Homework Problem Set #3

(Due by 2008/04/07)

This problem set covers the content of Lessons 5–6 or EK 12.11, 12.8–9.

- 1) (10%) Solve the initial-value problem (problem 2 in HW2) by Fourier transform: PDE: $u_t = \alpha^2 u_{xx}$, {- $\infty < x < \infty$, t > 0} IC: $u(x,0) = e^{-(x/L)^2}$
- (10%) Problem 12.11.4. You can find that integral transform is applicable in solving nonhomogeneous PDE with nonhomogeneous BCs.
- 3a) (10%) Solve the semi-infinite heat diffusion problem by Laplace transform: PDE: $u_t = \alpha^2 u_{xx}$, $\{0 \le x \le \infty, 0 \le t \le \infty\}$ BC: $u(0,t) = \delta(t)$ IC: u(x,0)=0
- 3b) (5%) Plot three curves of u(x,t) for $\alpha=1, t=1, 2, 4$, respectively.
- 4) (10%) Solve the semi-infinite wave propagation problem by Laplace transform: PDE: $u_{tt} = c^2 u_{xx}$, $\{0 \le x \le \infty, 0 \le t \le \infty\}$ BC: $u(0,t) = \delta(t)$ ICs: u(x,0)=0, $u_t(x,0)=0$

You may sense the differences of behavior between heat flow and wave propagation by problems 2 and 3!

5) Solve 2-D heat diffusion problem in a rectangular plate:

PDE: $u_t = \alpha^2 (u_{xx} + u_{yy}) \{ 0 < x < a, 0 < y < b, 0 < t < \infty \}$

BCs: $u_y=0$ (heat insulated) on the upper side, u=0 (zero temperature) for the remaining three boundaries (see the figure)

- 5a) (5%) What are the three ODEs if we perform separation of variables: u(x,y,t) = X(x)Y(y)T(t)?
- 5b) (10%) Solve the eigenfunctions and eigenvalues by the four homogeneous BCs.
- 5c) (5%) Write down the fundamental mode according to (3b). Note that u(x,y,t) will approach this form as $t \rightarrow \infty$ regardless of the ICs.
- 5d) (10%) Solve the exact solution u(x,y,t) if IC is: u(x,y,t=0)=100.
- 6) (10%) Problem **12.8.18**.
- 7) Consider a circular membrane with fixed rim governed by:

PDE:
$$u_{tt} = c^2 \left(u_{rr} + \frac{1}{r} u_r + \frac{1}{r^2} u_{\theta\theta} \right), \{0 < r < \rho, t > 0\}$$

BC: $u(r = \rho, \theta, t) = 0$

The (m,n) normal mode $u_{mn}(r,\theta,t)$ is a function of r, θ, t .

- 7a) (10%) Plot nodal lines of mode u_{22} if c=1, $\rho=1$.
- 7b) (5%) Evaluate the ratio of resonance frequencies $\frac{V_{mn}}{V_{01}}$ for (m,n)=(0,2), (1,1), (1,2).