Chapter 18
 Two-Port Circuits

18.1 The Terminal Equations
18.2 The Two-Port Parameters
18.3 Analysis of the Terminated Two-Port Circuit
18.4 Interconnected Two-Port Circuits

Motivation

- Thévenin and Norton equivalent circuits are used in representing the contribution of a circuit to one specific pair of terminals.
- Usually, a signal is fed into one pair of terminals (input port), processed by the system, then extracted at a second pair of terminals (output port). It would be convenient to relate the v / i at one port to the v / i at the other port without knowing the element values and how they are connected inside the "black box".

How to model the "black box"?

- We will see that a two-port circuit can be modeled by a 2×2 matrix to relate the v / i variables, where the four matrix elements can be obtained by performing 2 experiments.

Restrictions of the model

- No energy stored within the circuit.
- No independent source.
- Each port is not a current source or sink, i.e. $i_{1}=i_{1}^{\prime}, i_{2}=i_{2}^{\prime}$.
- No inter-port connection, i.e. between ac, ad, bc, bd.

Key points

- How to calculate the 6 possible 2×2 matrices of a two-port circuit?
- How to find the 4 simultaneous equations in solving a terminated two-port circuit?
- How to find the total 2×2 matrix of a circuit consisting of interconnected two-port circuits?

Section 18.1
 The Terminal Equations

s-domain model

- The most general description of a two-port circuit is carried out in the s-domain.

- Any 2 out of the 4 variables $\left\{V_{1}, I_{1}, V_{2}, I_{2}\right\}$ can be determined by the other 2 variables and 2 simultaneous equations.

Six possible sets of terminal equations (1)

$$
\begin{aligned}
& \left\{\left[\begin{array}{l}
V_{1} \\
V_{2}
\end{array}\right]=\left[\begin{array}{ll}
z_{11} & z_{12} \\
z_{21} & z_{22}
\end{array}\right] \times\left[\begin{array}{l}
I_{1} \\
I_{2}
\end{array}\right] ;[\mathrm{Z}]\right. \text { is the impedance matrix; } \\
& {\left[\begin{array}{l}
I_{1} \\
I_{2}
\end{array}\right]=\left[\begin{array}{ll}
y_{11} & y_{12} \\
y_{21} & y_{22}
\end{array}\right] \times\left[\begin{array}{l}
V_{1} \\
V_{2}
\end{array}\right] ;[\mathrm{Y}]=[\mathrm{Z}]^{-1} \text { is the admittance matrix; }}
\end{aligned}\left\{\begin{array}{l}
{\left[\begin{array}{l}
V_{1} \\
I_{1}
\end{array}\right]=\left[\begin{array}{ll}
a_{11} & -a_{12} \\
a_{21} & -a_{22}
\end{array}\right] \times\left[\begin{array}{l}
V_{2} \\
I_{2}
\end{array}\right] ;[\mathrm{A}] \text { is a transmission matrix; }} \\
{\left[\begin{array}{c}
V_{2} \\
I_{2}
\end{array}\right]=\left[\begin{array}{ll}
b_{11} & -b_{12} \\
b_{21} \\
-b b_{22}
\end{array}\right] \times\left[\begin{array}{l}
V_{1} \\
I_{1}
\end{array}\right] ;[B]=[A]^{-1} \text { is a transmission matrix; }}
\end{array}\right.
$$

Six possible sets of terminal equations (2)

$$
\left\{\begin{array}{l}
{\left[\begin{array}{l}
V_{1} \\
I_{2}
\end{array}\right]=\left[\begin{array}{ll}
h_{11} & h_{12} \\
h_{21} & h_{22}
\end{array}\right] \times\left[\begin{array}{l}
I_{1} \\
V_{2}
\end{array}\right] ;[\mathrm{H}] \text { is a hybrid matrix; }} \\
{\left[\begin{array}{l}
I_{1} \\
V_{2}
\end{array}\right]=\left[\begin{array}{ll}
g_{11} & g_{12} \\
g_{21} & g_{22}
\end{array}\right] \times\left[\begin{array}{l}
V_{1} \\
I_{2}
\end{array}\right] ;[G]=[H]^{-1} \text { is a hybrid matrix; }}
\end{array}\right.
$$

■ Which set is chosen depends on which variables are given. E.g. If the source voltage and current $\left\{V_{1}, I_{1}\right\}$ are given, choosing transmission matrix [B] in the analysis.

Section 18.2
 The Two-Port Parameters

1. Calculation of matrix [Z]
2. Relations among 6 matrixes

Example 18.1: Finding [Z] (1)

- Q: Find the impedance matrix [Z] for a given resistive circuit (not a "black box"):

$$
\left[\begin{array}{l}
V_{1} \\
V_{2}
\end{array}\right]=\left[\begin{array}{ll}
z_{11} & Z_{12} \\
z_{21} & z_{22}
\end{array}\right] \times\left[\begin{array}{l}
I_{1} \\
I_{2}
\end{array}\right]
$$

- By definition, $z_{11}=\left(V_{1} / I_{1}\right)$ when $I_{2}=0$, i.e. the input impedance when port 2 is open. $\Rightarrow z_{11}=$ $(20 \Omega) / /(20 \Omega)=10 \Omega$.

Example 18.1: (2)

- By definition, $z_{21}=\left(V_{2} / I_{1}\right)$ when $I_{2}=0$, i.e. the transfer impedance when port 2 is open.
- When port 2 is open:

$$
\begin{aligned}
& \left\{\begin{array}{l}
V_{2}=\frac{15 \Omega}{5 \Omega+15 \Omega} V_{1}=0.75 V_{1}, \\
\frac{V_{1}}{I_{1}}=z_{11}=10 \Omega, \Rightarrow I_{1}=\frac{V_{1}}{10 \Omega}, \\
\Rightarrow z_{21}=\frac{V_{2}}{I_{1}}=\frac{0.75 V_{1}}{V_{1} /(10 \Omega)}=7.5 \Omega .
\end{array} .\right.
\end{aligned}
$$

Example 18.1: (3)

- By definition, $z_{22}=\left(V_{2} / I_{2}\right)$ when $I_{1}=0$, i.e. the output impedance when port 1 is open. $\Rightarrow z_{22}=$ $(15 \Omega) / /(25 \Omega)=9.375 \Omega$.
- $z_{12}=\left(V_{1} / I_{2}\right)$ when $I_{1}=0, \Rightarrow$

$$
\begin{aligned}
& \left\{\begin{array}{l}
V_{1}=\frac{20 \Omega}{20 \Omega+5 \Omega} V_{2}=0.8 V_{2}, \\
\frac{V_{2}}{I_{2}}=z_{22}=9.375 \Omega, \Rightarrow I_{2}=\frac{V_{2}}{9.375 \Omega}, \\
\Rightarrow z_{12}=\frac{V_{1}}{I_{2}}=\frac{0.8 V_{2}}{V_{2} /(9.375 \Omega)}=7.5 \Omega .
\end{array}\right.
\end{aligned}
$$

Comments

- When the circuit is well known, calculation of [Z] by circuit analysis methods shows the physical meaning of each matrix element.
- When the circuit is a "black box", we can perform 2 test experiments to get [Z]: (1) Open port 2 , apply a current I_{1} to port 1 , measure the input voltage V_{1} and output voltage V_{2}. (2) Open port 1 , apply a current I_{2} to port 2 , measure the terminal voltages V_{1} and V_{2}.

Relations among the 6 matrixes

- If we know one matrix, we can derive all the others analytically (Table 18.1).
- $[Y]=[Z]^{-1},[B]=[A]^{-1},[G]=[H]^{-1}$, elements between mutually inverse matrixes can be easily related.
- E.g.

$$
\begin{aligned}
& {\left[\begin{array}{ll}
z_{11} & z_{12} \\
z_{21} & z_{22}
\end{array}\right]=\left[\begin{array}{ll}
y_{11} & y_{12} \\
y_{21} & y_{22}
\end{array}\right]^{-1}=\frac{1}{\Delta y}\left[\begin{array}{cc}
y_{22} & -y_{12} \\
-y_{21} & y_{11}
\end{array}\right] \text {, }} \\
& \text { where } \Delta y \equiv \operatorname{det}[Y]=y_{11} y_{22}-y_{12} y_{21} .
\end{aligned}
$$

Represent [Z] by elements of [A] (1)

- [Z] and [A] are not mutually inverse, relation between their elements are less explicit.
- By definitions of $[Z]$ and $[A]$,

$$
\left[\begin{array}{l}
V_{1} \\
V_{2}
\end{array}\right]=\left[\begin{array}{ll}
z_{11} & z_{12} \\
z_{21} & z_{22}
\end{array}\right] \times\left[\begin{array}{l}
I_{1} \\
I_{2}
\end{array}\right],\left[\begin{array}{l}
V_{1} \\
I_{1}
\end{array}\right]=\left[\begin{array}{ll}
a_{11} & -a_{12} \\
a_{21} & -a_{22}
\end{array}\right] \times\left[\begin{array}{c}
V_{2} \\
I_{2}
\end{array}\right],
$$ the independent variables of $[Z]$ and $[A]$ are $\left\{I_{1}\right.$, $\left.I_{2}\right\}$ and $\left\{V_{2}, I_{2}\right\}$, respectively.

- Key of matrix transformation: Representing the distinct independent variable V_{2} by $\left\{I_{1}, I_{2}\right\}$.

Represent [Z] by elements of [A] (2)

- By definitions of [A] and [Z],

$$
\begin{aligned}
& \left\{\begin{array}{l}
V_{1}=a_{11} V_{2}-a_{12} I_{2} \cdots(1) \\
I_{1}=a_{21} V_{2}-a_{22} I_{2} \cdots(2)
\end{array}\right. \\
& \text { (2) } \Rightarrow V_{2}=\frac{1}{a_{21}} I_{1}+\frac{a_{22}}{a_{21}} I_{2}=z_{21} I_{1}+z_{22} I_{2} \cdots(3), \\
& \text { (1),(3) } \Rightarrow V_{1}=a_{11}\left(\frac{1}{a_{21}} I_{1}+\frac{a_{22}}{a_{21}} I_{2}\right)-a_{12} I_{2} \\
& =\frac{a_{11}}{a_{21}} I_{1}+\left(\frac{a_{11} a_{22}}{a_{21}}-a_{12}\right) I_{2}=z_{11} I_{1}+z_{12} I_{2} \cdots(4) \\
& \Rightarrow\left[\begin{array}{ll}
z_{11} & z_{12} \\
z_{21} & z_{22}
\end{array}\right]=\frac{1}{a_{21}}\left[\begin{array}{cc}
a_{11} & \Delta a \\
1 & a_{22}
\end{array}\right] \text {, where } \Delta a \equiv \operatorname{det}[A] .
\end{aligned}
$$

Section 18.3 Analysis of the Terminated Two-Port Circuit

1. Analysis in terms of $[Z]$
2. Analysis in terms of $[T] \neq[Z]$

Model of the terminated two-port circuit

- A two-port circuit is typically driven at port 1 and loaded at port 2, which can be modeled as:

- The goal is to solve $\left\{V_{1}, I_{1}, V_{2}, I_{2}\right\}$ as functions of given parameters V_{g}, Z_{g}, Z_{L}, and matrix elements of the two-port circuit.

Analysis in terms of [Z]

■ Four equations are needed to solve the four unknowns $\left\{V_{1}, I_{1}, V_{2}, I_{2}\right\}$.

$$
\left\{\begin{array}{l}
V_{1}=z_{11} I_{1}+z_{12} I_{2} \cdots(1) \\
V_{2}=z_{21} I_{1}+z_{22} I_{2} \cdots(2)
\end{array} \cdots \text { two }-\right. \text { port equations }
$$

$$
\left\{\begin{array}{l}
V_{1}=V_{g}-I_{1} Z_{g} \cdots(3) \\
V_{2}=-I_{2} Z_{L} \cdots(4)
\end{array} \cdots\right. \text { constraint equations due to terminations }
$$

$$
\Rightarrow\left[\begin{array}{cccc}
-1 & 0 & z_{11} & z_{12} \\
0 & -1 & z_{21} & z_{22} \\
1 & 0 & Z_{g} & 0 \\
0 & 1 & 0 & Z_{L}
\end{array}\right] \times\left[\begin{array}{c}
V_{1} \\
V_{2} \\
I_{1} \\
I_{2}
\end{array}\right]=\left[\begin{array}{c}
0 \\
0 \\
V_{g} \\
0
\end{array}\right], \begin{aligned}
& \left\{\begin{array}{l}
\left\{V_{1}, I_{1}, V_{2}, I_{2}\right\} \text { are } \\
\text { derived by inverse } \\
\text { matrix method. }
\end{array} \text {. } 10 .\right.
\end{aligned}
$$

Thévenin equivalent circuit with respect to port 2

- Once $\left\{V_{1}, I_{1}, V_{2}, I_{2}\right\}$ are solved, $\left\{V_{T h}, Z_{T h}\right\}$ can be determined by Z_{L} and $\left\{V_{2}, I_{2}\right\}$:

$\Rightarrow\left[\begin{array}{cc}Z_{L} & -V_{2} \\ 1 & I_{2}\end{array}\right] \times\left[\begin{array}{c}V_{T h} \\ Z_{T h}\end{array}\right]=\left[\begin{array}{c}V_{2} Z_{L} \\ V_{2}\end{array}\right] ; \quad\left[\begin{array}{c}V_{T h} \\ Z_{T h}\end{array}\right]=\left[\begin{array}{cc}Z_{L} & -V_{2} \\ 1 & I_{2}\end{array}\right]^{-1} \times\left[\begin{array}{c}V_{2} Z_{L} \\ V_{2}\end{array}\right]$.

Terminal behavior (1)

- The terminal behavior of the circuit can be described by manipulations of $\left\{V_{1}, I_{1}, V_{2}, I_{2}\right\}$:
- Input impedance: $Z_{i n} \equiv \frac{V_{1}}{I_{1}}=z_{11}-\frac{Z_{12} z_{21}}{z_{22}+Z_{L}}$;
- Output current: $I_{2}=\frac{-z_{21} V_{g}}{\left(z_{11}+Z_{g}\right)\left(z_{22}+Z_{L}\right)-z_{12} z_{21}}$;
- Current gain: $\frac{I_{2}}{I_{1}}=-\frac{Z_{21}}{z_{22}+Z_{L}}$;
- Voltage gains: $\left\{\begin{array}{l}\frac{V_{2}}{V_{1}}=\frac{z_{21} Z_{L}}{z_{11} Z_{L}+\Delta z} ; \\ \frac{V_{2}}{V_{g}}=\frac{Z_{21} Z_{L}}{\left(z_{11}+Z_{g}\right)\left(z_{22}+Z_{L}\right)-z_{12} z_{21}} ;\end{array}\right.$

Terminal behavior (2)

- Thévenin voltage: $V_{T h}=\frac{Z_{21}}{z_{11}+Z_{g}} V_{g}$;
- Thévenin impedance: $Z_{T h}=z_{22}-\frac{Z_{12} Z_{21}}{z_{11}+Z_{g}}$;

Analysis in term of a two-port matrix [T] $\neq[Z]$

- If the two-port circuit is modeled by $[T] \neq[Z]$, $T=\{Y, A, B, H, G\}$, the terminal behavior can be determined by two methods:
- Use the 2 two-port equations of [T] to get a new 4×4 matrix in solving $\left\{V_{1}, I_{1}, V_{2}, I_{2}\right\}$ (Table 18.2);
- Transform [T] into [Z] by Table 18.1, borrow the formulas derived by analysis in terms of [Z].

Example 18.4: Analysis in terms of [B] (1)

- Q: Find (1) output voltage V_{2}, $(2,3)$ average powers delivered to the load P_{2} and input port P_{1}, for a terminated two-port circuit with known [B].

Example 18.4 (2)

■ Use the voltage gain formula of Table 18.2:

$$
\begin{aligned}
& \frac{V_{2}}{V_{g}}=\frac{\Delta b Z_{L}}{b_{12}+b_{11} Z_{g}+b_{22} Z_{L}+b_{21} Z_{g} Z_{L}} ; \\
& \Delta b=b_{11} b_{22}-b_{12} b_{21}=(-20)(-0.2)-(-3 \mathrm{k} \Omega)(-2 \mathrm{mS})=4-6=-2, \\
& \Rightarrow \frac{(-2)(5 \mathrm{k} \Omega)}{V_{g}}=\frac{V_{2}}{(-3 \mathrm{k} \Omega)+(-20)(0.5 \mathrm{k} \Omega)+(-0.2)(5 \mathrm{k} \Omega)+\ldots}=\frac{10}{19}, \\
& \Rightarrow V_{2}=\frac{10}{19} 500 \angle 0^{\circ}=263.16 \angle 0^{\circ} \mathrm{V} .
\end{aligned}
$$

Example 18.4 (3)

- The average power of the load is formulated by

$$
P_{2}=\frac{1}{2} \frac{\left|V_{2}\right|^{2}}{\left(R_{L}\right)}=\frac{1}{2} \frac{\left|263.16 \angle 0^{\circ} \mathrm{V}\right|^{2}}{(5 \mathrm{k} \Omega)}=6.93 \mathrm{~W} .
$$

- The average power delivered to port 1 is formulated by $P_{1}=\frac{1}{2}\left|I_{1}\right|^{2} \operatorname{Re}\left(Z_{\text {in }}\right)$.

$$
\begin{aligned}
& Z_{\text {in }} \equiv \frac{V_{1}}{I_{1}}=\frac{b_{22} Z_{L}+b_{12}}{b_{21} Z_{L}+b_{11}}=\frac{(-0.2)(5 \mathrm{k} \Omega)-(3 \mathrm{k} \Omega)}{(-2 \mathrm{mS})(5 \mathrm{k} \Omega)-20}=133.33 \Omega ; \\
& I_{1}=\frac{V_{g}}{Z_{g}+Z_{\text {in }}}=\frac{500 \angle 0^{\circ} \mathrm{V}}{(500 \Omega)+(133.33 \Omega)}=0.789 \angle 0^{\circ} \mathrm{A}, \\
& \Rightarrow P_{1}=\frac{1}{2}(0.789)^{2}(133.33)=41.55 \mathrm{~W} .
\end{aligned}
$$

Section 18.4

Interconnected Two-Port Circuits

Why interconnected?

- Design of a large system is simplified by first designing subsections (usually modeled by two-port circuits), then interconnecting these units to complete the system.

Five types of interconnections of two-port circuits

(a)

(b)

(d)
a. Cascade: Better use [A].
b. Series: [Z]
c. Parallel: [Y]
d. Series-parallel: $[H]$.
e. Parallel-series: [G].

Analysis of cascade connection (1)

■ Goal: Derive the overall matrix [A] of two cascaded two-port circuits with known transmission matrixes [A^{\prime}] and [$A^{\prime \prime}$].

Analysis of cascade connection (2)

$$
\begin{aligned}
& {\left[\begin{array}{c}
V_{1} \\
I_{1}
\end{array}\right]=\left[A^{\prime}\right] \times\left[\begin{array}{c}
V_{2}^{\prime} \\
I_{2}^{\prime}
\end{array}\right]=\left[A^{\prime}\right] \times\left[\begin{array}{c}
V_{1}^{\prime} \\
-I_{1}^{\prime}
\end{array}\right] \cdots(1)} \\
& {\left[\begin{array}{l}
V_{1}^{\prime} \\
I_{1}^{\prime}
\end{array}\right]=\left[A^{\prime \prime}\right] \times\left[\begin{array}{l}
V_{2} \\
I_{2}
\end{array}\right]=\left[\begin{array}{cc}
a_{11}^{\prime \prime} & -a_{12}^{\prime \prime} \\
I_{21}^{\prime \prime} & -a_{21}^{\prime \prime}
\end{array}\right] \times\left[\begin{array}{l}
V_{2} \\
I_{2}
\end{array}\right],} \\
& \Rightarrow\left[\begin{array}{c}
V_{1}^{\prime} \\
-I_{1}^{\prime}
\end{array}\right]=\left[\begin{array}{cc}
a_{11}^{\prime \prime} & -a_{12}^{\prime \prime} \\
\cdots-a_{21}^{\prime \prime} & a_{22}^{\prime \prime}
\end{array}\right] \times\left[\begin{array}{c}
V_{2} \\
I_{2}
\end{array}\right]=\left[\begin{array}{ll}
A^{\prime \prime}
\end{array}\right] \times\left[\begin{array}{c}
V_{2} \\
I_{2}
\end{array}\right] \cdots(2) \\
& \text { By (1), (2), }\left[\begin{array}{c}
V_{1} \\
I_{1}
\end{array}\right]=\left[A^{\prime}\right] \times\left[A^{\prime \prime}\right] \times\left[\begin{array}{c}
V_{2} \\
I_{2}
\end{array}\right]=[A] \times\left[\begin{array}{c}
V_{2} \\
I_{2}
\end{array}\right] \text {, } \\
& \Rightarrow[A]=\left[A^{\prime}\right] \times\left[A^{\prime \prime}\right],\left[\begin{array}{ll}
a_{11} & -a_{12} \\
a_{21} & -a_{22}
\end{array}\right]=\left[\begin{array}{ll}
a_{11}^{\prime} a_{11}^{\prime \prime}+a_{12}^{\prime} a_{21}^{\prime \prime} & -\left(a_{11}^{\prime} a_{12}^{\prime \prime}+a_{12}^{\prime} a_{22}^{\prime \prime}\right) \\
a_{21}^{\prime} a_{11}^{\prime \prime}+a_{22}^{\prime} a_{21}^{\prime \prime} & -\left(a_{21}^{\prime} a_{12}^{\prime \prime}+a_{22}^{\prime} a_{22}^{\prime \prime}\right.
\end{array}\right) .
\end{aligned}
$$

Key points

- How to calculate the 6 possible 2×2 matrices of a two-port circuit?
- How to find the 4 simultaneous equations in solving a terminated two-port circuit?
- How to find the total 2×2 matrix of a circuit consisting of interconnected two-port circuits?

Practical Perspective Audio Amplifier

Application of two-port circuits
■ Q: Whether it would be safe to use a given audio amplifier to connect a music player modeled by $\left\{V_{g}=2 \mathrm{~V}(\mathrm{rms}), Z_{g}=100 \Omega\right\}$ to a speaker modeled by a load resistor $Z_{L}=32 \Omega$ with a power rating of 100 W?

Find the $[H]$ by 2 test experiments (1)

- Definition of hybrid matrix [H]: $\left[\begin{array}{l}V_{1} \\ I_{2}\end{array}\right]=\left[\begin{array}{ll}h_{11} & h_{12} \\ h_{21} & h_{22}\end{array}\right] \times\left[\begin{array}{c}I_{1} \\ V / 2\end{array}\right]$;
- Test 1:
$I_{1}=2.5 \mathrm{~mA}$ (rms)
$V_{1}=1.25 \mathrm{~V}$ (rms)

$$
\begin{array}{cl}
V_{1}=h_{11} I_{1}, \Rightarrow h_{11}=\left.\frac{V_{1}}{I_{1}}\right|_{V_{2}=0}=\frac{1.25 \mathrm{~V}}{2.5 \mathrm{~mA}}=500 \Omega . & \begin{array}{l}
\text { Input } \\
\text { impedance }
\end{array} \\
I_{2}=h_{21} I_{1}, \Rightarrow h_{21}=\left.\frac{I_{2}}{I_{1}}\right|_{V_{2}=0}=\frac{3.75 \mathrm{~A}}{2.5 \mathrm{~mA}}=1500 . & \begin{array}{l}
\text { Current } \\
\text { gain }
\end{array}
\end{array}
$$

Find the $[H]$ by 2 test experiments (2)

- Definition of hybrid matrix $[H]:\left[\begin{array}{l}V_{1} \\ I_{2}\end{array}\right]=\left[\begin{array}{ll}h_{11} & h_{12} \\ h_{21} & h_{22}\end{array}\right] \times\left[\begin{array}{l}/ 1 \\ V_{2}\end{array}\right]$;
- Test 2 :

$$
\begin{aligned}
& V_{1}=h_{12} V_{2}, \Rightarrow h_{12}=\left.\frac{V_{1}}{V_{2}}\right|_{I_{1}=0}=\frac{50 \mathrm{mV}}{50 \mathrm{~V}}=10^{-3} \cdot \begin{array}{l}
\text { Voltage } \\
\text { gain }
\end{array} \\
& I_{2}=h_{22} V_{2}, \Rightarrow h_{22}=\left.\frac{I_{2}}{V_{2}}\right|_{I_{1}=0}=\frac{2.5 \mathrm{~A}}{50 \mathrm{~V}}=(20 \Omega)^{-1} \cdot \text { Output }
\end{aligned}
$$

Find the power dissipation on the load

■ For a terminated two-port circuit:

the power dissipated on Z_{L} is
$P_{L}=\operatorname{Re}\left\{-V_{2} I_{2}^{*}\right\}=\operatorname{Re}\left\{-\left(-I_{2} Z_{L}\right) I_{2}^{*}\right\}=\left|I_{2}\right|^{2} \operatorname{Re}\left\{Z_{L}\right\}$,
where I_{2} is the rms output current phasor.

Method 1: Use terminated 2-port eqs for $[H]$

- By looking at Table 18.2:

$$
\begin{aligned}
& I_{2}=\frac{h_{21} V_{g}}{\left(1+h_{22} Z_{L}\right)\left(h_{11}+Z_{g}\right)-h_{12} h_{21} Z_{L}}=1.98 \mathrm{~A}(\mathrm{rms}) \\
& \text { where }\left[\begin{array}{ll}
h_{11} & h_{12} \\
h_{21} & h_{22}
\end{array}\right]=\left[\begin{array}{cc}
500 \Omega & 10^{-3} \\
1500 & (20 \Omega)^{-1}
\end{array}\right] \\
& V_{g}=2 \mathrm{~V}(\mathrm{rms}), Z_{g}=100 \Omega, Z_{L}=32 \Omega \\
& \Rightarrow P_{L}=\left|I_{2}\right|^{2} \operatorname{Re}\left\{Z_{L}\right\}=(1.98)^{2}(32)=126 \mathrm{~W}>100 \mathrm{~W} .
\end{aligned}
$$

Method 2: Use system of terminated eqs of [Z]

- Transform [H] to [Z] (Table 18.1):

$$
\left[\begin{array}{ll}
z_{11} & z_{12} \\
z_{21} & z_{22}
\end{array}\right]=\frac{1}{h_{22}}\left[\begin{array}{cc}
\Delta h & h_{12} \\
-h_{21} & 1
\end{array}\right]=\left[\begin{array}{cc}
470 & 0.02 \\
-30,000 & 20
\end{array}\right] \Omega .
$$

- By system of terminated equations:

$$
\begin{aligned}
& {\left[\begin{array}{c}
V_{1} \\
V_{2} \\
I_{1} \\
\hdashline I_{2}
\end{array}\right]=\left[\begin{array}{cccc}
-1 & 0 & z_{11} & Z_{12} \\
0 & -1 & Z_{21} & Z_{22} \\
1 & 0 & Z_{g} & 0 \\
0 & 1 & 0 & Z_{L}
\end{array}\right]^{-1} \times\left[\begin{array}{c}
0 \\
0 \\
V_{g} \\
0
\end{array}\right]=\left[\begin{array}{c}
1.66 \mathrm{~V} \\
-63.5 \mathrm{~V} \\
3.4 \mathrm{~mA} \\
\hdashline 1.98 \mathrm{~A}
\end{array}\right] .} \\
& \Rightarrow P_{L}=\left|I_{2}\right|^{2} \operatorname{Re}\left\{Z_{L}\right\}=(1.98)^{2}(32)=126 \mathrm{~W}>100 \mathrm{~W} .
\end{aligned}
$$

