Homework Problem Set \#3

(Due by 2008/04/07)

This problem set covers the content of Lessons 5-6 or EK 12.11, 12.8-9.

1) (10%) Solve the initial-value problem (problem 2 in HW2) by Fourier transform:

PDE: $u_{t}=\alpha^{2} u_{x x},\{-\infty<x<\infty, t>0\}$
IC: $u(x, 0)=e^{-(x / L)^{2}}$
2) (10%) Problem 12.11.4. You can find that integral transform is applicable in solving nonhomogeneous PDE with nonhomogeneous BCs.

3a) (10\%) Solve the semi-infinite heat diffusion problem by Laplace transform:
PDE: $u_{t}=\alpha^{2} u_{x x},\{0<x<\infty, 0<t<\infty\}$
$\mathrm{BC}: u(0, t)=\delta(t)$
IC: $u(x, 0)=0$
3b) (5\%) Plot three curves of $u(x, t)$ for $\alpha=1, t=1,2,4$, respectively.
4) (10\%) Solve the semi-infinite wave propagation problem by Laplace transform:

PDE: $u_{t t}=c^{2} u_{x x},\{0<x<\infty, 0<t<\infty\}$
$\mathrm{BC}: u(0, t)=\delta(t)$
ICs: $u(x, 0)=0, u_{t}(x, 0)=0$
You may sense the differences of behavior between heat flow and wave propagation by problems 2 and 3!
5) Solve 2-D heat diffusion problem in a rectangular plate:

PDE: $u_{t}=\alpha^{2}\left(u_{x x}+u_{y y}\right)\{0<x<a, 0<y<b, 0<t<\infty\}$
BCs: $u_{y}=0$ (heat insulated) on the upper side, $u=0$ (zero temperature) for the remaining three boundaries (see the figure)

5a) (5\%) What are the three ODEs if we perform separation of variables: $u(x, y, t)=$ $X(x) Y(y) T(t)$?

5b) (10%) Solve the eigenfunctions and eigenvalues by the four homogeneous BCs.
$5 \mathrm{c})(5 \%)$ Write down the fundamental mode according to (3b). Note that $u(x, y, t)$ will approach this form as $t \rightarrow \infty$ regardless of the ICs.

5d) $\quad(10 \%)$ Solve the exact solution $u(x, y, t)$ if IC is: $u(x, y, t=0)=100$.
6) (10%) Problem 12.8.18.
7) Consider a circular membrane with fixed rim governed by:

PDE: $u_{t t}=c^{2}\left(u_{r r}+\frac{1}{r} u_{r}+\frac{1}{r^{2}} u_{\theta \theta}\right),\{0<r<\rho, t>0\}$
BC: $u(r=\rho, \theta, t)=0$
The (m, n) normal mode $u_{m n}(r, \theta, t)$ is a function of r, θ, t.

7a) (10%) Plot nodal lines of mode u_{22} if $c=1, \rho=1$.
$7 \mathrm{~b})(5 \%)$ Evaluate the ratio of resonance frequencies $\frac{v_{m n}}{v_{01}}$ for $(m, n)=(0,2),(1,1),(1,2)$.

