:|z-1|=3$.
9b) (5%) Evaluate $I=\oint_{C} \frac{5 z^{2}-3 z+2}{(z-1)^{3}} d z$, where $C:|z-1|=3$.
(Hint: Using Cauchy's integral formulas.)

