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Block Diagram Representation

» The convolution sum description of an LTI discrete-time
system can, in principle, be used to implement the system

» Here the input-output relation involves a finite sum of
products: v "
yin]l==Y_ diyn—k]+> o prx{n—k]
* On the other hand, an FIR system can be implemented
using the convolution sum which is a finite sum of products:

N
Mn]= Yo hlk1xln = k]
* The implementation of an LTI digital filter can be either in
software or hardware form, depending on applications

* In either case, the signal variables and the filter coefficients
cannot be represented with infinite precision
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Block Diagram Representation

» A structural representation using interconnected basic
building blocks is the first step in the hardware or software
implementation of an LTI digital filter

* In the time domain, the input-output relations of an LTI
digital filter is given by the convolution sum

nl=2 0 hlk]x{n-k]
or, by the linear constant coefficient difference equation
N M
Mnl==2_ diyln—k]+ 35— prexln— k]
» For the implementation of an LTI digital filter, the input-

output relationship must be described by a valid
computational algorithm
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Block Diagram Representation

» Consider the causal first-order LTI digital filter shown below

F
x[n] : + » v[n]

1 -1
2 -d,
N <l
"> <[

» The filter is described by the difference equation
yin] = =dyyin =11+ pex(n] + psx[n —1]
» Using the above equation we can compute y[n] forn =0
knowing y[-1] and the input x[n] for n = -1
Y0l = =diy[-1] + pox[0] + poX[—1]
y[1] = =d,¥[0] + pox[1] + p4x[0]
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Basic Building Blocks

» The computational algorithm of an LTI digital filter can be
conveniently represented in block diagram form using the
basic building blocks shown below

x[n] 4{?_' vin] x[n] "DA_' yin]

win] Multiplier
Adder
x[n] +I— x[n]
. -1
X|n yin
[n] z y[n] A[n]
Unit delay Pick-off node
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Basic Building Blocks

» Advantages of block diagram representation
— Easy to write down the computational algorithm by
inspection
— Easy to analyze the block diagram to determine the
explicit relation between the output and input

— Easy to manipulate a block diagram to derive other
“equivalent” block diagrams yielding different
computational algorithms

— Easy to determine the hardware requirements

— Easier to develop block diagram representations from
the transfer function directly
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Analysis of Block Diagrams

» Write down the expressions for the output signals of each
adder as a sum of its input signals, and develop a set of
equations relating the filter input and output signals in terms
of all internal signals

+ Eliminate the unwanted internal variables to obtain the
expression for the output signal as a function of the input
signal and the filter parameters (multiplier coefficients)
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Analysis of Block Diagrams

+ Example - Consider the following single-loop feedback

structure X —@®2 G0 Y2)

G,iz)
* The output E(z) of the adder is

E(z) = X(2) + Gy(2)Y(2)
» But from the figure

Y(2) = G4(2)E(2)
+ Eliminating E(z) from the previous equations we arrive at
[1- G4(2)Gx(2)]Y(2) = G4(2)X(2)
which leads to H(z)= Y(z) _ ‘(;1(2)‘
X(z) 1-Gi(2)Gy(2) 8-8
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Analysis of Block Diagrams

+ Example — Analyze the following cascade lattice structure

» The output signals of the four adders are given by

W, =X-aS,
W, =W, - &S,
W;=S, +eW,
Y=BW, +vS,
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Analysis of Block Diagrams
* From the figure we observe
S =z'W,
S,=z'W,
» Substituting the last two relations in the first four equations

we get
W,=X-oaz'W,
W, =W, -6z'W,
W,=z1W, + eW,
Y=BW,+vyz'W,
« From the second equation we get W, = W,/(1 + dz™") and
from the third equation we get W, = (¢ + z")W,
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Analysis of Block Diagrams

+ Combining the last two equations we get
W. = gz ! 174
3 lesz 1 !

» Substituting the above equation in
W,=X-oaz'W,
Y=BW,+vyz'W,
we finally arrive at
Y B+(Bo +ﬂ(£)z" +]!z_2

H(z)=
(2) X 1+@+ag)zl +az?
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The Delay-Free Loop Problem

» For physical realizability of the digital filter structure, it is
necessary that the block diagram representation contains
no delay-free loops

* Toillustrate the delay-free loop problem consider the

structure below ]

o ¥[n] 1{:!]-"
* Analysis of this structure yields

uln] = win] + y[n]
yln] = B(v[n] + Au[n])
« As aresult, y[n] = B(vn] + Aw[n] + y[n))) 612
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The Delay-Free Loop Problem

» The determination of the current value of y[n] requires the
knowledge of the same value

* However, this is physically impossible to achieve due to the
finite time required to carry out all arithmetic operations on
a digital machine

* Solution: Replace the portion of the overall structure
containing the delay-free loops by an equivalent realization

with no delay-free loops

1
win] 1-AB uln]
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Canonic & Noncanonic Structures

» A digital filter structure is said to be canonic if the number
of delays in the block diagram representation is equal to
the order of the transfer function

» Otherwise, it is a noncanonic structure

* The structure shown below is noncanonic as it employs
two delays to realize a first-order difference equation

yin] = —diyln =1] + pexX[n] + px{n 1]

x[n]|
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Equivalent Structures

» Two digital filter structures are defined to be equivalent if
they have the same transfer function

* A simple way to generate an equivalent structure from a
given realization is via the transpose operation:
— Reverse all paths
— Replace pick-off nodes by adders, and vice versa
— Interchange the input and output nodes

Yi(z) «

Transpose
——
X(z)
Origmal structure Transposed structure
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Equivalent Structures

* Aredrawn transposed structure is shown below
Yiz)

X(2)

+ All other methods for developing equivalent structures are
based on a specific algorithm for each structure

» There are literally an infinite number of equivalent
structures realizing the same transfer function

» Under infinite precision arithmetic any given realization of
a digital filter behaves identically to any other equivalent

structure
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Equivalent Structures

* However, in practice, due to the finite word-length
limitations, a specific realization behaves totally differently
from its other equivalent realizations

* Hence, it is important to choose a structure that has the
least quantization effects when implemented using finite
precision arithmetic

* One way to arrive at such a structure is to determine a
large number of equivalent structures, analyze the finite
word-length effects in each case, and select the one
showing the least effects

* In certain cases, it is possible to develop a structure that
by construction has the least quantization effects
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Basic FIR Digital Filter Structures

» A causal FIR filter of order N is characterized by a transfer
function H(z) given by

H(z)= Z;::n hnz™"
* In the time-domain the input-output relation of the above

FIR filter is given by
vln]= Zk\;n hlk]x[n—k]
* An FIR filter of order N is characterized by N+1

coefficients and, in general, require N+1 multipliers and N
two-input adders

 Structures in which the multiplier coefficients are precisely
the coefficients of the transfer function are called direct
form structures
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Direct Form FIR Filter Structures

» A direct form realization of an FIR filter can be readily
developed from the convolution sum description as
indicated below for N = 4

h[0]

» An analysis of this structure yields
yin] = h[O]x[n] + h[1]x[n =1] + h[2]x[n — 2] + h[3]x[n -3] +
h[4]x[n - 4]
* The direct form structure is also known as a transversal

filter
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Direct Form FIR Filter Structures

» The transpose of the direct form structure shown earlier is
indicated below

x[n]

» Both direct form structures are canonic with respect to
delays
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Cascade Form FIR Filter Structures

* A higher-order FIR transfer function can also be realized
as a cascade of second-order FIR sections and possibly a
first-order section

» To this end we express H(z) as
H(z)=hOI[To, (1+ Bz + Pz ™)

» Both direct form structures are canonic with respect to
delays where K= N/2 if N is even, and K= (N+1)/2 if N is
odd, with B, =0
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Cascade Form FIR Filter Structures

» A cascade realization for N = 6 is shown below

» To this end we express H(z) as

» Each second-order section in the above structure can also
be realized in the transposed direct form
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Polyphase FIR Structures

* The polyphase decomposition of H(z) leads to a parallel
form structure
» Toillustrate this approach, consider a causal FIR transfer
function H(z) with N = 8:
H(z) = h[0] + h[1]z"" + h[2]z2 + h[3]z 3+ h[4]z™* + h[5]z® +
h[6]z8 + h[7]z"" + h[8]z8
* H(z) can be expressed as a sum of two terms, with one
term containing the even-indexed coefficients and the
other containing the odd-indexed coefficients
H(z) = (h[0] + h[2]z 72+ h[4]z™* + h[6]z 8 + h[8]z78)
+ (h[1]z" + h[3]z3 + h[5]z ™5 + h[7]Zz7)
= (h[0] + h[2]z72 + h[4]z* + h[6]z°® + h[8]z %)
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Polyphase FIR Structures

* By using the notation
E,(z) = h[0] + h[2]z™" + h[4]z"2? + h[6]z3 + h[8]z*
E,(z) = h[1] + h[3]z" + h[5]z™2 + h[7]z™3
we can express H(z) as
H(z) = Eq(z2) + 2'E((2?)
* The above decomposition is more commonly known as
the 2-branch polyphase decomposition

—I—’ E()(Zz)
—1
[

Ey(z%)
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Polyphase FIR Structures

* In a similar manner, by grouping the terms in the original
expression for H(z), we can reexpress it in the form

H(z) = Ey(2%) + 27E,(2%) + 2 2E,(2%)
where now
E,(z) = h[0] + h[3]z™" + h[6]z?
E,(z) = h[1] + h[4]z"" + h[7]z?
E,(z) = h[2] + h[5]z"" + h[8]z?
* The 3-branch polyphase decomposition is shown below

Eyl 2

Ezh |

r'ﬁ"}
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Polyphase FIR Structures

* In the general case, an L-branch polyphase decomposition
of an FIR transfer function of order N is of the form
L-1 _—-m
H(Z)=z - ?”LJH(ZL)

m=0*“
where

L[(N+1)/ L]

E,(z)= Y hlLn+m]z™" with h[n] =0 forn>N
n=0
 The subfilters E,(z") are also FIR filters
_DM.‘I (5]
(E
’_Dﬁm
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Linear Phase FIR Structures

» The symmetry (or antisymmetry) property of a linear-
phase FIR filter can be exploited to reduce the number of
multipliers into almost half of that in the direct form

» Consider a length-7 Type 1 FIR transfer function with a
symmetric impulse response:

H(z) = h[0] + h[1]z™' + h[2]z2 + h[3]z"3+ h[2]z~* + h[1]z"5 + h[0]z®

* Rewriting H(z) in the form

H(z) = h[0](1 + z )+ h[1)(z™" + z75) + h[2)(z2+ z~4)+ h[3]z3

h[0] h[1] 21 Y3
Original PowerPoint slide 0 Noy N . 8-27
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Linear Phase FIR Structures

* A similar decomposition can be applied to a Type 2 FIR
transfer function
* For example, a length-8 Type 2 FIR transfer function can
be expressed as :
H(z) = h[O](1 + z77)+ h[1](z™" + Z7©) + h[2](z"2 + %)+ h[3](z™> + %)

* Note: The Type 1 linear-phase structure for a length-7 FIR
filter requires 4 multipliers, whereas a direct form

realization requires 7 multipliers
Original PowerPoint slides prepared by S. K. Mitra 8-28
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Tapped Delay Lines

* In some applications, such as musical and sound
processing, FIR filter structures of the form shown below
are employed

x|n] M, }_]‘_,I = ..w:| |__—,-u_‘|
o o oL
g 1 zi 3
D 1) ::+}7—r vln]

* The structure consists of a chain of M, + M, + M; unit
delays with taps at the input, at the end of first M, delays,
at the end of next M, delays, and at the output

+ Signals at these taps are then multiplied by constants ay,
a4, 0y, and azand added to form the output

» The structure is referred to as the tapped delay line
Original PowerPoint slides prepared by S. K. Mitra 8-29
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Basic IIR Digital Filter Structures

* We concern about causal IIR digital filters characterized
by a real rational transfer function of z* or, equivalently by
a constant coefficient difference equation

» The realization of the causal IIR digital filters requires
some form of feedback

* An N-th order IR digital transfer function is characterized
by 2N+1 unique coefficients, and in general, requires
2N+1 multipliers and 2N two-input adders for
implementation

» Direct form IIR filters: Filter structures in which the
multiplier coefficients are precisely the coefficients of the

transfer function
Original PowerPoint slides prepared by S. K. Mitra 8-30
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Direct Form IIR Filter Structures

» Consider for simplicity a 3rd-order IIR filter with a transfer
function - . .
= P(z) _Pot Pz APz A pyz

H(z)
D(z) 1+diz ' +dyz 2 +dsz3

+ We can implement H(z) as a cascade of two filter sections
as shown below

Wi(z)

X(z)— Hi(2) H,(z) +Y(2)
where
W(z) -1 -2 —
H(z2)=——"=P(z)=pyg+ piz +prz “+ p;z
1(2) X )=pot P P2 P3
Y(z 1 1
W(Z) D(Z) l+dlz +d72 _+d7‘Z B
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Direct Form IIR Filter Structures

» The filter section can be seen to be an FIR filter and can
be realized as shown below

| win] = pox[n] + psxn = 1] + p,xin = 2] + pexin - 3]]
* The time-domafn representation of is given by
| ¥In]=win] = d,yln = 1] = doyin - 2] - dyyin - 3] |
/

¥[n]
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Direct Form IIR Filter Structures

* A cascade of the two structures realizing and leads to the
realization of shown below and is known as the direct
form I structure

» The direct form | structure is non-canonic as it employs 6
delays to realize a 3rd-order transfer function

* A transpose of the direct form | structure is shown on the

right and is called the direct form I, structure
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Direct Form IIR Filter Structures

» Various other non-canonic direct form structures can be
derived by simple block diagram manipulations as shown
below

» Observe in the right-hand-side direct form structure, the
signal variable at nodes (1) and (7’) are the same, and

hence the two top delays can be shared
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Cascade Form IIR Filter Structures

* By expressing the numerator and the denominator
polynomials of the transfer function as a product of
polynomials of lower degree, a digital filter can be realized
as a cascade of low-order filter sections

» Consider, for example, H(z) = P(z)/D(z) expressed as
P _ R@)PA(2)B(2)
H(z)= =
D(z) Dy(2)D;(2)Ds(2)
+ Examples of cascade:

_JA | Al |A®| | R@| |B@| [AD]
Dy(z) Dy(2) Dy(2) D,(z) Dy(z) Dy(2)
_JAQ[ )R | K@l A& 1 A@( ] (@ .
Dy(z) Dy(z) D, (z) D, (z) Dy(z2) Dy(z)
£(z) B(z) P (2) R(z2) B(z) P(2) 8-35
Original PowerPoint —— —— |—§ —— —§ —— — —H§ —— |—§ — s —— |
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Cascade Form IIR Filter Structures

* There are a total of 36 different cascade realizations of
H(z)= P(z) _ B(2)P(2)P(2)
D(z) Dy(2)D,y(2)D4(2)
based on pole-zero-pairings and ordering

» Due to finite word-length effects, each such cascade
realization behaves differently from others

* Usually, the polynomials are factored into a product of 1st-
order and 2nd-order polynomials

-1 =)
H(Z)=p01—[{1+ﬁ1x\-z + foxz ,J

r \ 1+ a”\.z_l ‘oz ©

* In the above, for a first-order factor a,, = 8, =0
Original PowerPoint slides prepared by S. K. Mitra 8-36
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Cascade Form IIR Filter Structures

» Consider the 3rd-order transfer function

- P
H(:)=p()(1+ff11—_lj( 415z + Pz "’J

* One possible realization is shown below

Py
X —D "D o >y
PEN
%y By,
Original PowerPoint slides prepared by S. K. Mitra 8-37
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Parallel Form IIR Filter Structures

A partial-fraction expansion of the transfer function in z*
leads to the parallel form | structure

* Assuming simple poles, the transfer function H(z) can be
expressed as .
e Yor Tz

H(z) Yo¥ ?[ l+a'”‘.z_l+0'3,(_z_2 ]

* In the above for a real pole a,, =y =0

» A direct partial-fraction expansion of the transfer function
in z leads to the parallel form Il structure

* Assuming simple poles, the transfer function H(z) can be

expressed as 5 s 2
H(z)= 50 +Z( kS TO2k< ]
k
* In the above for a real pole a,, = d,, =0

Original PowerPoint slides prepared by S. K. Mitra 8-38
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Parallel Form IIR Filter Structures

* The two basic parallel realizations of a 3rd-order IR
transfer function are shown below

Parallel form I Parallel form IT

Original PowerPoint slides prepared by S. K. Mitra 8-39
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Parallel Form IIR Filter Structures

+ Example - A partial-fraction expansion of

0.44z7140.362272+0.02273

H(z)= 1 0022
1+0.4z " +0.18z 0.2z

in z "yields

1
H(z)=—0.1+ 0.6 -0.5-0.2z

1-04z7'  1408z7'+0.5272

Original PowerPoint slides prepared by S. K. Mitra 8-40
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Parallel Form IIR Filter Structures
+ Likewise, a partial-fraction expansion of H(z) in z yields
024z 022714025272
+
1-0.4z7"  140.827'+0.5272

* The corresponding parallel form Il realization is shown
below

H(z)=

Original PowerPoint slides prepared by S. K. Mitra 8-41
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Realizations of All-Pass Filter

» An M-th order real-coefficient allpass transfer function
A,/(z) is characterized by M unique coefficients as here the
numerator is the mirror-image polynomial of the
denominator

+ A direct form realization of A,,(z) requires 2M multipliers

+ Objective - Develop realizations of A,,(z) requiring only M
multipliers

* An arbitrary allpass transfer function can be expressed as
a product of 2nd-order and/or 1st-order allpass transfer
functions

* We consider first the minimum multiplier realization of a
1st-order and a 2nd-order allpass transfer functions

Original PowerPoint slides prepared by S. K. Mitra 8-42
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Digital Two-Pairs

» The LTI discrete-time systems considered so far are
single-input, single-output structures characterized by a
transfer function

« Often, such a system can be efficiently realized by
interconnecting two-input, two-output structures, more
commonly called two-pairs

» Figures below show two commonly used block diagram
representations of a two-pair

X, — rY, X — -1

¥ - . \-: X, Y,
Here Y, and Y, denote the two outputs, and X; and X,
denote the two inputs, where the dependencies on the

variable z has been omitted for simplicity
Original PowerPoint slides prepared by S. K. Mitra 8-43
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Digital Two-Pairs
« The input-output relation of a digital two-pair is given by
[}q:[’u "12}[)(1]
L1 L ]l X>

 In the above relation the matrix T given by

=11 42
ly I

is called the transfer matrix of the two-pair

* |t follows from the input-output relation that the transfer
parameters can be found as follows:

) 4
Wl 2 1%
1 X5=0 2 X=0
_b _ L
Original PowerPoint slides preparec f21 - X . -’22 = X 8-44
The MCGrﬂ'W'Hf"-Cﬂmpﬂ 1x,=0 2 .Y|=0 :Graw-Hill Companies, Inc., 2007

2008/6/7

22



Digital Two-Pairs

its chain parameters as

X :[A B] Y,
Y |~LC DJx,
where the matrix |1 given by

l-_A B
|1 D

is called the chain matrix of the two-pair

chain parameters are given by

C AD - BC |

h=— lha=—"F 1= n=—
A A A A

s I § alay — 1!
q=1 B=-12 -1 p_n2l1=f
171 I21 171 I 4
Original PowerPoint slides prepared by S. K. Mitra 8-45
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» An alternate characterization of the two-pair is in terms of

» The relation between the transfer parameters and the

Digital Two-Pairs

» Cascade Connection - '-cascade

¥ bt
Xi— {1 B A B} — 5
}Il' — _C Dr C D L—— ‘]L’:

0% 7 =

x| _[4 B]n
Here YI ("' DI_ X2

 Asaresult, (x| [4 B4 B']Y
Y, | LC" D C" D x;

* Hence 4 B|_[4 B4 B
(\ ‘r) — ( ‘_I Dr ‘rl "
Original PowerPoint slides prepared by S. K. Mitra
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Digital Two-Pairs

 Cascade Connection - 1-cascade
) 2

Xp — {r{l t{z} |:t1"l fl"z}
Xyl B | R W)
U B¢
] L 1 LXS
_|m on || X

fhy 1] X
n | h | X
hy Ml ] X>

* Hence {1‘11 312}_ N oh2 |t h2
i o] [y talty

o

Here

153

ol

* As aresult, Y
Y,

Original PowerPoint slides prepared by S. K. Mitra
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Digital Two-Pairs

* Constrained Two-Pair

Xl_’ }72
‘ Y Gz
Hiz) 1 X

* |t can be shown that

Y, C+D-G(z)

H(z)=—_-= .
X, A+B-G(2)
1-1,G(2)

Original PowerPoint slides prepared by S. K. Mitra
The McGraw-Hill Companies

8-48

raw-Hill Companies, Inc., 2007

2008/6/7

24



First-Order All-Pass Filter Structures

+ Consider first the 1st-order allpass transfer function given
-1
by AI(Z):Q‘I"I‘Z l
1+ dlz
* We shall realize the above transfer function in the form a
structure containing a single multiplier d, as shown below

Y,
X, -
_ \Z2
}( . la- |
1 X,

+ We express the transfer function A,(z) = Y,/ X, in terms of
the transfer parameters of the two-pair as

falydy _ ) —d (fTys —Tatsy)

z) =, + =
A(z) =m 1=dyt5, 1=dyt5,
Original PowerPoint slides prepared by S. K. Mitra 8-49
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First-Order All-Pass Filter Structures

» A comparison of the above with

-1
AI{Z) _ (37] +z

Yields L+dyz™
fy =27 1y = =27\ fyytyy —hyly =1
« Substituting t;, = z”" and t,,= -z in t;,t,, = -1 we get
tiolyy =1 - 272
» There are 4 possible solutions to the above equation:
Type 1At =z t,=-z" t,,=1-22,t, =1
Type 1B: t;, =z t,,=-z" t,,=1+z" t,,=1-2z"
Type 1At =z b=z t,=1,t,=1-272
Type 1Bi tj =z, b=z t,=1-z" t,, =1+z"

Original PowerPoint slides prepared by S. K. Mitra 8-50
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First-Order All-Pass Filter Structures

* From the transfer parameters of this allpass we arrive at
the input-output relations:

Y, =X, + (1 -22)X, =z7"Y, + X,
» A realization of the above two-pair is sketched below

+ By constraining the X, Y,, terminal-pair with the multiplier
d,, we arrive at the Type 1A allpass filter structure shown
below:

Original PowerPoint slides prepared by ¢ 8-51
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First-Order All-Pass Filter Structures

 In a similar fashion, the other three single multiplier first-
order allpass filter structures can be developed as shown
below

Type 1A

Type 1B+

8-52
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unique coefficients

* Hence, it can be realized using only 2 multipliers
» Type 2 allpass transfer function:

dydy+d,z7 +272
l+d|z_l +d|d22_2

Az(z):

Original PowerPoint slid
The McGraw”

Second-Order All-Pass Structures
* A 2nd-order allpass transfer function is characterized by 2

8-53
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Type-3 All-Pass Structures

» Type 3 allpass transfer function:
d2+a’lz_' +z72

43(2) = = =2
1+(?I|Z +d22

Original PowerPoint slides prepared by S. K. Mitra
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Realization Using Multiplier
Extraction Approaches

« Example — Realize

1 2 3
=0.2+0.18z "+04z “+z
Az(z) =

14+04z7140.18272-0.2273 )
_(=0.4+z71)(0.5+0827 4+27%)

T (1-0.4z71)(1+0.827140.5272)
» A 3-multiplier cascade realization of the above allpass
transfer function is shown below

Original PowerPoint slides prepared by S. K. Mitra 8-55
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Realization Using Two-Pair
Extraction Approaches

» The algorithm is based on the development of a series of
(m-1)th-order allpass transfer functions A,,_,(z) from an
mth-order allpass transfer function A,(z) form =M, M
-1,..1

-1, =2 —(m=1), _—m
e Let Am(z-):cfmﬂf’m_]z +d 2z +-4dz +z

—{m-1) —m

+d,,z

= =2
l+dyz  dyz 2 4etd,, gz

 We use the recursion

A (z)—k = -
=) = =[ “m m m=M,M l.,l
Ayyy(2) = AT,

where k., = A,(») = 0,

m
* It has been shown earlier that A(z) is stable if and only if

2
k<1 form=M,M-1,...,]
Original PowerPoint slides prepared by S. K. Mitra 8-56
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Realization Using Two-Pair
Extraction Approaches

+ If the allpass transfer function A,,_,(z) is expressed in the

' 1 - v =(m=2 —( =
fOl'm 1 (7)_ dm l+dﬂ; 52 l+---+dlz (m=2) , ~(m 1)
Am=11 T aed ] I m=2)_ (m—1)
tdyz T Aeetdy, oz Fdp

+ then the coefficients of A,,_,(z) are simply related to the

coefficients of A,(z) through
d—-d d. _. )
L= mCm=i | 1 <i<m-1
ll=a

« To develop the realization method we express A, (z) in
terms of A,,_4(2)

d; =

SO |

Am(z)z Am'z_l'lm 102)
I+k,,z Ay, (2)

)

X h1 ha 1
[ r ’ |r')l Ir'T')
4 (z) hi- — X,
Original PowerPoint slides p.v;u’.’ivt, CZROCCITs 2 8-57

Realization Using Two-Pair
Extraction Approaches

» The transfer function A,(z) = Y,/X, of the constrained two-

pair can be expressed as
4 (Z)—f”_t Mtz —hata) Ay (2)
“*m -

IS IZZ'“JJ'H—I{ZJ

» Comparing the above with

k +z'4 _(z)
Am(Z)z .m— - i)
1+{‘mz "im—l{z}

we arrive at the two-pair transfer parameters
1o, =(1-k2)z7), 1y =1
» Corresponding input-output relations are
Y=k, X, +(-k2)z 7' X,
Y, =X —k,z X,

h1=bkms tig =—kpz

Original PowerPoint slides prepared by S. K. Mitra 8-58
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Realization Using Two-Pair
Extraction Approaches

» A direct realization of the above equations leads to the
following 3-multiplier two-pair

* The transfer parameters
_ 7 _ _ . -1 1
h1=kpys by =—kpz ", 1 =(1=ky)z ", 11 =1+k,

lead to the 4-multiplier two-pair structure shown below

Original PowerPoint slides prepared by S. K. Mitra
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Realization Using Two-Pair
Extraction Approaches

» Likewise, the transfer parameters

2
m

lead to the 4-multiplier two-pair structure shown below

_ f 5 f
h :f'\'m. 1>y :—J{\'m: 1. ’1:‘; = \._‘-'l—f\'- l. I1= \l—.‘{

m=

=
L=k

Original PowerPoint slides prepared by S. K. Mitra
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Realization Using Two-Pair
Extraction Approaches

* A 2-multiplier realization can be derived by manipulating
the input-output relations:
Y, =k, X, +(1-k2)z7'X,
Y, = X;—k,z X,
* Making use of the second equation, we can rewrite the
equations as
Y, =k,Y, +z7'X,
Y, =X, - k,z'X,
lead to the 2-multiplier two-pair structure, known as the
lattice structure, shown below

X, ——@) ¥

Original PowerPoint slides prepared by S. h 2 8-61
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Realization Using Two-Pair
Extraction Approaches

» Consider the two-pair described by
tiy = K tp = ~kpZ ' by = (1= k)27 by = 1 + K,
« Its input-output relations are given by
Y=k Xo + (1= k)20 X,
Yo = (1+ k) Xy = knz "X,
« Define V, =k, (X, —z7'X,)
» We can then rewrite the input-output relations as
Y,=V,+z'X,and Y, = X, + V,, leading to the following 1-
multimplier architecture

Original PowerPoint slides prepared by S. K. 11 z 2 8-62
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Realization Using Two-Pair
Extraction Approaches

* An mth-order allpass transfer function A,(z) is then
realized by constraining any one of the two-pairs of the
(m-1)th-order allpass transfer function A,,_4(z)

X

» The process is repeated until the constraining transfer
function is Ay(z) = 1

+ The realization of A,(z) based on the extraction of the two-
pair lattice is shown below

Q Q
Ay — N -+ 1
' Ky kq ‘
Original PowerPoint sli 2 &) 8-63
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Realization Using Two-Pair
Extraction Approaches

+ It follows from our earlier discussion that A, (z) is stable if
the magnitudes of all multiplier coefficients in the realization
arelessthan1,i.e, |k,|<1,form=M M-1, .1

» The cascaded lattice allpass filter structure requires 2M
multipliers

A realization with M multipliers is obtained if instead the
single multiplier two-pair is used

+ Example - Realize
-02+40.18271404z72 4+ 273

A3(2) =
' 1+0.4z71+0.18272-0.2273
- _n _

_dy+dyz l+a’1z 2,273
- - = -3

1+d,z Ly dyz 24 dyz
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Realization Using Two-Pair
Extraction Approaches

+ We first realize A;(z) in the form of a lattice two-pair
characterized by the multiplier coefficient k; = d; = -0.2 and
constrained by a 2nd-order allpass A,(z) as indicated below

—3
Ax(z)— Aa(z)
ks -~
~1

k, =—0.2
» The allpass transfer function A,(z) is of the form

doy+djz 1 +272
Az(Z) =277 *F

" T .
l+diz7 +dz7"

* Its coefficients are given by
' _ dy—dsdy _ 0.4-(=0.2)(0.18) _

d, ¢ 18) _ 04541667
l-dz 1-(-0.2)~
! 1y —dydy  0.18-(-0.2)(0.4
. dy =% S 20 2708333 sos
Original PowerPoint slidesp 1-d; 1-(-0.2)-
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Realization Using Two-Pair
Extraction Approaches

* Next, the allpass A,(z) is realized as a lattice two-pair
characterized by the multiplier coefficient k, = d, = -0.2708
and constrained by an allpass A,(z) as indicated below

ki =-02, k,=0.2708333
» The allpass transfer function A,(z) is of the form

; rfn+z !
A1(3) = Ii.l
1+d,z

* Its coefficients is given by

v dl'—d'zdl' _ dl' _0.4541667

di 2] = =0.3573771
L7 0—(dy)? " 1+dy  1.2708333
Original PowerPoint slides prepared by S. K. Mitra 8-66
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Realization Using Two-Pair
Extraction Approaches

+ Finally, the allpass A,(z) is realized as a lattice two-pair
characterized by the multiplier coefficient k, = d,” = —0.3574
and constrained by an allpass A,(z) as indicated below

Original PowerPoint slides prepared by S. K. Mitra 8-67
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Tunable Lowpass and Highpass
Digital Filters

» We have shown earlier that the 1st-order lowpass transfer
function l—-af 1+27
H;p(z)= e
1p(2) 2 (l—az_lJ
and the 1st-order highpass transfer function
l+af 1-z7F
H I )= -
1p(2)=— {l—a:_lJ
are doubly-complementary pair
» Moreover, they can be expressed as
H,p(2) = 1/2[1 + A4(2)]
Hip(2) = 1/2[1 = Ay(2)]

-1
« where —-o+z . .
A(2)= — is a 1st-order allpass transfer function
Original PowerPoint siiaes prepared [;c. K. vira 8-68
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Original PowerPoint slides prepared by S. K. Mitra

Tunable Lowpass and Highpass
Digital Filters

+ Arealization of H, 5(z) and H,x(z) based on the allpass-
based decomposition is shown below

| ‘ < HL."{':}
A, (2)

+ Hypl(2)

1
» The 1st-order allpass filter can be realized using any one of
the 4 single-multiplier allpass structures

+ In the following example, the 3-dB cutoff frequency can be
varied by changing the multiplier coefficient a

H, pl2)
1
N— >
Original PowerPo 8-69
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Tunable Lowpass and Highpass
Digital Filters

» Figure below shows the composite magnitude responses of
the two filters for two different values of a

A e =04
08F 0 T — g =005 |

0.6 NN 7
P

Magnitude

0 0.2 0.4 0.6 0.8 1
w/m
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Tunable Bandpass and Bandstop
Digital Filters

» The 2nd-order bandpass transfer function

- 1-z72
Hon(z)=" |- :
sP(2) =" [I—B(1+a)z"+a:‘2J
and the 2nd-order bandstop transfer function
I+a [-Bzl+z72
Hpo(z)=
ps(2)="5 {]—[}(]+0&)z‘l+0tz_2]
also form a doubly-complementary pair
* Thus, they can be expressed in the form
Hep(2) = 112[1 = Ay(2)]
Hgs(z) = 1/2[1 + A,(2)]
+ where a—-Bl+a)zl +272

Ay(z) =

Original PowerPoint slides prepar < l _ (l + C{)Z_l +o 7—2 8-71
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Tunable Bandpass and Bandstop
Digital Filters

+ Arealization of Hgp(z) and Hgg(z) based on the allpass-
based decomposition is shown below

@D .
] O Hpel2)
i— A,(2) Hpgplz)

» The 2nd-order allpass filter is realized using a cascaded
single-multiplier lattice structure

* In the following structure, the multiplier B controls the center
frequency and the multiplier a controls the 3-dB bandwidth

Bandstop
output

8-72
lill Companies, Inc., 2007
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Tunable Bandpass and Bandstop
Digital Filters

» Figure below illustrates the parametric tuning property of the
overall structure

p=05 a=0.8
l—~—= —— — l— ————
v O |— u=04 Pt , p=08
o8k ' — a=005 | 0.8 Vil — p=oa |
206 < 08
= 0.4F = 0.4
02r 0.2
P . o= & — S
0 02 0.4 0.6 0.8 1 0 0.2 04 0.6 0.8 1
o o't
8-73
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IR Tapped Cascaded Lattice
Structures

* Consider the cascaded lattice structure derived earlier for
the realization of an allpass transfer function

W (2) —@ W (2)
~km [Z
Sps1(2) S,,(2)
* Its input-output relations are given by
W (z)= W,.(2) - k,z'S,(2)
Z)iz kWi (2) + Z'Sp(2)
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IR Tapped Cascaded Lattice
Structures

* From the input-output relations we derive the chain matrix
description of the two-pair:

W @]_| 1 kpz™ [W(2)
S}H"H(Z] - km :—I Sm{:)

» The chain matrix description of the cascaded lattice
structure is therefore

[X,(z)} |1 Rz L kL kg2 [W,(z)]
Yl(Z) k_'; :_l kz Z_I ;\'l :_l Sl('-')
» From the above equation we arrive at
X1(2) = {1 +[ky (1 + kp) + ko3 127
+lky + ki3 (1+ko)1e 7> + ka2~ Wi (2)
=(+diz +dyz72 +d;z73YW(2)

Original PowerPoint slides prepared by S. K. Mitra
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IR Tapped Cascaded Lattice
Structures
+ Using the relation S,(z) = W,(z) and the relations
ky=d;, ky=dy, ky=ds

« The transfer function W,(z)/X,(z) is thus an all-pole function
with the same denominator as that of the 3rd-order allpass
function A;(2)

W) _ 1
Xi(z) 1 +d|z_l +a’22_2 Jra’?,z_3

Original PowerPoint slides prepared by S. K. Mitra 8-76
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IR Tapped Cascaded Lattice

Structures

Gray-Markel Method

» A two-step method to realize an Mth-order arbitrary IIR
transfer function
H(z) = Py(2)/Dy/(2)
« Step 1: An intermediate allpass transfer function A,(z) =
zMD,(z7")/D,,(z) is realized in the form of a cascaded lattice
structure

» Step 2: A set of independent variables are summed with
appropriate weights to yield the desired numerator P,,(z)

Original PowerPoint slides prepared by S. K. Mitra 8-77
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IR Tapped Cascaded Lattice
Structures

* Toillustrate the method, consider the realization of a 3rd-
order transfer function

P(z)  p +plz_l + Pz + p32_3

Dy(z)  l4dz +dyz? 4 diz™

* In the first step, we form a 3rd-order allpass transfer function
Aq(2) = Y(2)X,(2) = 23D5(z7)/Dy(2)

+ Realization of A;(z) has been illustrated earlier resulting in
the structure shown below

2

H(z)=

Original PowerPoint slides prepared by S. K. Mitra 8-78
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IR Tapped Cascaded Lattice
Structures

+ Objective: Sum the independent signal variables Y,, S,, S,,
and S; with weights {a} as shown below to realize the
desired numerator P;(z)

» To this end, we first analyze the cascaded lattice structure
realizing and determine the transfer functions S,(z)/ X,(z),
S,(2)] X{(z), and S;5(z)/ X,(2)

Wy _ W, W,
+

W Y W=t
o :
k
- - -
Original PowerPoint slides pioparcu vy w. i wiua 5 52 5t 8-79
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IR Tapped Cascaded Lattice

Structures
* We have already shown

S51(2) 1

letz] = Di(z)

From the figure it follows that
SH(z)=(k + 27! )81(z) = (a‘{' e )51(z)

and hence —
Sz(Z} . dl +z

Xl(z)_ Ds(z2)

The following relation are shown previously
$2(2)=(d; +z7)8,(2)
S3(2) = dyW5(2)+27'8,(2)
51(2)=Ws(2)-diz7'5,(2)

From the last equation we get
W, (2)=(1+d;z7)S,(z)
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IR Tapped Cascaded Lattice

Structures
* Note: The numerator of is precisely the numerator of the
allpass transfer function Ad2)= S$:(2)
[AS _
« We now form Wi(2)
¥, (z) _ H(z) S3(z) S,(z2) S1(z)
X Axe 2o B xo T %0

« Substituting the expressions for the various transfer
functions in the above equation we arrive at

a(dy +dyz™ +diz 7 +27)
Y,(z) +ay(d, +(f|Z_1+Z_‘_)+fI'§(d| +z_|)+rz4
Original PowerPoint s o -

X,(2) Dy(2)

8-81
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IR Tapped Cascaded Lattice
Structures

« Comparing the numerator of Y,(z)/ X;(z) with the desired
numerator P,(z) and equating like powers of z~' we obtain
ayds + aady +ady + 01y = py
ad, +aud) +a3 = py
oydy+ay = py

o =p3
» Solving the above equations we arrive at
0 =D3
Gy = Do —aldl

oy = pi—aqd, —aza‘i

ay = py — aydy — andy — azd)

Original PowerPoint slides prepared by S. K. Mitra
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IR Tapped Cascaded Lattice
Structures

» Example - Consider
Py(z) 0.44z7140.362z7%2 +0.02z73

Dy(z) 1+0.4z71+0.18272-02z73
* The corresponding intermediate allpass transfer function is
given by Az)= z73Dy(z™Y) -02+0.18271 +0.0.4z72 + 273
T Diz) 1404271 4018272 0,227
» The allpass transfer function was realized earlier in the
cascaded lattice form as shown below

Y o Wy D “’: L “'._
! —ky iy &
Azl =
ks ks ky
Y. - [ ] I
17 ¥ [ P 1= T 15

« Where k3 =d;=—02, ky=d,=02708333 k =d| =0.3573771

H(z)=

Original PowerPoint slides prepared by S. K. Mitra 8-83
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IR Tapped Cascaded Lattice
Structures
» Other pertinent coefficients are:
dy=04, dy=0.18, dy=-0.2, d; =0.4541667
Po=0, p =044, p, =036, p;=0.02,
» Substituting these coefficients in ,
a1 =pP3 a3 = p|—aqydy —ayd,
B =pr—adl g, =py—aydy —ayds — azd;
a;=0.02, 0;=0352  ¢;=0.2765333, ay =—0.19016
» The final realization is as shown below
- W W, W,
1—E ) £}
Wt -'L"} W Yo
Original PowerPoint J(\‘-l =0.3573771, ﬂ': =0.2708333, J'F\"; =-0.2 8-84
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FIR Cascaded Lattice Structures

* An arbitrary Nth-order FIR transfer function of the form
Hy(2)=1+ Z”\;l ppz "
can be realized as a cascaded lattice structure as shown
below

» From figure, it follows that
Xm(Z) = Xm—1(z) + ka_1 Ym—1(z)
Ym(Z) = km)<m—1(z) + Z_1Ym—1(z)
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FIR Cascaded Lattice Structures

 In matrix form the above equations can be written as
[}‘fm(z):|: 1 kmz_l |:)(m—l(z):|
}‘;”(Z) ffm 3_1 Ym—l(z}
where m=1,2,....N
» Denote X y
Hy,(z) = ﬁ* Gu(2)= ﬁ
Xl)(Z) XO(Z)
» Then it follows from the input-output relations of the m-th
two-pair that
Hm(z) = Hm—1(z) + ka_1Gm_1(Z)
Gm(z) = kam—1(Z) + Z_1Gm—1(z)
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FIR Cascaded Lattice Structures

* From the previous equation we observe
H,(z) =1+ k,z", G,(2) =k, + !
where we have used the facts
Ho(2) = Xo(2)l Xo(2) = 1
Go(2) = Yo(2)l Xol2) = Xo(2)! Xo(2) = 1
« It follows from the above that
G(2) =z Y zk+ 1) =z "H,(z7")
= G,4(2) is the mirror-image of H,(z)
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FIR Cascaded Lattice Structures

* From the input-output relations of the m-th two-pair we
obtain for m = 2:
H,(z) = H(2) + k,z7'G4(2)
Gy(2) = koHy(2) + 271G y(2)
« Since H,(z) and G,(z) are 1st-order polynomials, H,(z) and
G,(z) are 2nd-order polynomials
« Substituting G,(z) = z"'H,(z™") in the two above equations
we get
Hy(z) = Hy(2) + kyz2H,(z7")
G,(2) = koHy(2) + z72H,(z7")
« We can write G,(z) = z72[k,z?H,(z) + H,(z"")] = z2H,(z")
= G,(z) is the mirror-image of H,(z)
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FIR Cascaded Lattice Structures

* In the general case, from the input-output relations of the m-
th two-pair we obtain

Hm(z) = Hm—1(z) + ka_1Gm_1(Z)
Gm(z) = kam—1(Z) + Z_1Gm—1(z)
* |t can be easily shown by induction that
« Substituting G,(z) = z"'H,(z™") in the two above equations
we get
G, (2)=z"H (z"),m=1,2,...N-1,N
= G, (z) is the mirror-image of H,(z)
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FIR Cascaded Lattice Structures

» To develop the synthesis algorithm, we express H,,_,(z) and
G,,-1(2) in terms of H,(z) and G,,(z) form= N, N-1,...,2,1
arriving at “_L%) {Hy(2)-kyGy(2)}

1
(1-k%)z
» Substituting the expressioqs for

Hy(2)=1+ Z;;Ll pnz_”

11_\.'_1(2)2

Gy (2)= S iknHy(2)+ Gy (2)}

and N - _ -n . -N
Gy(D)=2 ’NHN(: ')=Z’}{=(};JN_”: O 2

i

in the first equation we get

1 N : . :
H,'\.’ 1(3)21 _{—2 {{] —J{'N.."J‘.\.')ﬁ-z_;? II(.!JH _k”’”N ”)3 : "r(;}‘\' —}\"\'): '\}

N
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+ If we choose ky = p,, then H,_,(z) reduces to an FIR
transfer function of order N-1 and can be written in the form
Hy_(2)=1+ Z::]l ppz™"
+ where pj, =" 00 1< N1
» Continuing the above recursion algorithm, all multiplier
coefficients of the cascaded lattice structure can be
computed

» Example - Consider
Hy(z)=1+1.2z"+1.1222+0.12z3 - 0.08z4

» From the above, we observe k, = p, = -0.08
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e Usin v _ Pa—kapy-
g Py == n1<n<3

Ik}
we determine the coefficients of H;(2)
ps=0.2173913, p,’= 1.2173913, p,’= 1.2173913
* As aresult
Hy(z) =1+ 1.2173913z°" + 1.2173913z72 + 0.2173913z3
* Thus, k3 = p;’= 0.2173913

* Usin " k!
g " = Py A.:-I;l—u ) 15 n< 2

n I_’\:
we determine the coefficients of H,(z)
p,"=1.0,p,"=1.0
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FIR Cascaded Lattice Structures

As aresult, Hy(z) =1+ z 1+ z72

» From the above, we get k, = p,"= 1

The final recursion yields the last multiplier coefficient
k, = p,"I(1+ k,) = 0.5

The complete realization is shown below

k,=0.5, k, =1, k; = 0.2173913, k, = -0.08

Original PowerPoint slides prepared by S. K. Mitra 8-93
The McGraw-Hill Companies IcGraw-Hill Companies, Inc., 2007

47



