IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. IT-30, NO. 2, MARCH 1984

429

Improved Maximum-Likelihood Detection and Estimation of Bernoulli–Gaussian Processes

CHONG-YUNG CHI MEMBER, IEEE, AND JERRY M. MENDEL, FELLOW, IEEE

Abstract—When a wavelet to be estimated is not spiky, then a single most likely replacement (SMLR) detector, which is used to detect randomly located impulsive events that have Gaussian-distributed amplitudes, may split a large spike into two smaller ones and may also detect some spikes at wrong locations, although these locations are very close to their true ones. Presented here are two new detection algorithms, namely a single-spike-shift (SSS) detector and an SSS–SMLR detector both of which help correct the SMLR detector’s spike-splitting and shifting problem.

I. INTRODUCTION

Kormylo and Mendel [1] have developed a maximum-likelihood detector that produces locally optimal estimates. Their single most likely replacement (SMLR) detector detects or removes an event at any single time point in such a way that the likelihood function always decreases. The SMLR detector has been found to be very useful in reflection seismology, where the problem of pulse overlap can become extremely severe. Although the SMLR detector works well for various wavelets (i.e., channel impulse responses), we have found that it sometimes splits a large spike into smaller ones. Additionally, it sometimes detects spikes at incorrect locations, although these locations are very close to the correct ones. These cases often occur when the wavelet is not spiky (i.e., not broad-band).

In this correspondence, we present new detectors which can help to resolve overlapping nonspiky wavelets, and can increase the accuracy of spike detection.

In Section II we review the background of maximum-likelihood detection and estimation for Bernoulli–Gaussian processes. In Section III we derive a single-spike-shift (SSS) detection algorithm. In Section IV we describe an SSS–SMLR detector that is a combination of the SSS and SMLR detectors. Computer simulations are presented in Section V which demonstrate that our SSS detector can help to improve the results obtained from the SMLR detector, and vice versa, and that the SSS–SMLR detector outperforms both the SMLR and SSS detectors.

II. BACKGROUND

As in Kormylo and Mendel [1], we begin with the discrete-time convolutional model

\[z(k) = \sum_{i=1}^{k} V(k-i)\mu(i) + n(k), \]

where \(z(k) \) is the observed data, \(V(k) \) is the pulse wavelet, \(\mu(k) \) is the impulse signal to be estimated, and \(n(k) \) is observation noise. We assume that the data is to be processed off-line after \(N \) samples of \(z(k) \) have been obtained. In (1) \(V(k) \) is modeled as an \(n \)-th order autoregressive moving average (ARMA) with transfer function

\[V(z) = \frac{\sum_{i=1}^{n} \beta_i z^{-i+1}}{1 - \sum_{i=1}^{n} \alpha_i z^{-i}}. \]

Our detectors are based on Kalman filter/optimal smoother techniques; thus, we also need to express the convolutional model (1) in state-variable format as

\[x(k) = \Phi x(k-1) + \gamma \mu(k), \]

and

\[z(k) = h'x(k) + n(k), \]

where \(\Phi, \gamma, \) and \(h \) are (known) functions of \(\alpha_i, \) and \(\beta_i \) (e.g., [2]). As in Kormylo and Mendel [1], the sequence \(\mu(k) \) is modeled as a zero mean Bernoulli-Gaussian sequence, one which can be expressed as the product model \(\mu(k) = r(k)q(k) \), where \(r(k) \) is white Gaussian noise with variance \(C \), and \(q(k) \) is a Bernoulli sequence for which

\[\Pr\{ q(k) \} = \begin{cases} 1 - \lambda, & q(k) = 0, \\ \lambda, & q(k) = 1. \end{cases} \]

The observation noise \(n(k) \) is assumed to be white and Gaussian with variance \(R \), and the sequences \(r(k) \) and \(q(k) \) are assumed to be independent.

Event detection consists of finding maximum-likelihood estimates \(q(k) \) of \(q(k) \), \(k = 1, 2, \ldots, N \), and amplitude estimation consists of finding maximum-likelihood estimates \(\mu(k) \) of \(r(k) \), \(k = 1, 2, \ldots, N \).

As in Kormylo and Mendel [1], we shall find it convenient during the derivation of our detectors, to express convolutional model (1) in matrix form as \(z = V\mu + n \), where \(z = \text{col}\{z(1), z(2), \ldots, z(N)\} \),

\[
V = \begin{bmatrix} V(0) & 0 & \cdots & 0 \\ V(1) & V(0) & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ V(N-1) & V(N-2) & \cdots & V(0) \end{bmatrix},
\]

\[
\mu = \text{col}\{\mu(1), \mu(2), \ldots, \mu(N)\},
\]

and \(n = \text{col}\{n(1), n(2), \ldots, n(N)\} \). From the product model we see that \(E(\mu^2(k)q(k)) = Cq^2(k) = Cq(k) \); hence, the conditional covariance matrix for \(z \) is given by

\[E\{z'q\} = QVQ' + RT \]

Manuscript received March 15, 1983; revised June 13, 1983. This work was performed at the University of Southern California, Los Angeles, and supported in part under NSF Grant ECS 8200882 and in part under the support of the sponsors of the USC Geo-Signal Processing Program. C. Y. Chi was with the Department of Electrical Engineering, University of Southern California, Los Angeles, CA 90009, and is now with the Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109. J. M. Mendel is with the Department of Electrical Engineering, University of Southern California, Los Angeles, CA 90009/0781.

0018-9448/84/0300-0429$01.00 ©1984 IEEE
where \(q = \text{col}(q(1), q(2), \cdots, q(N)) \), and
\[
E\{\mu|q\} \triangleq Q_q = \text{diag}(Cq^2(1), Cq^2(2), \cdots, Cq^2(N)) = C \text{diag}(q(1), q(2), \cdots, q(N)).
\]

The SMLR detector, developed in [1], is an iterative search algorithm that compares the likelihood of a "reference" sequence \(q_r \) to a limited number of different "test" sequences \(q_t \) in each iteration. The SMLR detector was derived by assuming that \(q_r \) differs from \(q_t \) at only one location, so that there are then only \(N \) possible test sequences for a given reference sequence. The log-likelihood-ratio decision rule for choosing \(q_r \) and \(q_t \) is given by
\[
2 \ln \Lambda_{w}(k) = 2 \ln \frac{p(z|q_r)P(q_r)}{p(z|q_t)P(q_t)} = (v_i^o - 1)\lambda^2 - \ln \left[\frac{1}{1 - \lambda} \right] + v_i^o - v_k - \ln \left[\frac{1}{1 - \lambda} \right] \ln \left(\frac{\lambda}{1 - \lambda} \right) \leq 0,
\]
which is (33) in [1], where \(q_r \) is the sequence
\[
q_r(i) = \begin{cases} q(i), & \text{for all } i \neq k, \\ 1 - q(i), & i = k, \end{cases}
\]
and
\[
v_i \text{ is the } k \text{th column of matrix } V, \text{ and } \Omega = \Omega_{q_l \rightarrow q_r}.
\]
Let \(k \) be associated with the maximum value of \(\ln \Lambda_{w}(k) \). Then the single most likely replacement test sequence is
\[
q_t(i) = \begin{cases} q(i), & \text{for all } i \neq k', \\ 1 - q(i), & i = k'. \end{cases}
\]
It is also true that the log-likelihood function evaluated for \(q_t \) is at least as large as its value evaluated for \(q_r \).

As pointed out by Kormylo and Mendel [1], the SMLR search algorithm, initiated by \(q_1 = q^{(0)} \), computes \(N \) log-likelihood ratios corresponding to \(N \) different \(q_t \) sequences. The most likely \(q_t \) sequence is used as the reference sequence \(q^{(0)} \) for the next iteration. If, after \(i \) iterations we obtain a reference \(q_t = q^{(i)} \), our change from \(q_r \) to \(q_t \) occurs at \(i \) locations.

After SMLR detection is completed, amplitude estimates of the detected spikes can be obtained by using \(\hat{q} \) in the covariance model of an optimal smoother. Doing this, we obtain \(\hat{r}(k|N) \), and subsequently \(\hat{r}(k|N) = \hat{q}(k) \hat{r}(k|N) \).

III. Single-Spike-Shift (SSS) Detection

The SMLR detector is derived by assuming that \(q_r \) and \(q_t \) differ in just one location. In order to detect a better \(q_t \) sequence, i.e., one with a higher likelihood function than that obtained by the SMLR detector, we shall derive a detector that computes the likelihood ratio of \(q_r \) and \(q_t \), when \(q_r \) and \(q_t \) differ at exactly two locations.

The total number of different \(q \) sequences obtained from \(q_r \) by changing any two location is \(N(N - 1)/2 \), which can be a very large number. We shall only consider the special case where \(q_r \) and \(q_t \) differ at two consecutive locations. The SSS detector restricts \(q_t \) to be generated from \(q_r \) by shifting only at those \(k \) where there is a spike in \(q_r \). Such spikes are shifted one location forwards or backwards.

Let \(C_0 \) be the class of all possible test sequences generated by shifting a spike in \(q_r \) forward or backward one location. We define a "bunch of spikes" as a set of consecutive spikes; thus, a bunch of spikes includes at least two consecutive spikes. We call a spike at \(k = i \) an "isolated spike" if \(q(k) = 1 \) and \(q(k - 1) = q(k + 1) = 0 \). Assume that \(q_t \) includes \(G \) isolated spikes and \(G \) bunches of spikes and that the \(i \)th bunch has \(g_i \) consecutive spikes for \(i = 1, 2, \ldots, G \). Let the \(L \) isolated spikes in \(q_t \) be located at \(k_1, k_2, \ldots, k_L \) and the \(i \)th bunch contain spikes located at \(k = k_i \) through \(k_i + g_i - 1 \) for \(1 \leq i \leq G \), i.e.,
\[
q_t(j) = \begin{cases} 1, & \text{for all } j = k_i, \ i = 1, 2, \ldots, L, \\ 0, & \text{otherwise.} \end{cases}
\]

The class \(C_0 \) can be expressed as two mutually exclusive subclasses, \(C_1 \) and \(C_2 \). Subclass \(C_1 \) includes those test sequences in which a change from \(q_t \) to \(q_r \) occurs at just one location,
\[
C_1 = \{ q_r q_t(j) = q_t(j), \text{for all } j \neq k, q_t(j) = 1 - q_r(j), \text{for } j = k, k \in D_1 \}
\]
where
\[
D_1 = \{ k|l_i \leq k \leq l_i + g_i - 1, 1 \leq i \leq G \}
\]
Subclass \(C_2 \) includes all test sequences which are obtained by shifting a spike within any bunch in \(q_t \), one location forwards or backwards. For example, assume that \(l_i - 3 \) and \(g_i - 4 \), i.e., the first bunch in \(q_t \) is located at \(k = 3 \) through \(k = 6 \). Fig. 1 depicts this first bunch of \(q_t \). A test sequence \(q_t \) obtained by shifting the spike at \(k = 5 \) one location forwards or backwards is depicted in Fig. 1. Obviously, for \(k = 5, q_t \) is a member of \(C_2 \). Note that end points \(k - l_i \) and \(k_i + g_i - 1 \) are included in \(D_1 \) when these spikes are shifted into the bunch.

Subclass \(C_2 \) includes those test sequences in which a change from \(q_t \) to \(q_r \) occurs at two locations,
\[
C_2 = \{ q_r q_t(j) = q_t(j), \text{for all } j \neq k, q_t(j) = 1 - q_r(j), \text{for } j = k, k + 1, k \in D_2 \}
\]
where
\[
D_2 = \{ k | k = k_i, k_i - 1 \text{ for } 1 \leq i \leq L; \\ or \ k = l_i, l_i + g_i - 1 \text{ for } 1 \leq i \leq G \}
\]
Note that endpoints \(k - l_i \) and \(l_i + g_i - 1 \) are included in \(D_2 \) when these spikes are shifted outside the bunch.

The total number of elements, in \(C_1 \) and \(C_2 \), \(M_1 \) and \(M_2 \), respectively are
\[
M_1 = \sum_{i=1}^{G} g_i
\]
and
\[
M_2 = 2L + 2G.
\]
For notational simplicity, we let $\ln A_1(k)$ denote the log-likelihood ratios when $q_t \in C_1$ and $\ln A_2(k)$ denote the log-likelihood ratios when $q_t \in C_2$. Observe that $\ln A_1(k)$ can be computed using (4) for all $k \in D_1$. On the other hand, $\ln A_2(k)$ must be computed using (7) stated in the following theorem for all $k \in D_2$.

Theorem: Assume that q_t and q_s differ at two consecutive locations, i.e.,

$$q_t(i) = \begin{cases} q_s(i), & i \neq k \text{ and } k + 1, \\ 1 - q_s(i), & i = k \text{ and } k + 1. \end{cases}$$

For this case

$$2 \ln A_2 (k) = \frac{C}{|A|} \left[d_k f_k (1 + C d_k a_{k+1}) + D d_k a_{k+1} \right] - \ln |A|$$

$$- 2 C d_k a_{k+1} b_k f_k f_{k+1} - \ln \left(\frac{\lambda}{1 - \lambda} \right)$$

where

$$A' = I + C \left[\begin{array}{c} \sigma_k \\ \sigma_{k+1} \end{array} \right] \Omega_r^{-1} \left[\begin{array}{c} v_k \\ v_{k+1} \end{array} \right] \left[\begin{array}{cc} 0 & d_k \\ d_k & 0 \end{array} \right]$$

$$= \left[\begin{array}{cc} 1 + C d_k a_k & C d_k a_{k+1} \\ C d_k b_k & 1 + C d_k a_{k+1} \end{array} \right],$$

and

$$b_k = \sigma_k \Omega_{r+1}^{-1} v_{k+1}.$$

Quantities f_k, a_k, and b_k can be computed by running the following time-varying backwards state equation which is driven by the innovations process, $\xi(k|k-1)$ that is obtained from a Kalman filter:

$$r(k|N) = \Phi_3(k) r(k+1|N) + h \eta^{-1}(k) \xi(k|k-1),$$

where $k = N, N-1, \cdots, 1, r(N+1|N) = 0$,

$$\Phi_3(k) = [I - K(k) h'] \Phi',$$ (12)

$K(k)$ is the Kalman gain and $\eta(k)$ is the variance of $\xi(k|k-1)$. The covariance matrix of $r(k|N)$, $S(k|N)$, satisfies the backwards-recursive equation

$$S(k|N) = \Phi_3(k) S(k+1|N) \Phi_3^T(k) + h \eta^{-1}(k) h'$$ (14)

where $k = N, N-1, \cdots, 1$, and $S(N+1|N) = 0$. From $r(k|N)$ and $S(k|N)$, we compute f_k, a_k, and b_k as

$$f_k = \gamma r(k|N)$$

$$a_k = \gamma S(k|N) \gamma$$ (16)

and

$$b_k = \gamma \Phi_3(k) S(k+1|N) \gamma.$$

(17)

The proof of this theorem is given in the Appendix.

Let k' be associated with the maximum value of $\ln A_2(k)$ $(k \in D_1)$ and $\ln A_2(j)$ $(j \in D_2)$. Then the single-spike-shift test
sequence is
\[q_{i}(i) = \begin{cases} q_{i}(i), & \text{for all } i \neq k', \\ 1 - q_{i}(i), & i = k', \end{cases} \]

(18)

if \(k' \in D_1 \), or
\[q_{i}(i) = \begin{cases} q_{i}(i), & \text{for all } i \neq k' \text{ and } k' + 1, \\ 1 - q_{i}(i), & i = k' \text{ and } k' + 1, \end{cases} \]

(19)

if \(k' \in D_2 \). It is also true that the log likelihood function evaluated for \(q' \) is at least as large as its value evaluated for \(q \).

Beginning with some initial reference \(q = \hat{q}^{(0)} \), the SSS search algorithm computes \(M_1 \) log-likelihood ratios \(\ln \Lambda_1(k) \) (for all \(k \in D_1 \)), using (4), and \(M_2 \) log-likelihood ratios \(\ln \Lambda_2(k) \) (for all \(k \in D_2 \)), using (7) (see Fig. 2). The most likely \(q \) sequence is used as the reference sequence \(\hat{q}^{(1)} \) for the next iteration. If, after \(i \) iterations we obtain a reference \(q = \hat{q}^{(i)} \) which is more likely than any of the corresponding \(q \) sequences, then the reference sequence no longer changes so the search stops and \(q = \hat{q}^{(i)} \) is the final detected event sequence. If \(\hat{q}^{(i)} \) is chosen to be the SMLR detector, then the likelihood function of \(\hat{q}^{(i)} \) is surely larger than that of \(\hat{q}^{(i)} \) when \(\hat{q}^{(i)} = \hat{q}^{(i)} \) for all \(i \geq 1 \).

In summary, the SSS detector is an iterative search algorithm that either shifts a spike forwards or backwards one location per iteration. It is suboptimal in that it may converge to some locally optimal sequence. The keys to this detector are the two expressions which allow us to compute \((M_1 + M_2) \) different log-likelihood ratios using only one optimal smoother (i.e., about two Kalman filters). The numbers \(M_1 \) and \(M_2 \) usually vary from iteration to iteration.

After SSS detection is completed, amplitude estimation of the detected spikes can be obtained by using \(\hat{q} \) as described at the end of Section II.

IV. SSS-SMLR DETECTOR

Once \(a_k, b_k, f_k \) are computed, we can calculate the log-likelihood ratios \(\ln \Lambda(k) \) (for all \(k = 1, 2, \ldots, N \), \(\ln \Lambda_1(k) \) (for all \(i = 1, 2, \ldots, M_1 \), and \(k \in D_1 \)) and \(\ln \Lambda_2(l) \) (for all \(i = 1, 2, \ldots, M_2 \) and \(l \in D_2 \)). Using this leads to another detector which updates a reference sequence \(q \) by choosing a test sequence that has the largest positive log-likelihood ratio among all computed log-likelihood ratios \(\ln \Lambda(k) \), \(\ln \Lambda_1(k) \), and \(\ln \Lambda_2(l) \). We call this detector an SSS-SMLR detector. Because \(\{\ln \Lambda_2(l), \text{for all } i = 1, 2, \ldots, M_2 \text{ and } l \in D_2\} \) are included in \(\{\ln \Lambda(k), \text{for all } k = 1, 2, \ldots, N\} \), we can drop the calculations of the former terms from the SSS-SMLR detection algorithm.

At each iteration, assume that \(q' \) is the sequence that is associated with the largest log-likelihood ratio \(\ln \Lambda'(k) \). The SSS-SMLR detector either changes a spike location (i.e., \(q' \) is obtained from (5), and \(\ln \Lambda'(k) \in \{\ln \Lambda(k), \text{ for } k = 1, 2, \ldots, N\} \) or shifts a spike one location forwards or backwards (i.e., \(q' \) is obtained from (6), and \(\ln \Lambda'(k) \in \{\ln \Lambda_2(k), i = 1, 2, \ldots, M_2, k \in D_2\} \) until all computed log-likelihood ratios are less than zero, at which point a locally optimal spike sequence \(\hat{q} \) has been reached.

Fig. 3 depicts the SSS-SMLR search algorithm. When \(q' \) is obtained from (5), then the total number of spikes will be either \(m' = m + 1 \) or \(m' = m - 1 \), whereas when \(q' \) is obtained from (6), or \(m' = m \). Thus, the total number of spikes at every iteration may or may not be changed.

After SSS-SMLR detection is completed, amplitude estimates of the detected spikes can be obtained by using \(\hat{q} \) as described at the end of Section II.

V. COMPUTER SIMULATIONS

We have run many computer simulations and have observed that spike splitting and spike shifting occur often when the
SMLR detector is used, and the wavelet is not broad-band, and, that both the SSS and SSS–SMLR detectors can help to improve the detection results obtained by the SMLR detector. Our results in this section are representative of all our simulations.

As an example, we consider a synthetic signal designed to fit our modeling assumptions. Using a pseudorandom number generator, we generated the Bernoulli–Gaussian sequence $\mu(k)$ for which $\lambda = 0.05$, $N = 300$, and $m = 18$, shown in Fig. 4. This signal was convolved with a fourth-order ARMA wavelet, shown in Fig. 5, to which white noise is added to produce the synthetic data shown in Fig. 6.

A threshold detector [2], [3] was used to obtain a starting q sequence for both the SMLR and SSS–SMLR detectors. We then studied the three schemes depicted in Fig. 7. We denote the output of scheme 1 as $\hat{\mu}_1(k)$, the output of scheme 2 as $\hat{\mu}_{21}(k)$ and $\hat{\mu}_{22}(k)$, and the output of scheme 3 as $\hat{\mu}_3(k)$. Note that each output is an estimate of the input $\mu(k)$.

In Figs. 8 through 11, circles depict the true impulse signal $\mu(k)$ and bars depict the outputs $\hat{\mu}_1(k)$, $\hat{\mu}_{21}(k)$, $\hat{\mu}_{22}(k)$, and $\hat{\mu}_3(k)$, respectively. Observing $\hat{\mu}_1(k)$ in Fig. 8, we see that the SMLR detector splits the first true spike (i.e., the first circle) into two smaller spikes (namely, the 6th, 8th, 9th, 14th, and 16th) but shifts them from their true locations, and gives rise to two false alarms. In Fig. 9, which depicts $\hat{\mu}_{21}(k)$, we see that the SSS detector recovers the first spike, detects the 8th and 9th true spikes, and gives rise to only one false alarm. Only three detected spikes in $\hat{\mu}_{21}(k)$ are shifted from their true locations: the 6th, 14th, and 16th. In Fig. 10, which depicts $\hat{\mu}_{22}(k)$, we see that the cascaded SSS and SMLR detectors eliminate false alarms; but the 6th, 14th, and 16th detected spikes still remain shifted. In Fig. 11, which depicts $\hat{\mu}_3(k)$, we see that the SSS–SMLR detector has shifted the 6th spike to its correct location, and only the 14th and 16th detected spikes remain shifted from their true locations.

From these results, we see the SSS detector can improve SMLR detector results, vice versa when they are cascaded together, and the SSS–SMLR works well. Another experiment was performed in which we used $\hat{\mu}_{22}(k)$ as the starting sequence for a second cascade of SSS and SMLR detectors. We were able to improve $\hat{\mu}_{22}(k)$, and, in fact we obtained the same sequence as $\hat{\mu}_3(k)$. Doing this again, we did not improve our results. Apparently, $\hat{\mu}_3(k)$ is a locally optimal estimate of $\mu(k)$ and neither the SSS- or SMLR-detectors can find another q sequence such that q has a higher likelihood function than \hat{q} associated with $\hat{\mu}_3(k)$.

Finally, observe from Figs. 8 through 11, that better spike location information results in much better estimates of amplitudes.

VI. DISCUSSION AND CONCLUSION

When a wavelet is not spiky then an SMLR detector may split a large spike into two smaller ones and detect some spikes at wrong locations, although the detected locations are very close to their true locations.

We have derived an SSS detector which is based on a maximum-likelihood criterion. Its derivative is very similar to that of the SMLR detector. The SSS detector can help to correct the SMLR detector's spike-splitting and spike shifting problems. All quantities needed to implement the SSS detector can be obtained from one optimal smoother. We also developed an SSS–SMLR detector, which is a combination of SSS and SMLR detectors.

The SSS and SSS–SMLR detection algorithms are iterative. At every iteration they increase the likelihood function $p(z(q) Pr(q)$ until a local maximum of $p(z(q) Pr(q)$ is reached, i.e., they converge to a local maximum of $p(z(q) Pr(q)$; they are, therefore, suboptimal. Our algorithms do guarantee that a local maximum of the likelihood function can be found and that this value will be larger than that obtained by the SMLR detector. Their performance depends on signal-to-noise ratio and bandwidth of the wavelet. Quantitative relationships between their performance and signal-to-noise ratio and bandwidth of the wavelet remain to be developed.

In [8] Kwakernaak computed the likelihood function using results that are familiar from matched filtering. Some approximations were made by him. In this correspondence (and [1]), instead of computing the likelihood function, the SSS–SMLR detector, for example, computes $(N + M_1)$ log-likelihood ratios. To do this, we run an optimal smoother once, but do not make any
approximations. In other words, we compute \(N + M_1 \) likelihood functions by running an optimal smoother once instead of using matched filtering approaches \(N + M_1 \) times. This leads to a great economy in the numerical effort. We then estimate spike amplitudes after detection is completed. The computational load for estimating detected spike amplitudes is equivalent to that for one iteration of detection; thus, amplitude estimation is not computationally burdensome.

Our computer simulations demonstrated that the SSS and SSS–SMLR detectors work quite well; that the SSS detector can help to improve the results obtained from the SMLR detector and vice versa, and, that the SSS–SMLR detector outperforms both the SMLR and SSS detectors.

APPENDIX

Proof of the Theorem

When \(q \) is given, then \(z \) is Gaussian; hence,

\[
p(z|q) = \frac{1}{(2\pi)^{N/2} |Q_q|^{1/2}} \exp \left\{ -\frac{1}{2} z^T Q^{-1}_q z \right\}.
\]

Because the \(q(k) \) are independently distributed, we see from (6) that

\[
\Pr(q) = \prod_{k=1}^{N} \Pr(q(k)) = \lambda^m q(1-\lambda)^{N-m_q}
\]
where \(m_q \) is the number of nonzero events in \(q \), i.e.,
\[
m_q = \sum_{k=1}^{N} q(k).
\]

Let \(U \) be a unitary matrix such that
\[
U'(Q_r - Q_U)U = \begin{bmatrix} Q_{11} - Q_{22} & 0 \\ 0 & 0 \end{bmatrix},
\]
where \(Q_r = Q_{44}-q_r \), \(Q_q = Q_{44}-q_q \), and \((Q_r - Q_U) \) is diagonal and invertible. Additionally, let \(VU = \begin{bmatrix} V_1 \\ V_2 \end{bmatrix} \).

Kormylo and Mendel [1], [2] proved that the log-likelihood ratio for the test sequence \(q_r \), and the reference \(q_r \), can be expressed as
\[
2 \ln \Lambda_n = z' V_1 (Q_r - Q_U) - \ln |V_1| + V_1 V_1' \ln \frac{\lambda}{1 - \lambda}.
\]

When \(q_r \) is defined as in (6), the matrix \(V_1 \) in (A5) becomes
\[
V_1 = \begin{bmatrix} v_k & v_{k+1} \end{bmatrix}.
\]

Let \(d_k = q_r(i) - q_s(i) \); thus,
\[
m_r - m_q = \sum_{i=1}^{N} q_r(i) - \sum_{i=1}^{N} q_s(i) = d_k + d_{k+1}
\]
and
\[
Q_r - Q_q = C \begin{bmatrix} q_r(k) & 0 \\ 0 & q_s(k+1) \end{bmatrix} - C \begin{bmatrix} q_s(k) & 0 \\ 0 & q_r(k+1) \end{bmatrix} = C \begin{bmatrix} d_k & 0 \\ 0 & d_{k+1} \end{bmatrix}.
\]

The right-hand side of (A5) can now be computed by substituting (A6), (A7), and (A8) into it:
\[
2 \ln \Lambda_n(k) = \left[d_k f_k + d_{k+1} f_{k+1} \right] A^{-1} \left[f_k \right] A^{-1}
\]
\[
- \ln |A| + 2(d_k + d_{k+1}) \ln \left(\frac{\lambda}{1 - \lambda} \right),
\]
where matrix \(A \) and quantities \(f_k \), \(a_k \), and \(b_k \) are defined in (8) through (11), respectively. From (8), we see that
\[
|A| = (1 + C d_k a_k) (1 + C d_{k+1} a_{k+1}) - C^2 d_k d_{k+1} b_k^2
\]
and
\[
A^{-1} = \frac{1}{|A|} \begin{bmatrix} 1 + C d_k a_{k+1} & -C d_k b_k \\ -C d_{k+1} a_k & 1 + C d_{k+1} b_k \end{bmatrix}.
\]

Substituting (A11) into (A9), we obtain (7).

Next, we demonstrate the truth of (15) through (17). Kormylo and Mendel [1] showed that the minimum-variance estimate of \(\mu(k) \), given \(z \), is
\[
\hat{\mu}(k|N) = C q(k) g' r(k|N),
\]
and,
\[
\hat{\mu}(k|N) = C q(k) r(k+1|N),
\]
\[
f_k = y' r(k|N), \text{ and } a_k = y' S(k|N) y.
\]

References

Codes for Zero Spectral Density at Zero Frequency

GIANFRANCO L. PIEROBON

Abstract—In pulse-amplitude modulation (PAM) digital transmission systems line encoding is used for shaping the spectrum of the encoded symbol sequence to suit the frequency characteristics of the transmission system.