
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 11, NO. 3, MARCH 2001 415

MPEG Video Streaming with VCR Functionality
Chia-Wen Lin, Member, IEEE, Jian Zhou, Student Member, IEEE, Jeongnam Youn, and Ming-Ting Sun, Fellow, IEEE

Abstract—With the proliferation of online multimedia content,
the popularity of multimedia streaming technology, and the
establishment of MPEG video coding standards, it is important
to investigate how to efficiently implement an MPEG video
streaming system. Digital video cassette recording (VCR) func-
tionality (such as random access, fast forward, fast reverse, etc.)
enables quick and user-friendly browsing of multimedia content,
and thus is highly desirable in streaming video applications. The
implementation of full VCR functionality, however, presents some
technical challenges that have not yet been well resolved. In this
paper, we investigate the impacts of the VCR functionality on the
network traffic and the video decoder complexity. We propose
a least-cost scheme for the efficient implementation of MPEG
streaming video system to provide full VCR functionality over a
network with minimum requirements on the network bandwidth
and the decoder complexity. We also discuss our implementation
of an IP-based MPEG-4 video streaming platform which provides
full VCR functionality.

Index Terms—Compress-domain processing, digital video
cassette recording (VCR), MPEG video, streaming video, video
coding.

I. INTRODUCTION

M ULTIMEDIA applications have entered an exciting era
that will enormously impact our daily life. Today’s mul-

timedia technology allows network service providers to offer
versatile services such as home shopping, games, video surveil-
lance, and movie on demand [1], [2]. In these applications, video
streaming technology plays an important role in media delivery.
Realizing that video streaming has so many applications and
so great commercial potential, many companies, organizations,
and universities are developing products [3]–[7], standards, and
new technologies [8] in this area.

A video streaming system should be capable of delivering
concurrent video streams to a large number of users. The re-
alization of such a system presents several challenges, such as
the high storage-capacity and throughput in the video server and
the high bandwidth in the network to deliver large number of
video streams. With the rapid progress in processing hardware,
software, storage devices, and communication networks, these
problems are being solved and video streaming applications are
becoming increasingly popular.

Manuscript received June 15, 2000; revised December 7, 2000. This paper
was recommended by Guest Editor W. Zhu.

C.-W. Lin is with the Department of Computer Science and Information Engi-
neering, National Chung Cheng University, Chiayi 621, Taiwan, R.O.C. (e-mail:
cwlin@cs.ccu.edu.tw).

J. Zhou and M.-T. Sun are with the Department of Electrical Engineering,
University of Washington, Seattle, WA 98195 USA (e-mail: zhouj@ee.wash-
ington.edu; sun@ee.washington.edu).

J. Youn is with the MSL/USRL, Sony Electronics, San Jose, CA 95134 USA
(e-mail: youn_98043@yahoo.com).

Publisher Item Identifier S 1051-8215(01)01854-7.

In addition to the large storage, network bandwidth, and
real-time constraints, with the proliferation of online mul-
timedia content, it is also highly desirable that multimedia
streaming systems support effective and fast browsing. A
key technique that enables fast and user friendly browsing
of multimedia content is to provide full VCR functionality
[9]. The set of effective VCR functionality includes forward,
backward, stop (and return to the beginning), pause, step-for-
ward, step-backward, fast-forward, fast-backward, and random
access. This set of VCR functionality allows the users to have
complete controls over the session presentation and is also
useful for other applications such as video editing.

With the establishment of MPEG video coding standards
[10]–[12], it is expected that many video sequences for
streaming applications will be encoded in MPEG formats.
However, the implementation of the full VCR functionality
with the MPEG coded video is not a trivial task. MPEG video
compression is based on motion compensated predictive coding
with an I–B–P-frame structure. The I–B–P-frame structure
allows a straightforward realization of the forward-play func-
tion, but imposes several constraints on other trick modes
such as random access, backward play, fast-forward play, and
fast-backward play. As will be shown later, straightforward im-
plementation of these functions requires much higher network
bandwidth and decoder complexity compared to those required
for the regular forward-play function.

With the I–B–P structure, to decode a P-frame, the previ-
ously encoded I-/P-frames need to be decoded first. To decode a
B-frame, both the I-/P-frames before and after this B-frame need
to be first decoded. To implement a backward-play function, a
straightforward implementation is for the decoder to decode the
whole group of picture (GOP), store all the decoded frames in
a large buffer, and play the decoded frames backward. How-
ever, this will require a huge buffer (e.g., an-frame buffer, if
the GOP size is) in the client machine to store the decoded
frames which is not desirable. Another possibility is to decode
the GOP up to the current frame to be displayed, and then go
back to decode the GOP again up to the next frame to be dis-
played. This does not require the huge buffer but will require
the client machine to operate in an extremely high speed (up to

times of the normal decoding speed), which is also not de-
sirable. The problem soon becomes impractical when the GOP
size is large.

Besides the problem with backward-play, fast-forward/back-
ward, and random-access also present difficulties. When a
P-/B-frame is requested, all the related previous P-/I-frames
need to be sent over the network and decoded by the decoder.
This requires the network to send all the related frames besides
the actually requested frame at a much higher rate which can be
many times of that required by the normal forward-play. When

1051–8215/01$10.00 © 2001 IEEE

416 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 11, NO. 3, MARCH 2001

many clients request the trickmodes, itmay result inmuch higher
network trafficscomparedtothenormal forward-playsituation. It
also requireshighcomputationalcomplexity in theclientdecoder
to decode all these extra frames. It is possible to just send the
I-frames for these trick-modes. However, if the applications use
a very large GOP-size, or require high-precision in video-frame
access,sendingI-framesonlymaynotbeacceptable.

There are many different schemes to encode the MPEG
video, depending on the desirable server/network/client com-
plexity requirements. For example, the video can be encoded
with all I-frames. This will result in the lowest complexity re-
quirement for the client machines. However, it will require very
large server storage and network bandwidth since the I-frames
will result in high bit-rates. Since the network bandwidth usu-
ally is the highest concern, we assume that the video is coded
with all I–B–P frames that can achieve high compression ratios
for the transport over a network with minimum bandwidth
resources.

Some recent works have addressed the implementation of
VCR functions for MPEG compressed video for streaming
video applications [1], [13]–[15]. References [1], [13], [14]
address the problem of reverse-play of MPEG video streams,
and [15] addresses the problem of fast-forward play. Chenet
al. [1] described a method of transforming an MPEG I–B–P
compressed bitstream into a local I–B bitstream by performing
a P-to-I frame conversion to convert all the retrieved P-frames
into I-frames at the client, thereby breaking the inter-frame
dependencies between the P-frames and the I-frames. After
the frame conversion and frame reordering, the motion-vector
swapping approach developed in [13] can be used for the
backward-play of the new I–B bitstream. However, this ap-
proach requires higher decoder complexity to perform the
P-to-I conversion and higher storage cost to store the bit
streams. Weeet al. [14] presented a method which divides
the incoming I–B–P bitstream into two parts: I–P frames and
B-frames. A transcoder is then used to convert the I–P frames
into another I–P bitstream with a reversed frame order. A
method of estimating the reverse motion vectors for the new
I–P bitstream based on the forward motion vectors of the
original I–P bitstream as described in [16] is used to reduce
the computational complexity of this transcoding process. For
B-frames, the motion vector swapping scheme proposed in [13]
is used for the reverse-play. The transcoding process, however,
still requires much computation and will cause drift due to
the motion vector approximation [14]. None of the methods
mentioned above fully address the problem of the extra network
traffics and decoding complexity caused by the VCR functions
such as fast-forward/backward and random-access. Omoiguiet
al. [15] investigated possible client–server time-compression
implementations for fast-forward play and video browsing.
The time compression can be implemented by storing multiple
pre-encoded bitstreams with different temporal resolutions and
send a bitstream with suitable temporal resolution according to
the user’s request. This approach does not introduce excessive
network traffic but the speed-up granularity is limited by the
number of pre-stored bitstreams.

In this paper, we investigate effective techniques to im-
plement the full VCR functionality in an MPEG video

Fig. 1. MPEG video streaming.

streaming system. We analyze the impacts of performing VCR
trick-modes on the client decoder complexity and network traf-
fics. We propose using dual bitstreams at the server to resolve
the problem of reverse play. Based on the dual-bitstream struc-
ture, we propose a novel frame-selection scheme at the server
to minimize the required network bandwidth and the decoder
complexity. This scheme determines the frames to stream over
the network by switching between the two bitstreams based on
a least-cost criterion. We present a drift-compensation scheme
to eliminate the drift caused by the bitstream switching. We also
describe our implementation of an MPEG-4 video streaming
system supporting the full VCR functionality.

The rest of this paper is organized as follows. In Section II, we
discuss the impacts of random-access and fast-play operations
on decoder complexity and network traffics. In Section III, we
describe our proposed scheme for supporting full VCR func-
tionality with least network resource and decoding effort. Sec-
tion IV presents a drift-compensation scheme for the proposed
least-cost bitstream switching method. In Section V, we describe
our implementation of an MPEG-4 video streaming system with
full VCR functionality. Finally, conclusions are given in Sec-
tion VI.

II. I MPACTS OFVCR FUNCTIONALITY ON DECODER

COMPLEXITY AND NETWORK TRAFFICS

A block diagram of an MPEG video streaming system is
shown in Fig. 1. The video streams are compressed using MPEG
video coding standards and are stored in the server. The clients
can view the video while the video is being streamed over the
network. In each client machine, a pre-load buffer is set up to
smooth out the network delay jitter. In this paper we discuss the
scenario that the video is streaming over the Internet and the full
VCR functionality needs to be supported. It is assumed that the
applications may use a large GOP size, or require relatively high
precision in video-frame access.

In the following, we provide some analyses and simulation
results to show the average number of frames need to be
sent through the network and decoded at the client decoder
to support random-access and fast-forward play. Since the
nonselected B-frames are not involved in decoding later frames
and are not needed to be sent over the network or decoded by
the decoder, for simplicity but without loss of generality, we
focus the analyses on the cases that the bitstream contains I-
and P-frames only. The results can be easily extended to the
I–B–P frame structure.

LIN et al.: MPEG VIDEO STREAMING WITH VCR FUNCTIONALITY 417

A. Random Access

In the random-access operation, the decoder requests a frame
with an arbitrary distance from the current displayed frame. If
the requested frame is an I-frame, the server side only needs to
transmit this frame, and the decoder can decode it immediately.
However, if the requested frame is a P-frame, the server needs
to transmit all the P-frames from the previous nearest I-frame to
this requested frame.

Suppose all the GOPs in the bitstream have the same length
, and frame is the random-access point

- -

Then, in order to decode frame , frames
should also be sent from the server side. Assuming the random-
access points are uniformly distributed, the average number of
frames to be transmitted is . For example,
when 14, 7.5, meaning that an average of 7.5
frames should be transmitted over the network and decoded by
the decoder for the requested frame in the random-access mode.

B. Fast-Forward Play

Suppose frame is the starting point of the fast-forward
operation, and is the fast-forward speed-up factor (i.e., for

6, only one out of six frames will be displayed). Since the
next frame to be displayed is , the server may send the
frames , so that frames will be received
by the client side to decode the frames
(but just displays the frame).

In fact, the server may not need to transmit so many frames.
For example, consider the case

where frame 9 is the current displayed frame, and frame 15 is the
next frame to be displayed under the fast-forward mode ().
Apparently, there is no need to send frames 10–13, since they are
not needed for the decoding of frame 15. Therefore, the server
can just send frames 14 and 15.

It is useful to derive a closed-form formula to show the im-
pact of the fast-forward play on the decoding complexity and
network traffics. One difficulty is, similar to the random-access
operation, the start point of the fast-forward mode can be any
frame in a GOP. However, it is reasonable to assume that the
start point of a fast-forward operation is an I-frame, since we
can always jump to the nearest I-frame first which will not cause
unpleasant effect in viewing the video in most practical applica-
tions. Note that, with this assumption, after GOPs, where

stands for the greatest common divisor ofand
, the frame to be displayed will again be an I-frame. There-

fore, the decoding pattern will repeat every GOPs (i.e.,
frames, where is the least common mul-

tiple of and). We can thus derive an analytical closed-form
formula based on the periodicity. In the following, we divide
different combinations of and into three classes and derive
the closed-form formula, respectively.

Case 1) ,
In this case, all the P-frames are dropped, only the

nonskipped I-frames are transmitted and decoded.
No extra frames need to be transmitted for decoding
the I-frames. Therefore, .

Case 2) ,
As mentioned above, the decoding pattern will

repeat every GOPs. During each period, there
are frames to be requested for display. For the
th requested frame in each period (to
), a total of (where “ ”

stands for the modular operation) frames need to
be transmitted and decoded. The average number of
frames to be transmitted and decoding for displaying
one frame is

(1)

Case 3) ,
In a GOP with an I–P structure, a P-frame needs

not be sent only if all its following P-frames will not
be displayed at the client decoder. Therefore, in the
first GOP (assuming the start point is an I-frame),
the number of frames needs not be transmitted is

. Similarly, the number of the P-frames
which need not be sent in theth GOP, where

, is . Thus, the total
number of frames that need not be transmitted in the

GOPs is

(2)

If and are coprime (i.e.,), the above
equation becomes

(3)

Note that, in the case that and are coprime,
(3) holds for any start points (not necessarily an
I-frame).

In case 3, the average number of frames that need to be trans-
mitted and decoded for displaying a requested frame can be ob-
tained by subtracting the nontransmitted frames from the total
number of frames, and then dividing it by the total number of
frames to be displayed. That is

(4)

418 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 11, NO. 3, MARCH 2001

In summary, the average number of frames need to be trans-
mitted and decoded for a requested frame can be expressed in
closed-form as follows:

or

(5)

Equation (5) suggests that, if is relatively large compared
to , will grow almost linearly as increases, thereby
leading to a linear increase of the decoding complexity and the
network traffics.

The above analyses can be extended to the case with
B-frames. The main difference from the above analyses is
that, to decode a B-frame, we only need to decode the related
I-/P-frames; the other B-frames do not need to be transmitted
or decoded. Therefore, the number of frames that need to be
transmitted and decoded for displaying one frame for GOPs
with the general I–B–P structure is in general less than the I–P
case. However, the analysis is very similar to the above. For
simplicity of discussion, we assume that , and divide it
into two cases. Again, we assume the start point is always an
I-frame.

Case 1) is a multiple of (where is the distance be-
tween the I–P or P–P frames)

In this case, all the B-frames need not be trans-
mitted and decoded. Equation (5) can be applied by
replacing and with and , respec-
tively.

Case 2) is not a multiple of
In this case, (2) should be modified as follows:

(6)

where represents the number of B-frames
that need not be decoded, and represents
the number of P-frames need to be transmitted and
decoded for decoding the B-frames in those GOPs,
in which the last displayed frame is a B-frame. It is
difficult to find closed-form representations for the
second and third terms at the right hand side of the
above equation. Computer simulations can be used
to determine the numbers and
for different combinations of , , and .

Fig. 2 shows the average number of frames that need to be
sent and decoded for decoding a requested frame with respect
to different speed-up factors in the fast-forward operation. The
test MPEG bitstream used for simulation is the “Mobile and Cal-
endar” sequence with a length of 280 frames (20 GOPs in our
example), which was encoded at 3 Mbits/s with a frame-rate of
30 fps with an I–P structure. The start points are randomly gen-
erated. Fig. 3 depicts the average bit-rates required for sending

Fig. 2. Average number of frames that need to be sent for decoding a frame
with respect to different speed-up factors in fast-forward play.

Fig. 3. Average bit-rates for sending the “Mobile and Calendar” sequence over
network with respect to different speed-up factors in fast-forward play.

the “Mobile and Calendar” video stream with respect to dif-
ferent speed-up factors. From the above analysis, in the fast-for-
ward/backward and random-access operations, the server needs
to send several extra frames to the decoder to display one frame,
thereby resulting in a heavy burden on the network (especially
when the number of users is large) and increasing the decoder
complexity.

III. SUPPORTINGFULL VCR FUNCTIONALITY WITH MINIMAL

NETWORK BANDWIDTH AND DECODEREFFORT

A. Dual Bitstreams with Least-Cost Frame Selection

To solve the problem of the backward-play operation, we pro-
pose to add a reverse-encoded bitstream in the server [20], i.e., in
the encoding process, after we finish the encoding and reach the
last frame of the video sequence, we encode the video frames in

LIN et al.: MPEG VIDEO STREAMING WITH VCR FUNCTIONALITY 419

the reverse order to generate a reverse-encoded bitstream. If the
server only has the forward bitstream (i.e., the original sequence
is unavailable), we can decode the forward bitstream up to two
GOPs each time in the reverse direction (i.e., from the last GOP
to the first GOP) then re-encode the video in the reverse order.
The generation of the reverse bitstream is done off-line. For sim-
plicity of the presentation, in this paper, we use an example in
which the video is coded in I-/P-frames with a GOP size of 14
frames, as is shown below. The extension of our discussion to
the case with the general I–B–P GOP structure is straightfor-
ward.

In the diagram shown at the bottom of the page, we arrange
the encoding so that the I-frames in the reverse bitstream are
interleaved between I-frames in the forward bitstream. In this
way, the required number of frames sent by the server and
decoded by the decoder can be further reduced as will be
explained later. Alternatively, the I-frames in both streams
can be aligned to save storage, since the two I-frames in the
forward and reverse bitstreams are the same, and only need to
be stored once. Two metadata files recording the location of the
frames in each compressed bitstream are also generated so that
the server can switch from the forward-encoded bitstream to
the reverse-encoded bitstream and vice-versa easily. I-frames
represent the points of access to decode the sequence from
any arbitrary position. With the reverse-encoded bitstream,
when the client requests the backward-play mode, the server
will stream the bits from the reverse-encoded bitstream. Using
this scheme, the complexity of the client machine and the
required network bandwidth for the backward-play mode can
be minimized. The storage requirement of the server will be
about doubled. However, this is usually much more desirable
than to require a large network bandwidth and to increase the
complexity of the client machine since the network bandwidth
is more precious and there may be a large number of client ma-
chines in the streaming video applications. Since the encoding
of the video is done off-line and can be automated, the extra
time needed in producing the reverse encoded bitstream is not
an important concern.

To reduce the decoding complexity and the network traffics
in the fast-forward/backward and the random access modes, we
propose a frame-selection scheme which minimizes a prede-
fined “cost” using bitstream switching. The cost can be the de-
coding effort at the client decoder or the traffic over the net-
works, or a combination of both. This is further explained as
follows.

Let stand for the cost of decoding the next requested
P-frame from the current displayed frame, stand for the
cost of decoding the next requested P-frame from the closest
I-frame in the forward bitstream, and stand for the cost
of decoding the next requested frame from the closest I-frame

of the reverse-encoded bitstream. To minimize the number of
frames sent to the decoder, the costs can be the distances from
the possible reference frames to the next requested frame. To
minimize the network traffics, the costs can be the numbers of
bits from the possible reference frames required for decoding
the next requested frame. The bit-rate calculation can be done
simply by recording the number of bits used for each encoded
frame in the metadata file in the pre-encoding process, and sum-
ming up the bit-rates of those frames to be sent. In general, a
larger number of frames to be sent implies heavier network load.
However, it also depends on the numbers of I-, P-, and B-frames
to be sent since the numbers of bits produced by these three
types of frames vary greatly. It is also possible to use different
weights to combine the two costs according to the channel con-
dition and the client capability. Based on the current play-direc-
tion, the requested mode, and the costs , , and ,
the reference frame to the next requested frame with the least
cost will be chosen to initiate the decoding. This will also deter-
mine the selection of the next bitstream and the decoding di-
rection. This least-cost criterion will only be activated in the
fast-forward/backward and the random access modes to avoid
frequent bitstream switching in the normal forward/backward
operations.

To illustrate the scheme, we use the example in Section II
again, assuming that the previous mode was backward-playing
and the requested mode is fast-backward with a speed-up factor
of 6, which needs to display a sequence of frame numbers 20,
14, 8, 2. For simplicity, in the following examples shown at the
bottom of the next page, we use the minimum decoding distance
criterion to illustrate the selection of the next reference frame
and the effectiveness of the proposed method.

The algorithm will operate as follows.

1) The current position is frame 20, which was decoded
using the reverse bitstream ().

2) Frame 14 will be decoded from the forward bitstream ()
directly since it is an I-frame.

3) Frame 8 will be decoded from frame 7 of the backward
bitstream, since the distance between frame 7 of the
reverse bitstream (an I-frame) and the requested frame
(frame 8) is less than the distances between the requested
frame and the current decoded frame (frame 14 of the
reverse bitstream), and the closest I-frame of the forward
bitstream (it’s also frame 14). Note that in this case, we
use frame 7 of the reverse bitstream (an I-frame) as an
approximation of frame 7 of the forward bitstream (a
P-frame) to predict frame 8 of the forward bitstream.
This will cause some drift. However, in the fast-for-
ward/backward modes, the drift is relatively insensitive
to human eyes due to the fast change of the content
displayed. Also, any I-frame in the play will terminate

forward bitstream

reverse bitstream
frame number

420 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 11, NO. 3, MARCH 2001

the drift. The drift problem will be further investigated
in the next section.

4) Frame 2 will be decoded from frames 0 and 1, using the
forward bitstream, since the decoding effort from frame
0 of the forward bitstream (an I-frame) is the minimum.

The bitstream sent from the server will have the following
form:

frame type
frame number

selected bitstream

The frames indicated by the bold-face are those to be dis-
played at the client side. In this way, we only need to send and
decode 6 frames. Without the minimum effort decoding scheme,
we will need to send and decode 13 frames from the reverse bit-
stream.

In the case of random access, frame skipping will be per-
formed followed by normal forward-play. For example, the
client requests random access to frame 22 when the current
decoded frame is frame 3. With the proposed method using the
minimum decoding distance criterion, the server streams the
bitstream as follows:

frame type
frame number

selected bitstream

In this example, we only need to send and decode two frames
to reach frame 22. Without our proposed least-cost scheme, it
will require to send and decode nine frames from frame 14 (an
I-frame) using the forward bitstream. Again, in this example, for
frame 21, we use the I-frame in the reverse bitstream to approx-
imate the P-frame in the forward bitstream. This will cause drift
but the drift will only last a few frames within the GOP (a frac-
tion of a second) since the video content will be refreshed by
the I-frame in the next GOP. Thus, it should not be a problem.

If the minimum decoding distance criterion is used (i.e., to
minimize the number of frames sent to the decoder), the pro-

posed scheme will guarantee that the maximum amount of de-
coding to access any frame in the sequence is less than
frames if the I-frames in the forward and the reverse bitstreams
are interleaved. In addition, no large temporary buffer is re-
quired in the decoder. If the I-frames in the forward and the re-
verse bitstreams are aligned, the maximum amount of decoding
to access any frame will be less then frames.

B. Performance Analysis of the Proposed Dual-Bitstream
Least-Cost Method

In the following, we analyze the performance of the proposed
method using the minimum decoding distance criterion for the
random-access and the fast-forward/backward modes.

1) Random Access:A typical structure of the system with
dual bitstreams is shown in the second example at the bottom
of the page, where both the forward bitstream and the reverse
bitstream have the same GOP structure with the length of.
As in the analysis in Section II, we label the frames in the GOP,
where the requested frame lies as , frame
is the random access point. is the position of the I-frame in
the reverse bitstream.

In this case, the frames to be transmitted for decoding frame
will be decided by two distance measures, one is the distance

from frame to the nearest I frame in the forward bitstream,
and the other distance is from to the nearest I-frame in the
reverse bitstream.

Assume , is in the range of .
For simplicity but without loss of generality, we assume that

is even and is odd as in our previous example. We can
observe that:

1) the minimum number of total frames to be sent over the
network is 1 (when or);

2) the maximum number of total frames to be sent over the
network is

Frame No.

Frame No.
decoding direction

decoding direction

LIN et al.: MPEG VIDEO STREAMING WITH VCR FUNCTIONALITY 421

3) the average number of total frames to be sent over the
network is

By taking the derivative with respect to , we can find that
when takes the odd number closest to , can take
the minimum value of

For example, when , , ,
meaning that an average of 2.71 frames should be transmitted to
decode one requested frame in the random access mode. Appar-
ently, this is much better than the case in Section II (7.5 frames
without our scheme).

2) Fast Forward-Play: In the proposed method, when the
speed-up factor is larger than , the server always can find
an I-frame in one of the two bitstreams which has a shorter dis-
tance to the next displayed frame from the current displayed
P-frame, since the distance for the nearest I-frame is guaran-
teed to be equal to or less than . In this case, the number
of frames to be sent for displaying a requested frame will have
a range of (). It is difficult to derive a closed-form
formula to calculate the average number of frames transmitted
and decoded for each requested frame for generaland cases
with any start points. For simplicity of analysis, in the following,
we assume the start point is an I-frame in the forward bitstream
and only consider the case that .

Since the start point is an I-frame, the requested frames will
again become I-frames every GOPs, meaning that the de-
coding pattern will repeat every GOPs. The distance be-
tween the th requested frame () and its proceeding
I-frame is , which is a multiple of . No distances
will be the same in a period, otherwise we can find a shorter pe-
riod and it’s a contradiction. Therefore we can conclude that, in
a period of GOPs, there are a total of requested frames
with equally spaced distances, say

frames away from their nearest proceeding I-frames. Based
on this property, we can derive closed-form formulas to calcu-
late the average number of frames transmitted for decoding a
requested frame. We divide the analysis into two classes.

Case 1) is even
In this case, every frames there is an I-frame

(in either the forward or the backward bitstream,
when the I-frames are interleaved) which can be used
as an anchor frame to initiate the decoding of the

requested frames. The average number of frames
transmitted for decoding a requested frame is

(7)

where represent the largest integer smaller than
. It is interesting to note that, when and are

coprime (i.e.,), is only a function of
regardless of the values of. The above equation

becomes

is even

is odd.
(8)

In fact, for the cases that and are not coprime,
the results of (7) and (8) are still very close. There-
fore, the simple formula in (8) can be applied in most
of the cases that is even.

Case 2) is odd
Similar to the above derivation, we can obtain the

following formula:

(9)

When and are coprime, the above equation be-
comes

(10)

422 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 11, NO. 3, MARCH 2001

We have simulated the situation of the I–P structure for
with a number of randomly generated start points. Two bit-

streams generated by forward and reverse encoding the 280-
frame “Mobile and Calendar” test sequence at 3 Mbits/s with the
frame rate of 30 fps with an I–P structure are used for the sim-
ulation. Fig. 4 shows the comparison of the average number of
the frames transmitted to the decoder for decoding a requested
frame with and without the proposed dual-bitstream least-cost
method with respect to different speed-up factors in the fast-for-
ward operation. The simulation result is very close to the value
2.71 calculated by using (8) with when the speed-up
factor . The fast-backward play case will also have
similar result. Fig. 5 depicts the comparison of the average bit-
rates required to send the video stream with respect to different
speed-up factors. Note that, with the proposed method, when the
speed-up factor reaches around (e.g., 3.5 in our example),
the decoding complexity and the network traffic will not con-
tinue to grow even when the speed-up factor gets higher. Com-
pared to the results in Section II, it is obvious that the proposed
method can achieve significant performance improvement in
terms of the decoder complexity and the network traffic load.
When the speed-up factor , the proposed method guar-
antees a nearly constant decoding and network traffic cost.

IV. DRIFT COMPENSATION

As mentioned above, in the proposed scheme, I- or P-frames
of one bitstream may be used to approximate P-frames of the
other bitstream. This approximation, however, will lead to frame
mismatch and thus cause drift when the approximated frames
are used as the reference frames to predict the following P-/B-
frames as illustrated in Fig. 6. In Fig. 6, the “Mobile and Cal-
endar” sequence is encoded at a fixed quantization scale (

) and a fixed bit-rate (3 Mbits/s), respectively. The GOP size
is 14 and the speed-up factor is 6. As shown in Fig. 6, when the
server performs an I-to-P or a P-to-P approximation by using
the proposed bitstream switching, there is a PSNR drop. Fig. 6
suggests that the drift caused by the bitstream switching can be
as large as 2.5 dB and will last until the next I-frame. However,
the subjective degradation observed is not significant, since the
fast display speed in the fast forward/backward modes will mask
most of the spatial distortions.

In the random access mode, the drift will only last a few
frames within a GOP, and thus will not cause serious degrada-
tion. In the fast-forward/backward mode, the drift is relatively
insensitive to human eyes due to the fast changes of the content
displayed. However, in some applications, it may still be desir-
able to prevent the drift. The drift problem can be resolved by
adding two bitstreams consist of all P-frames for the drift-com-
pensated bitstream switching. This is further explained using the
example shown at the bottom of the next page, where is a
bitstream used for switching from the I- or P-frames of the for-
ward bitstream to the P-frames of the reverse bitstream, while

is used for switching from the I- or P-frames of the re-
verse bitstream to the P-frames of the forward bitstream. The
bitstream is obtained as follows:

(11)

Fig. 4. Estimated number of frames to be sent for decoding a frame using the
proposed method with respect to different speed-up factors.

Fig. 5. Average bit-rates to send the “Mobile and Calendar” sequence over
network using the proposed method with respect to different speed-up factors.

and

(12)

where represents an inter-frame prediction process
that frame is predicted from the reference frame. When
performing the bitstream switching, the correctly predicted
frame is used for switching between the forward and the reverse
bitstreams. For example, if the bitstream is switched from
(an I- or P-frame) to (a P-frame), then the server will send
the frames as , instead of sending

. With the two drift correction
bitstreams, the proposed method will generate a bitstream for
the fast-reverse example in Section III-A as follows:

frame type
frame number

selected bitstream

LIN et al.: MPEG VIDEO STREAMING WITH VCR FUNCTIONALITY 423

Fig. 6. PSNR comparison of the forward bitstream, the reverse bitstream, and
the bitstream generated using the proposed method in the fast-forward mode
for the “Mobile and Calendar” sequence, the GOP size is 14, and the speed-up
factor is 6. (a) Sequence is quantized at a fixed quantization scaleQ = 16. (b)
Sequence is encoded at 3 Mbits/s.

Since is the encoded based on the decoded frames from
the forward and the reverse bitstreams, the drift can be com-
pensated very well. If the prediction errors of the drift-com-
pensated predictive frames in and are losslessly en-

coded, there will be no drift. Otherwise, there will be small drift.
The drift will depend on the quantization step-size used in the
encoding. A finer quantizer will lead to lower drift, while in-
creasing the storage for the drift compensation bitstreams. Since
the encoding process to obtain all the bitstreams is done off-line
in streaming video applications, the encoding complexity is not
a major concern.

It should be noted that if the I-frames of the two bitstreams
are interleaved, and the speed-up factor is high enough (e.g., the
frame-skipping distance), in the proposed method, only
replacing P-frames with I-frames will be sufficient, because we
always can find an I-frame in one of the two bitstreams which
has shorter distance to the next requested frame than the current
decoded P-frame. In this case, we only need to store the drift
compensation frames for all the I-frames of both bitstreams. In
the fast-forward/backward operations with small speed-up fac-
tors (e.g., 2 or 3); however, the proposed least-cost scheme has
limited gain on the decoding complexity and the network traf-
fics as shown in Figs. 4 and 5. Thus, a possible low-complexity
solution for the fast-forward/reverse play is

if

use dual bitstreams without performing

bitstream switching

else

use bitstream switching with I P

drift-compensation only.

Using this modified scheme, only the drift-compensations for
the I P frames need to be created, thus the storage cost
for the drift compensation frames can be reduced drastically
without significant performance sacrifice in typical MPEG ap-
plications.

V. IMPLEMENTATION OF AN MPEG-4 VIDEO STREAMING

SYSTEM WITH FULL VCR FUNCTIONALITY

We have implemented an MPEG-4 [20] video streaming
system to demonstrate the effectiveness of our scheme. Fig. 7
illustrates the overall structure of the system and depicts its
major functional blocks.

The client station is connected to the remote video server over
an IP network and requests access to a compressed video se-
quence. Two logical channels are established between the server
and the client: the data channel and the control channel. The

Frame No.

decoding direction

decoding direction

424 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 11, NO. 3, MARCH 2001

Fig. 7. System architecture of the proposed MPEG-4 video streaming system The MPEG-4 Player provides the user interface and displays video frames sent by
the server according to the user’s requests. In Fig. 8, we show a screen shot of the MPEG-4 Player, which illustrates the user interface for the full VCR functionality.

Fig. 8. MPEG-4 Player.

server delivers the requested MPEG-4 bitstream through the
data channel and receives VCR commands through the control
channel.

As shown in Fig. 7, the video server consists of a VCR Man-
ager, a Bitstream Manager, an MPEG-4 System Network Server,
and a Video Database. The client station consists of an MPEG-4
Player, an MPEG-4 Object Decoder, a Scene Composer, and
an MPEG-4 System Network Client. The client station will ac-
cess the video server and interactively retrieve a video sequence
through the Graphic User Interface of the MPEG-4 Player.

According to the specific VCR function that the user selected
through the user interface, the Player generates the requested
frame-number and sends it to the MPEG-4 System Network
Client. The MPEG-4 Object Decoder receives the corre-
sponding bitstream from the MPEG-4 System Network Client,
performs the decoding procedure of the received bitstream, and
transfers the decoded frames to the MPEG-4 Player (see Fig. 8).

Fig. 9. Protocol framework of our system.

The MPEG-4 System Network Server manages the network
connection. The Bitstream Manager maintains the record of the
video bitstreams, and the VCR Manager handles the frame-
number generation for the frame to be transmitted over the net-
work.

In our protocol implementation, we use the Real Time
Streaming Protocol (RTSP) [17], which is a client–server
application-level protocol for controlling the delivery of data
with real-time properties. It establishes and controls time-syn-
chronized streams of continuous media such as audio and
video. It uses transport protocols such as UDP, multicast UDP,
TCP, and Real-time Transport Protocol (RTP) to deliver the
continuous streams. The video data is delivered using the RTP
[18], [19]. This has been implemented as an instance of the
DMIF in the MPEG-4 Systems. The protocol framework of the
implemented MPEG-4 streaming system is shown in Fig. 9.

VI. CONCLUSION

In this paper, we discussed issues in implementing an MPEG
video streaming system with full VCR functionality. We showed
that when the users request reverse-play, fast-forward/reverse-
play, or random-access, it may result in much higher network
traffics than the normal-play mode. These trick modes may also
require high client machine complexity. We proposed to use a

LIN et al.: MPEG VIDEO STREAMING WITH VCR FUNCTIONALITY 425

reverse-encoded bitstream to simplify the client terminal com-
plexity while maintaining the low network bandwidth require-
ment. We proposed a minimum-cost frame-selection scheme
which can minimize the number of frames needed to be sent over
the network and to be decoded. We proposed a drift-compensa-
tion scheme to limit the drift. We also described our implemen-
tation of an MPEG-4 video streaming system. We showed that
with our proposed scheme, an MPEG-4 video streaming system
with full VCR functionality can be implemented to minimize
the required network bandwidth and decoder complexity.

ACKNOWLEDGMENT

The authors would like to thank J. Xin for providing
some simulation results, and the anonymous reviewers for
their helpful comments, especially on the derivation of the
closed-form formula for the fast forward-play analyses.

REFERENCES

[1] M. S. Chen and D. D. Kandlur, “Downloading and stream conversion:
Supporting interactive playout of videos in a client station,” inProc. 2nd
Int. IEEE Conf. Multimedia Computing and Systems, 1995, pp. 73–80.

[2] T. D. C. Little and D. Venkatesh, “Prospects for interactive video-on-
demand,”IEEE Multimedia, vol. 13, pp. 14–24, Aug. 1994.

[3] Microsoft Windows Media, Microsoft Corporation Inc. [Online]. Avail-
able: http://www.microsoft.com/windows/windowsmedia/

[4] Apple QuickTime Player, Apple Corporation Inc. [Online]. Available:
http://www.apple.com/quictime/

[5] Real Networks RealPlayer [Online]. Available: http://www.real.com/
[6] Relay Networks ReplayTV [Online]. Available: http://www.replay.com/
[7] TiVo Inc [Online]. Available: http://www.tivo.com/
[8] D. Wu, Y. T. Hou, and Y.-Q. Zhang, “Transporting real-time video over

the Internet: Challenges and approaches,”Proc. IEEE, vol. 88, Dec.
2000.

[9] F. C. Li, A. Gupta, E. Sanocki, L. He, and Y. Rui, “Browsing digital
video,” Microsoft Research, Tech. Rep. MSR-TR-99-67, [online]. Avail-
able:ftp://ftp.research.microsoft.com/pub/tr/tr-99-67.pdf, Sept. 1999.

[10] Coding of Moving Pictures and Associated Audio for Digital Storage
Media at up to About 1.5 Mbits/s, (MPEG-1), Oct. 1993.

[11] Generic Coding of Moving Pictures and Associated Audio, ISO/IEC
13 818-2, (MPEG-2), Nov. 1993.

[12] Coding of Moving Pictures and Associated Audio MPEG98/W2194,
(MPEG-4), Mar. 1998.

[13] S. Cen, “Reverse playback of MPEG video,” U.S. Patent 5 739 862, Apr.
14, 1998.

[14] S. J. Wee and B. Vasudev, “Compressed-domain reverse play of MPEG
video streams,” inProc. SPIE Conf. Multimedia Systems and Applica-
tions, Nov. 1998, pp. 237–248.

[15] N. Omoigui, L. He, A. Gupta, J. Grudin, and E. Sanocki, “Time-com-
pression: System concerns, usage, and benefits,” inProc. ACM SIGHI
Conf., May 1999, pp. 136–143.

[16] S. J. Wee, “Reversing motion vector fields,” inProc. IEEE Int. Conf.
Image Processing, Oct. 1998, pp. 209–212.

[17] H. Schulzrinne, A. Rao, and R. Lanphier, “Real time streaming protocol
(RTSP),” Internet Engineering task Force, RFC 2326, Apr. 1998.

[18] H. Schulzrinne, S. Casner, R. Frederick, and V. Jacobson, “RTP: A
transport protocol for real-ime applications,” Internet Engineering Task
Force, RFC 1889, Jan. 1996.

[19] H. Schulzrinne, D. Hoffman, M. Speer, R. Civanlar, A. Basso, V. Bal-
abanian, and C. Herpel, “RTP payload format for MPEG-4 elementary
streams,” Internet Engineering Task Force, Internet Draft, Mar. 1998.

[20] C.-W. Lin, J. Youn, J. Zhou, M.-T. Sun, and I. Sodagar, “MPEG video
streaming with VCR functionality,” inProc. IEEE Int. Symp. Multimedia
Software Eng., Taipei, Taiwan, Dec. 2000.

Chia-Wen Lin (S’94–M’00) received the M.S. and Ph.D. degrees in electrical
engineering from National Tsing Hua University, Hsinchu, Taiwan, in 1992 and
2000, respectively.

He joined the Department of Computer Science and Information Engineering,
National Chung Cheng University, Taiwan, in August 2000, where he is cur-
rently an Assistant Professor. Before that, he was a Section Manager of the CPE
and Access Technologies Department at the Computer and Communications
Research Laboratories, Industrial Technology Research Institute (CCL/ITRI),
Taiwan. During April to August 2000, he was with the Information Processing
Lab, Department of Electrical Engineering, University of Washington at Seattle,
as a Visiting Scholar. He has six patents pending and more than 30 technical
papers published. His research interests include video coding, multimedia tech-
nologies, and digital transmission systems design.

Dr. Lin received a Research Achievement Award from ITRI in 2000.

Jian Zhou (S’00) received the B.S. and M.S. degrees in 1996 and 1999, re-
spectively, both from the Department of Electronic Engineering, Tsinghua Uni-
versity, Beijing, China. He is currently working toward the Ph.D. degree in the
Information Processing Lab, Department of Electrical Engineering, University
of Washington at Seattle.

His research interests include video coding and multimedia applications over
network.

Jeongnam Younreceived the B.S. degree from Hanyang University, Korea, in
1988, the M.S. degree from Korea Advanced Institute of Science and Tech-
nology (KAIST), Seoul, Korea, in 1990, and the Ph.D. degree from the Univer-
sity of Washington at Seattle in 2000, all in electrical engineering.

He is with the Sony U.S. Research Lab for Video Algorithms and Multimedia
Systems Developments, San Jose, CA. Previously, he had been with Equator
Technologies, Inc. as a Video Scientist, where he developed video processing
algorithms for multimedia processors. During 1990–1995, he was a Member of
Technical Staff with Korea Telecom. His research interests are video signal pro-
cessing, multimedia networking, video transcoding, and multimedia processor
applications.

Ming-Ting Sun (S’79–M’81–SM’89–F’96) received the B.S. degree from Na-
tional Taiwan University in 1976, the M.S. degree from University of Texas at
Arlington in 1981, and the Ph.D. degree from University of California, Los An-
geles in 1985, all in electrical engineering.

He joined the University of Washington at Seattle in August 1996, where he
is currently a Professor. Previously, he was the Director of the Video Signal
Processing Research Group at Bellcore. He has been awarded seven patents and
has published more than 100 technical papers, including ten book chapters in
the area of video technology.

Dr. Sun is the Editor-in-Chief of IEEE TRANSACTIONS ONMULTIMEDIA and
was the Editor-in-Chief of IEEE TRANSACTIONS ONCIRCUITS AND SYSTEMS

FOR VIDEO TECHNOLOGY (TCSVT) from 1995 to 1997. From 1988 to 1991,
he served as the Chairman of the IEEE Circuits and Systems (CAS) Standards
Committee and established an IEEE Inverse Discrete Cosine Transform Stan-
dard. He was also a general Co-Chair of the Visual Communications and Image
Processing 2000 Conference. He received a Golden Jubilee Medal from the
IEEE CAS Society in 2000, was co-recipient of the TCSVT Best Paper Award
in 1993, and received an Award of Excellence from Bellcore in 1987 for the
work on Digital Subscriber Line.

