Homework Problem Set \#4

(Due by 2008/04/14)

This problem set covers the content of Lessons 7 or part of EK 12.5 and EK 12.10. The total score is $\mathbf{5 0}$ points.

1) (10%) Problem $\mathbf{1 2 . 5 . 3 4}$.
2) (10%) In performing separation of variables to solve Laplace's equation in polar coordinates, we claim that $\frac{r^{2} R^{\prime \prime}+r R^{\prime}}{R}=-\frac{\ddot{\Theta}}{\Theta}=\lambda$ ($\lambda=k^{2}$ in P7-5 of lecture notes). Can you justify why the eigenvalue λ cannot be negative?
3) (10%) Problem 12.10.9. Besides, what is the solution if the region of interest is either $r<R$ (interior problem) or $r>R$ (exterior problem)?
4) (10%) Problem 12.10.6. Besides, what is the solution if the region of interest is either $r<R$ (interior problem) or $r>R$ (exterior problem)? What have you found by comparing the difference between problem 2 and 3 ?
5) (10%) Solve the problem:

PDE: $u_{r r}+\frac{1}{r} u_{r}+\frac{1}{r^{2}} u_{\theta \theta}=0$, where ROI $=\left\{1<r<2,0<\theta<\frac{\pi}{2}\right\}$.
BCs: $u(1, \theta)=\sin (2 \theta), u(2, \theta)=0, u(r, 0)=0, u\left(r, \frac{\pi}{2}\right)=0$.
Hint: Modify the eigenfunction of $\Theta(\theta)$.

