Chapter 11 Balanced Three-Phase Circuits

11.1-2 Three-Phase Systems
11.3 Analysis of the Y - Y Circuit
11.4 Analysis of the Y - Δ Circuit
11.5 Power Calculations in Balanced Three-Phase Circuits
11.6 Measuring Average Power in ThreePhase Circuits

Overview

- An electric power distribution system looks like:

where the power transmission uses "balanced three-phase" configuration.

Why three-phase?

- Three-phase generators can be driven by constant force or torque (to be discussed).

■ Industrial applications, such as high-power motors, welding equipments, have constant power output if they are three-phase systems (to be discussed).

Key points

■ What is a three-phase circuit (source, line, load)?

- Why a balanced three-phase circuit can be analyzed by an equivalent one-phase circuit?

■ How to get all the unknowns (e.g. line voltage of the load) by the result of one-phase circuit analysis?

- Why the total instantaneous power of a balanced three-phase circuit is a constant?

Section 11.1, 11.2
 Three-Phase Systems

1. Three-phase sources
2. Three-phase systems

One-phase voltage sources

■ One-phase ac generator: static magnets, one rotating coil, single output voltage $v(t)=V_{m} \cos \omega t$.

Galvanometer
(www.ac-motors.us)

Three-phase voltage sources

- Three static coils, rotating magnets, three output voltages $v_{a}(t), v_{b}(t), v_{c}(t)$.

Ideal Y- and Δ-connected voltage sources

Real Y- and Δ-connected voltage sources

■ Internal impedance of a generator is usually inductive (due to the use of coils).

Balanced three-phase voltages

- Three sinusoidal voltages of the same amplitude, frequency, but differing by 120° phase difference with one another.

■ There are two possible sequences:

1. abc (positive) sequence: $v_{b}(t)$ lags $v_{a}(t)$ by 120°.
2. acb (negative) sequence: $v_{b}(t)$ leads $v_{a}(t)$ by 120°.

abc sequence

- $v_{b}(t)$ lags $v_{a}(t)$ by 120° or $T / 3$.
- $\mathbf{V}_{a}=V_{m} \angle 0^{\circ}, \mathbf{V}_{b}=V_{m} \angle-120^{\circ}, \mathbf{V}_{c}=V_{m} \angle+120^{\circ}$.
${ }_{{ }_{-}{ }_{m}}{ }^{V_{m}}{ }^{\prime}$

Three-phase systems
Three-phase

- Source-load can be connected in four configurations: $\mathrm{Y}-\mathrm{Y}, \mathrm{Y}-\Delta, \Delta-\mathrm{Y}, \Delta-\Delta$.
- It's sufficient to analyze $Y-Y$, while the others can be treated by $\Delta-Y$ and $Y-\Delta$ transformations.

Section 11.3
 Analysis of the Y-Y Circuit

1. Equivalent one-phase circuit for balanced Y-Y circuit
2. Line currents, phase and line voltages

General Y-Y circuit model

Unknowns to be solved

- Line (line-to-line) voltage: voltage across any pair of lines.
- Phase (line-toneutral) voltage: voltage across a single phase.

■ For Y-connected load, line current equals phase current.

Solution to general three-phase circuit

■ No matter it's balanced or imbalanced threephase circuit, KCL leads to one equation:
$\mathbf{I}_{0}=\mathbf{I}_{a A}+\mathbf{I}_{b B}+\mathbf{I}_{c C}, \Rightarrow$

which is sufficient to solve \mathbf{V}_{N} (thus the entire circuit).

Solution to "balanced" three-phase circuit

- For balanced three-phase circuits,

1. $\left\{\mathbf{V}_{a^{\prime} n}, \mathbf{V}_{b^{\prime} n}, \mathbf{V}_{c^{\prime} n}\right\}$ have equal magnitude and 120° relative phases;
2. $\left\{Z_{g a}=Z_{g b}=Z_{g c}\right\},\left\{Z_{1 \mathrm{a}}=Z_{1 \mathrm{~b}}=Z_{1 \mathrm{c}}\right\},\left\{Z_{A}=Z_{B}=Z_{C}\right\}$; \Rightarrow total impedance along any line is the same $Z_{g a}+Z_{1 \mathrm{a}}+Z_{A}=\ldots=Z_{\phi}$.

- Eq. (1) becomes: $\frac{\mathbf{V}_{N}}{Z_{0}}=\frac{\mathbf{V}_{a^{\prime} n}-\mathbf{V}_{N}}{Z_{\phi}}+\frac{\mathbf{V}_{b^{\prime} n}-\mathbf{V}_{N}}{Z_{\phi}}+\frac{\mathbf{V}_{c^{\prime} n}-\mathbf{V}_{N}}{Z_{\phi}}$,

Meaning of the solution

- $\mathbf{V}_{N}=0$ means no voltage difference between nodes \boldsymbol{n} and N in the presence of $Z_{0} . \Rightarrow$ Neutral line is both short $(v=0)$ and open $(i=0)$.

■ The three-phase circuit can be separated into 3 one-phase circuits (open), while each of them has a short between nodes \boldsymbol{n} and N.

Equivalent one-phase circuit

- Directly giving the line current \& phase voltages:
$\mathbf{I}_{a A}=\frac{\mathbf{V}_{a^{\prime} n}-\mathbf{Y}_{N}^{\prime \prime}}{\left(Z_{g a}+Z_{1 a}+Z_{A}\right)=Z_{\phi}}, \mathbf{V}_{A N}=\mathbf{I}_{a A} Z_{A}, \mathbf{V}_{a n}=\mathbf{I}_{a A}\left(Z_{1 a}+Z_{A}\right)$.
- Unknowns of phases b , c can be determined by the fixed (abc or acb) sequence relation.

The 3 line and phase currents in abc sequence

- Given $\mathbf{I}_{a A}=\mathbf{V}_{a^{\prime} n} / Z_{\phi}$, the other 2 line currents are:

$$
\mathbf{I}_{b B}=\frac{\mathbf{V}_{b^{\prime} n}}{Z_{\phi}}=\mathbf{I}_{a A} \angle-120^{\circ}, \quad \mathbf{I}_{c C}=\frac{\mathbf{V}_{c^{\prime} n}}{Z_{\phi}}=\mathbf{I}_{a A} \angle 120^{\circ},
$$

which still follow the abc sequence relation.

The phase \& line voltages of the load in abc seq.

$$
\begin{aligned}
\mathbf{V}_{A N} & =\mathbf{V}_{a^{\prime} n} \frac{Z_{A}}{Z_{\phi}}, \mathbf{V}_{B N}=\mathbf{V}_{b^{\prime} n} \frac{Z_{B}}{Z_{\phi}}=\mathbf{V}_{A N} \angle-120^{\circ}, \mathbf{V}_{C N}=\mathbf{V}_{A N} \angle 120^{\circ} . \\
\mathbf{V}_{A B} & =\mathbf{V}_{A N}-\left(\mathbf{V}_{B N}\right) \\
& =\mathbf{V}_{A N}-\left(\mathbf{V}_{A N} \angle-120^{\circ}\right) \quad \mathbf{V}_{\mathrm{CA}} \\
& =\sqrt{3} \mathbf{V}_{A N} \angle+30^{\circ}, \\
\mathbf{V}_{B C} & =\left(\mathbf{V}_{A N} \angle-120^{\circ}\right)-\left(\mathbf{V}_{A N} \angle+120^{\circ}\right) \\
& =\sqrt{3} \mathbf{V}_{A N} \angle-90^{\circ}, \\
\mathbf{V}_{C A} & =\left(\mathbf{V}_{A N} \angle+120^{\circ}\right)-\mathbf{V}_{A N} \\
& =\sqrt{3} \mathbf{V}_{A N} \angle+150^{\circ} .
\end{aligned}
$$

The phase \& line voltages of the load in acb seq.

$$
\begin{aligned}
\mathbf{V}_{A B} & =\mathbf{V}_{A N}-\mathbf{V}_{B N} \\
& =\mathbf{V}_{A N}-\left(\mathbf{V}_{A N} \angle+120^{\circ}\right) \\
& =\sqrt{3} \mathbf{V}_{A N} \angle-30^{\circ}, \\
\mathbf{V}_{B C} & =\left(\mathbf{V}_{A N} \angle+120^{\circ}\right)-\left(\mathbf{V}_{A N} \angle-120^{\circ}\right) \\
& =\sqrt{3} \mathbf{V}_{A N} \angle+90^{\circ}, \\
\mathbf{V}_{C A} & =\left(\mathbf{V}_{A N} \angle-120^{\circ}\right)-\mathbf{V}_{A N} \\
& =\sqrt{3} \mathbf{V}_{A N} \angle-150^{\circ} .
\end{aligned}
$$

Example 11.1 (1)

- Q: What are the line currents, phase and line voltages of the load and source, respectively?

Example 11.1 (2)

■ The 3 line currents (of both load \& source) are:

$$
\begin{aligned}
& \mathbf{I}_{a A}=\frac{\mathbf{V}_{a^{\prime} n}}{Z_{g a}+Z_{1 a}+Z_{A}}=\frac{120 \angle 0^{\circ}}{40+j 30}=\left(2.4 \angle-36.87^{\circ}\right) \mathrm{A}, \\
& \mathbf{I}_{b B}=\mathbf{I}_{a A} \angle-120^{\circ}=\left(2.4 \angle-156.87^{\circ}\right) \mathrm{A}, \\
& \mathbf{I}_{c C}=\mathbf{I}_{a A} \angle+120^{\circ}=\left(2.4 \angle+83.13^{\circ}\right) \mathrm{A} .
\end{aligned}
$$

■ The 3 phase voltages of the load are:

$$
\begin{aligned}
& \mathbf{V}_{A N}=\mathbf{I}_{a A} Z_{A}=\left(2.4 \angle-36.87^{\circ}\right)(39+j 28)=\left(115.22 \angle-1.19^{\circ}\right) \mathrm{V} . \\
& \mathbf{V}_{B N}=\mathbf{V}_{A N} \angle-120^{\circ}=\left(115.22 \angle-121.19^{\circ}\right) \mathrm{V}, \\
& \mathbf{V}_{C N}=\mathbf{V}_{A N} \angle+120^{\circ}=\left(115.22 \angle+118.81^{\circ}\right) \mathrm{V} .
\end{aligned}
$$

Example 11.1 (3)

- The 3 line voltages of the load are:

$$
\begin{aligned}
\mathbf{V}_{A B} & =\left(\sqrt{3} \angle 30^{\circ}\right) \mathbf{V}_{A N} \\
& =\left(\sqrt{3} \angle 30^{\circ}\right)\left(115.22 \angle-1.19^{\circ}\right) \\
& =\left(199.58 \angle+28.81^{\circ}\right) \mathrm{V}, \quad \mathbf{V}_{C A} \\
\mathbf{V}_{B C} & =\mathbf{V}_{A B} \angle-120^{\circ} \\
& =\left(199.58 \angle-91.19^{\circ}\right) \mathrm{V}, \\
\mathbf{V}_{C A} & =\mathbf{V}_{A B} \angle+120^{\circ} \\
& =\left(199.58 \angle+148.81^{\circ}\right) \mathrm{V} .
\end{aligned}
$$

Example 11.1 (4)

- The 3 phase voltages of the source are:

$$
\begin{aligned}
\mathbf{V}_{a n} & =\mathbf{V}_{a^{\prime} n}-\mathbf{I}_{a A} Z_{g a}=120-\left(2.4 \angle-36.87^{\circ}\right)(0.2+j 0.5) \\
& =\left(118.9 \angle-0.32^{\circ}\right) \mathrm{V} \\
\mathbf{V}_{b n} & =\mathbf{V}_{a n} \angle-120^{\circ}=\left(118.9 \angle-120.32^{\circ}\right) \mathrm{V} \\
\mathbf{V}_{c n} & =\mathbf{V}_{a n} \angle+120^{\circ}=\left(118.9 \angle+119.68^{\circ}\right) \mathrm{V} .
\end{aligned}
$$

- The three line voltages of the source are:

$$
\begin{aligned}
\mathbf{V}_{a b} & =\left(\sqrt{3} \angle 30^{\circ}\right) \mathbf{V}_{a n}=\left(\sqrt{3} \angle 30^{\circ}\right)\left(118.9 \angle-0.32^{\circ}\right) \\
& =\left(205.94 \angle+29.68^{\circ}\right) \mathrm{V}, \\
\mathbf{V}_{b c} & =\mathbf{V}_{a b} \angle-120^{\circ}=\left(205.94 \angle-90.32^{\circ}\right) \mathrm{V}, \\
\mathbf{V}_{c a} & =\mathbf{V}_{a b} \angle+120^{\circ}=\left(205.94 \angle+149.68^{\circ}\right) \mathrm{V} .
\end{aligned}
$$

Section 11.4
 Analysis of the Y - Δ Circuit

Load in Δ configuration

$\Delta-Y$ transformation for balanced 3-phase load

- The impedance of each leg in Y-configuration $\left(Z_{Y}\right)$ is one-third of that in Δ-configuration $\left(Z_{\Delta}\right)$:

Equivalent one-phase circuit

■ The 1-phase equivalent circuit in $Y-Y$ config. continues to work if Z_{A} is replaced by $Z_{\Delta} / 3$:

directly giving the line current: $\mathbf{I}_{a A}=\frac{\mathbf{V}_{a^{\prime} n}}{Z_{g a}+Z_{1 a}+Z_{A}}$,
and line-to-neutral voltage: $\mathbf{V}_{A N}=\mathbf{I}_{a A} Z_{A}$.

The 3 phase currents of the load in abc seq.

- Can be solved by 3 node equations once the 3 line currents $\mathbf{I}_{\mathrm{aA}}, \mathbf{I}_{\mathrm{bB}}, \mathbf{I}_{\mathrm{cC}}$ are known:

$$
\mathbf{I}_{a A}=\mathbf{I}_{A B}-\mathbf{I}_{C A}, \mathbf{I}_{b B}=\mathbf{I}_{B C}-\mathbf{I}_{A B}, \mathbf{I}_{c C}=\mathbf{I}_{C A}-\mathbf{I}_{B C}
$$

Section 11.5 Power Calculations in Balanced Three-Phase Circuits

1. Complex powers of one-phase and the entire Y -Load
2. The total instantaneous power

Average power of balanced Y-Load

- The average power delivered to Z_{A} is:

$$
\begin{aligned}
& P_{A}=V_{\phi} I_{\phi} \cos \theta_{\phi}, \\
& \left\{\begin{array}{l}
V_{\phi} \equiv\left|\mathbf{V}_{A N}\right|=V_{L} / \sqrt{3}, \\
I_{\phi} \equiv\left|\mathbf{I}_{a A}\right|=I_{L}, \\
\theta_{\phi} \equiv \angle V_{\phi}-\angle I_{\phi}=\angle Z_{A} .
\end{array}\right.
\end{aligned}
$$

- The total power delivered to the Y -Load is:

$$
P_{t o t}=3 P_{A}=3 V_{\phi} I_{\phi} \cos \theta_{\phi}=\sqrt{3} V_{L} I_{L} \cos \theta_{\phi} .
$$

Complex power of a balanced Y-Load

- The reactive powers of one phase and the entire Y-Load are:

$$
\left\{\begin{array}{l}
Q_{\phi}=V_{\phi} I_{\phi} \sin \theta_{\phi}, \\
Q_{t o t}=3 V_{\phi} I_{\phi} \sin \theta_{\phi}=\sqrt{3} V_{L} I_{L} \sin \theta_{\phi} .
\end{array}\right.
$$

- The complex powers of one phase and the entire Y-Load are:

$$
\left\{\begin{array}{l}
S_{\phi}=P_{\phi}+j Q_{\phi}=V_{\phi} I_{\phi} e^{j \theta_{\phi}}=\mathbf{V}_{\phi} \mathbf{I}_{\phi}^{*} \\
S_{\text {tot }}=3 S_{\phi}=3 V_{\phi} I_{\phi} e^{j \theta_{\phi}}=\sqrt{3} V_{L} I_{L} e^{j \theta_{\phi}} .
\end{array}\right.
$$

One-phase instantaneous powers

- The instantaneous power of load Z_{A} is:

$$
p_{A}(t)=v_{A N}(t) i_{a A}(t)=V_{m} I_{m} \cos \omega t \cos \left(\omega t-\theta_{\phi}\right)
$$

- The instantaneous powers of Z_{A}, Z_{C} are:

$$
p_{B}(t)=v_{B N}(t) i_{b B}(t)
$$

$$
=V_{m} I_{m} \cos \left(\omega t-120^{\circ}\right)
$$

$$
\cos \left(\omega t-\theta_{\phi}-120^{\circ}\right)
$$

$$
p_{C}(t)=V_{m} I_{m} \cos \left(\omega t+120^{\circ}\right)
$$

$$
\cos \left(\omega t-\theta_{\phi}+120^{\circ}\right)
$$

Total instantaneous power

■ The instantaneous power of the entire Y-Load is a constant independent of time!

$$
\begin{aligned}
p_{\text {tot }}(t) & =p_{A}(t)+p_{B}(t)+p_{C}(t)=1.5 V_{m} I_{m} \cos \theta_{\phi} \\
& =1.5\left(\sqrt{2} V_{\phi}\right)\left(\sqrt{2} I_{\phi}\right) \cos \theta_{\phi}=3 V_{\phi} I_{\phi} \cos \theta_{\phi} .
\end{aligned}
$$

- The torque developed at the shaft of a 3-phase motor is constant, \Rightarrow less vibration in machinery powered by 3-phase motors.
- The torque required to empower a 3-phase generator is constant, \Rightarrow need steady input.

Example 11.5 (1)

- Q: What are the complex powers provided by the source and dissipated by the line of a-phase?

■ The equivalent one-phase circuit in $\mathrm{Y}-\mathrm{Y}$ configuration is:

Example 11.5 (2)

■ The line current of a-phase can be calculated by the complex power is:

$$
\begin{aligned}
& S_{\phi}=\mathbf{V}_{\phi} \mathbf{I}_{\phi}^{*},(160+j 120) 10^{3}=\frac{600}{\sqrt{3}} \mathbf{I}_{a A}^{*}, \\
& \Rightarrow \mathbf{I}_{a A}=\left(577.35 \angle-36.87^{\circ}\right) \mathrm{A} .
\end{aligned}
$$

■ The a-phase voltage of the source is:

$$
\begin{aligned}
& \mathbf{V}_{a n}=\mathbf{V}_{A N}+\mathbf{I}_{a A} Z_{1 a} \\
& =600 / \sqrt{3}+\left(577.35 \angle-36.87^{\circ}\right)(0.005+j 0.025) \\
& =\left(357.51 \angle 1.57^{\circ}\right) \mathrm{V} .
\end{aligned}
$$

Example 11.5 (3)

■ The complex power provided by the source of aphase is:

$$
\begin{aligned}
S_{a n} & =\mathbf{V}_{a n} \mathbf{I}_{a A}^{*}=\left(357.51 \angle 1.57^{\circ}\right)\left(577.35 \angle 36.87^{\circ}\right) \\
& =\left(206.41 \angle 38.44^{\circ}\right) \mathrm{kVA} .
\end{aligned}
$$

- The complex power dissipated by the line of aphase is:

$$
\begin{aligned}
S_{a A} & =\left|\mathbf{I}_{a A}\right|^{2} Z_{1 a}=(577.35)^{2}(0.005+j 0.025) \\
& =\left(8.50 \angle 78.66^{\circ}\right) \mathrm{kVA} .
\end{aligned}
$$

Key points

■ What is a three-phase circuit (source, line, load)?

- Why a balanced three-phase circuit can be analyzed by an equivalent one-phase circuit?

■ How to get all the unknowns (e.g. line voltage of the load) by the result of one-phase circuit analysis?

- Why the total instantaneous power of a balanced three-phase circuit is a constant?

