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Block Diagram Representation
• The convolution sum description of an LTI discrete-time 

system can, in principle, be used to implement the system
Here the input output relation involves a finite sum of• Here the input-output relation involves a finite sum of 
products:

• On the other hand, an FIR system can be implemented 
using the convolution sum which is a finite sum of products:
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• The implementation of an LTI digital filter can be either in 
software or hardware form, depending on applications

• In either case, the signal variables and the filter coefficients 
cannot be represented with infinite precision

8-2



2008/6/7

2

Block Diagram Representation
• A structural representation using interconnected basic 

building blocks is the first step in the hardware or software 
implementation of an LTI digital filterimplementation of an LTI digital filter

• In the time domain, the input-output relations of an LTI 
digital filter is given by the convolution sum

or, by the linear constant coefficient difference equation

© The McGraw-Hill Companies, Inc., 2007
Original PowerPoint slides prepared by S. K. Mitra

• For the implementation of an LTI digital filter, the input-
output relationship must be described by a valid 
computational algorithm

8-3

Block Diagram Representation
• Consider the causal first-order LTI digital filter shown below

• The filter is described by the difference equation
y[n] = −d1y[n −1] + p0x[n] + p1x[n −1]

• Using the above equation we can compute y[n] for n ≥ 0
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• Using the above equation we can compute y[n] for n ≥ 0
knowing y[−1] and the input x[n] for n ≥ −1

y[0] = −d1y[−1] + p0x[0] + p1x[−1]
y[1] = −d1y[0] + p0x[1] + p1x[0]

… 8-4
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Basic Building Blocks
• The computational algorithm of an LTI digital filter can be 

conveniently represented in block diagram form using the 
basic building blocks shown belowbasic building blocks shown below
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Basic Building Blocks
• Advantages of block diagram representation 

– Easy to write down the computational algorithm by 
inspectioninspection

– Easy to analyze the block diagram to determine the 
explicit relation between the output and input

– Easy to manipulate a block diagram to derive other 
“equivalent” block diagrams yielding different 
computational algorithms
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– Easy to determine the hardware requirements
– Easier to develop block diagram representations from 

the transfer function directly

8-6
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Analysis of Block Diagrams
• Write down the expressions for the output signals of each 

adder as a sum of its input signals, and develop a set of 
eq ations relating the filter inp t and o tp t signals in termsequations relating the filter input and output signals in terms 
of all internal signals

• Eliminate the unwanted internal variables to obtain the 
expression for the output signal as a function of the input 
signal and the filter parameters (multiplier coefficients)
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Analysis of Block Diagrams
• Example - Consider the following single-loop feedback 

structure

• The output E(z) of the adder is
E(z) = X(z) + G2(z)Y(z)

• But from the figure
Y(z) = G (z)E(z)
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Y(z) = G1(z)E(z)
• Eliminating E(z) from the previous equations we arrive at

[1− G1(z)G2(z)]Y(z) = G1(z)X(z)
which leads to

8-8
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Analysis of Block Diagrams
• Example – Analyze the following cascade lattice structure

• The output signals of the four adders are given by
W X S
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W1 = X − αS2

W2 = W1 − δS1

W3 = S1 + εW2

Y = βW1 + γS2
8-9

Analysis of Block Diagrams
• From the figure we observe

S1 = z−1W2

S2 = z−1W3

• Substituting the last two relations in the first four equations 
we get

W1 = X − αz−1W3

W2 = W1 − δz−1W2

W = z−1W + εW
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W3 = z 1W2 + εW2

Y = βW1 + γz−1W3

• From the second equation we get W2 = W1/(1 + δz−1) and 
from the third equation we get W3 = (ε + z−1)W2

8-10
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Analysis of Block Diagrams
• Combining the last two equations we get

• Substituting the above equation in
W1 = X − αz−1W3

Y = βW1 + γz−1W3

we finally arrive at
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The Delay-Free Loop Problem
• For physical realizability of the digital filter structure, it is 

necessary that the block diagram representation contains 
no dela free loopsno delay-free loops

• To illustrate the delay-free loop problem consider the 
structure below
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• Analysis of this structure yields
u[n] = w[n] + y[n]

y[n] = B(v[n] + Au[n])
• As a result, y[n] = B(v[n] + A(w[n] + y[n]))

8-12
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The Delay-Free Loop Problem
• The determination of the current value of y[n] requires the 

knowledge of the same value
• However, this is physically impossible to achieve due to the 

finite time required to carry out all arithmetic operations on 
a digital machine

• Solution: Replace the portion of the overall structure 
containing the delay-free loops by an equivalent realization 
with no delay-free loops
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Canonic & Noncanonic Structures
• A digital filter structure is said to be canonic if the number 

of delays in the block diagram representation is equal to 
the order of the transfer functionthe order of the transfer function 

• Otherwise, it is a noncanonic structure
• The structure shown below is noncanonic as it employs 

two delays to realize a first-order difference equation
y[n] = −d1y[n −1] + p0x[n] + p1x[n −1]

© The McGraw-Hill Companies, Inc., 2007
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Equivalent Structures
• Two digital filter structures are defined to be equivalent if 

they have the same transfer function 
A simple way to generate an equivalent structure from a• A simple way to generate an equivalent structure from a 
given realization is via the transpose operation:
– Reverse all paths
– Replace pick-off nodes by adders, and vice versa
– Interchange the input and output nodes
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Equivalent Structures
• A redrawn transposed structure is shown below 

• All other methods for developing equivalent structures are 
based on a specific algorithm for each structure
There are literally an infinite number of equivalent

© The McGraw-Hill Companies, Inc., 2007
Original PowerPoint slides prepared by S. K. Mitra

• There are literally an infinite number of equivalent 
structures realizing the same transfer function

• Under infinite precision arithmetic any given realization of 
a digital filter behaves identically to any other equivalent 
structure

8-16
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Equivalent Structures
• However, in practice, due to the finite word-length 

limitations, a specific realization behaves totally differently 
from its other equivalent realizationsfrom its other equivalent realizations

• Hence, it is important to choose a structure that has the 
least quantization effects when implemented using finite 
precision arithmetic

• One way to arrive at such a structure is to determine a 
large number of equivalent structures, analyze the finite 
word length effects in each case and select the one

© The McGraw-Hill Companies, Inc., 2007
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word-length effects in each case, and select the one 
showing the least effects

• In certain cases, it is possible to develop a structure that 
by construction has the least quantization effects

8-17

Basic FIR Digital Filter Structures
• A causal FIR filter of order N is characterized by a transfer 

function H(z) given by

• In the time-domain the input-output relation of the above 
FIR filter is given by 

• An FIR filter of order N is characterized by N+1 
coefficients and, in general, require N+1 multipliers and N 
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coe c e ts a d, ge e a , equ e u t p e s a d
two-input adders

• Structures in which the multiplier coefficients are precisely 
the coefficients of the transfer function are called direct 
form structures

8-18
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Direct Form FIR Filter Structures
• A direct form realization of an FIR filter can be readily 

developed from the convolution sum description as 
indicated belo for N 4indicated below for N = 4
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• An analysis of this structure yields 
y[n] = h[0]x[n] + h[1]x[n −1] + h[2]x[n − 2] + h[3]x[n −3] + 

h[4]x[n − 4]
• The direct form structure is also known as a transversal 

filter 8-19

Direct Form FIR Filter Structures
• The transpose of the direct form structure shown earlier is 

indicated below

• Both direct form structures are canonic with respect to 

© The McGraw-Hill Companies, Inc., 2007
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delays

8-20
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Cascade Form FIR Filter Structures
• A higher-order FIR transfer function can also be realized 

as a cascade of second-order FIR sections and possibly a 
first order sectionfirst-order section

• To this end we express H(z) as

• Both direct form structures are canonic with respect to 
delays where K N/2 if N is even and K (N+1)/2 if N is
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delays where K = N/2 if N is even, and K = (N+1)/2 if N is 
odd, with β2K = 0

8-21

Cascade Form FIR Filter Structures
• A cascade realization for N = 6 is shown below

• To this end we express H(z) asp ( )

• Each second-order section in the above structure can also 
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be realized in the transposed direct form

8-22
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Polyphase FIR Structures
• The polyphase decomposition of H(z) leads to a parallel 

form structure
• To illustrate this approach, consider a causal FIR transfer 

function H(z) with N = 8:
H(z) = h[0] + h[1]z−1 + h[2]z−2 + h[3]z−3 + h[4]z−4 + h[5]z−5 + 

h[6]z−6 + h[7]z−7 + h[8]z−8

• H(z) can be expressed as a sum of two terms, with one 
term containing the even-indexed coefficients and the 
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other containing the odd-indexed coefficients
H(z) = (h[0] + h[2]z−2 + h[4]z−4 + h[6]z−6 + h[8]z−8)               

+ (h[1]z−1 + h[3]z−3 + h[5]z−5 + h[7]z−7)
= (h[0] + h[2]z−2 + h[4]z−4 + h[6]z−6 + h[8]z−8)                

+ z−1(h[1] + h[3]z−2 + h[5]z−4 + h[7]z−6) 8-23

Polyphase FIR Structures
• By using the notation

E0(z) = h[0] + h[2]z−1 + h[4]z−2 + h[6]z−3 + h[8]z−4

E1(z) = h[1] + h[3]z−1 + h[5]z−2 + h[7]z−3

we can express H(z) as
H(z) = E0(z2) + z−1E1(z2)

• The above decomposition is more commonly known as 
the 2-branch polyphase decomposition

© The McGraw-Hill Companies, Inc., 2007
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Polyphase FIR Structures
• In a similar manner, by grouping the terms in the original 

expression for H(z), we can reexpress it in the form
H(z) = E (z3) + z−1E (z3) + z−2E (z3)H(z) = E0(z ) + z E1(z ) + z E2(z )
where now
E0(z) = h[0] + h[3]z−1 + h[6]z−2

E1(z) = h[1] + h[4]z−1 + h[7]z−2

E2(z) = h[2] + h[5]z−1 + h[8]z−2

• The 3-branch polyphase decomposition is shown below

© The McGraw-Hill Companies, Inc., 2007
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p yp p

8-25

Polyphase FIR Structures
• In the general case, an L-branch polyphase decomposition 

of an FIR transfer function of order N is of the form

where

• The subfilters Em(zL) are also FIR filters

with h[n] = 0 for n > N

© The McGraw-Hill Companies, Inc., 2007
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Linear Phase FIR Structures
• The symmetry (or antisymmetry) property of a linear-

phase FIR filter can be exploited to reduce the number of 
multipliers into almost half of that in the direct formmultipliers into almost half of that in the direct form

• Consider a length-7 Type 1 FIR transfer function with a 
symmetric impulse response:
H(z) = h[0] + h[1]z−1 + h[2]z−2 + h[3]z−3 + h[2]z−4 + h[1]z−5 + h[0]z−6

• Rewriting H(z) in the form
H(z) = h[0](1 + z−6)+ h[1](z−1 + z−5) + h[2](z−2 + z−4)+ h[3]z−3
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Linear Phase FIR Structures
• A similar decomposition can be applied to a Type 2 FIR 

transfer function
• For example a length-8 Type 2 FIR transfer function can• For example, a length-8 Type 2 FIR transfer function can 

be expressed as :
H(z) = h[0](1 + z−7)+ h[1](z−1 + z−6) + h[2](z−2 + z−5)+ h[3](z−3 + z−4)

© The McGraw-Hill Companies, Inc., 2007
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• Note: The Type 1 linear-phase structure for a length-7 FIR 
filter requires 4 multipliers, whereas a direct form 
realization requires 7 multipliers

8-28
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Tapped Delay Lines
• In some applications, such as musical and sound 

processing, FIR filter structures of the form shown below 
are employedare employed

• The structure consists of a chain of M1 + M2 + M3 unit 
delays with taps at the input at the end of first M1 delays
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delays with taps at the input, at the end of first M1 delays, 
at the end of next M2 delays, and at the output

• Signals at these taps are then multiplied by constants α0, 
α1, α2, and α3 and added to form the output

• The structure is referred to as the tapped delay line
8-29

Basic IIR Digital Filter Structures
• We concern about causal IIR digital filters characterized 

by a real rational transfer function of z−1 or, equivalently by 
a constant coefficient difference equationa constant coefficient difference equation

• The realization of the causal IIR digital filters requires 
some form of feedback

• An N-th order IIR digital transfer function is characterized 
by 2N+1 unique coefficients, and in general, requires 
2N+1 multipliers and 2N two-input adders for 
implementation
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implementation
• Direct form IIR filters: Filter structures in which the 

multiplier coefficients are precisely the coefficients of the 
transfer function

8-30
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Direct Form IIR Filter Structures
• Consider for simplicity a 3rd-order IIR filter with a transfer 

function

• We can implement H(z) as a cascade of two filter sections 
as shown below

© The McGraw-Hill Companies, Inc., 2007
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where

8-31

Direct Form IIR Filter Structures
• The filter section can be seen to be an FIR filter and can 

be realized as shown below
w[n] = p x[n] + p x[n − 1] + p x[n − 2] + p x[n − 3]w[n] = p0x[n] + p1x[n  1] + p2x[n  2] + p3x[n  3]

• The time-domain representation of is given by
y[n] = w[n] − d1y[n − 1] − d2y[n − 2] − d3y[n − 3]

© The McGraw-Hill Companies, Inc., 2007
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Direct Form IIR Filter Structures
• A cascade of the two structures realizing and leads to the 

realization of shown below and is known as the direct 
form I structureform I structure

transpose

© The McGraw-Hill Companies, Inc., 2007
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• The direct form I structure is non-canonic as it employs 6 
delays to realize a 3rd-order transfer function

• A transpose of the direct form I structure is shown on the 
right and is called the direct form It structure

8-33

Direct Form IIR Filter Structures
• Various other non-canonic direct form structures can be 

derived by simple block diagram manipulations as shown 
belowbelow
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• Observe in the right-hand-side direct form structure, the 
signal variable at nodes        and      are the same, and 
hence the two top delays can be shared

8-34
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Cascade Form IIR Filter Structures
• By expressing the numerator and the denominator 

polynomials of the transfer function as a product of 
polynomials of lower degree, a digital filter can be realizedpolynomials of lower degree, a digital filter can be realized 
as a cascade of low-order filter sections

• Consider, for example, H(z) = P(z)/D(z) expressed as

• Examples of cascade:
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Cascade Form IIR Filter Structures
• There are a total of 36 different cascade realizations of

based on pole-zero-pairings and ordering
• Due to finite word-length effects, each such cascade 

realization behaves differently from others
• Usually, the polynomials are factored into a product of 1st-

order and 2nd-order polynomials
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• In the above, for a first-order factor α2k = β2k = 0
8-36
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Cascade Form IIR Filter Structures
• Consider the 3rd-order transfer function

• One possible realization is shown below
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Parallel Form IIR Filter Structures
• A partial-fraction expansion of the transfer function in z−1 

leads to the parallel form I structure
• Assuming simple poles the transfer function H(z) can be• Assuming simple poles, the transfer function H(z) can be 

expressed as

• In the above for a real pole α2k = γ1k = 0
• A direct partial-fraction expansion of the transfer function 

in z leads to the parallel form II structure
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eads to t e pa a e o st uctu e
• Assuming simple poles, the transfer function H(z) can be 

expressed as

• In the above for a real pole α2k = δ2k = 0
8-38
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Parallel Form IIR Filter Structures
• The two basic parallel realizations of a 3rd-order IIR 

transfer function are shown below

© The McGraw-Hill Companies, Inc., 2007
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Parallel Form IIR Filter Structures
• Example - A partial-fraction expansion of

in z−1 yields

© The McGraw-Hill Companies, Inc., 2007
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Parallel Form IIR Filter Structures
• Likewise, a partial-fraction expansion of H(z) in z yields

• The corresponding parallel form II realization is shown 
below
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Realizations of All-Pass Filter
• An M-th order real-coefficient allpass transfer function 

AM(z) is characterized by M unique coefficients as here the 
numerator is the mirror-image polynomial of thenumerator is the mirror image polynomial of the 
denominator

• A direct form realization of AM(z) requires 2M multipliers
• Objective - Develop realizations of AM(z) requiring only M 

multipliers
• An arbitrary allpass transfer function can be expressed as 

a product of 2nd order and/or 1st order allpass transfer

© The McGraw-Hill Companies, Inc., 2007
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a product of 2nd-order and/or 1st-order allpass transfer 
functions

• We consider first the minimum multiplier realization of a 
1st-order and a 2nd-order allpass transfer functions

8-42
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Digital Two-Pairs
• The LTI discrete-time systems considered so far are 

single-input, single-output structures characterized by a 
transfer functiontransfer function

• Often, such a system can be efficiently realized by 
interconnecting two-input, two-output structures, more 
commonly called two-pairs

• Figures below show two commonly used block diagram 
representations of a two-pair
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• Here Y1 and Y2 denote the two outputs, and X1 and X2
denote the two inputs, where the dependencies on the 
variable z has been omitted for simplicity

8-43

Digital Two-Pairs
• The input-output relation of a digital two-pair is given by

• In the above relation the matrix τ given by 

is called the transfer matrix of the two-pair
• It follows from the input-output relation that the transfer

© The McGraw-Hill Companies, Inc., 2007
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It follows from the input output relation that the transfer 
parameters can be found as follows:

8-44
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Digital Two-Pairs
• An alternate characterization of the two-pair is in terms of 

its chain parameters as

where the matrix Γ given by 

is called the chain matrix of the two-pair
• The relation between the transfer parameters and the 

chain parameters are given by
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chain parameters are given by

8-45

Digital Two-Pairs
• Cascade Connection - Γ-cascade

Here

© The McGraw-Hill Companies, Inc., 2007
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• As a result,

• Hence 

8-46
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Digital Two-Pairs
• Cascade Connection - τ-cascade

Here

© The McGraw-Hill Companies, Inc., 2007
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• As a result,

• Hence 

8-47

Digital Two-Pairs
• Constrained Two-Pair

• It can be shown that

© The McGraw-Hill Companies, Inc., 2007
Original PowerPoint slides prepared by S. K. Mitra 8-48



2008/6/7

25

First-Order All-Pass Filter Structures
• Consider first the 1st-order allpass transfer function given 

by

• We shall realize the above transfer function in the form a 
structure containing a single multiplier d1 as shown below

© The McGraw-Hill Companies, Inc., 2007
Original PowerPoint slides prepared by S. K. Mitra

• We express the transfer function A1(z) = Y1/ X1 in terms of 
the transfer parameters of the two-pair as

8-49

First-Order All-Pass Filter Structures
• A comparison of the above with

YieldsYields

• Substituting t11 = z−1 and t22= −z−1 in t11t22 = −1 we get
t12t21 = 1 − z−2

• There are 4 possible solutions to the above equation:
Type 1A: t11 = z−1 t22= −z−1 t12 = 1 − z−2 t21 = 1

© The McGraw-Hill Companies, Inc., 2007
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Type 1A: t11 = z , t22= z , t12 = 1  z , t21 = 1
Type 1B: t11 = z−1, t22= −z−1, t12 = 1 + z−1, t21 = 1 − z−1

Type 1At: t11 = z−1, t22= −z−1, t12 = 1, t21 = 1 − z−2

Type 1Bt: t11 = z−1, t22= −z−1, t12 = 1 − z−1, t21 = 1 + z−1

8-50
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First-Order All-Pass Filter Structures
• From the transfer parameters of this allpass we arrive at 

the input-output relations:
Y = X − z−1XY2 = X1  z X2

Y1 = z−1X1 + (1 − z2)X2 = z−1Y2 + X2

• A realization of the above two-pair is sketched below

By constraining the X Y terminal pair with the multiplier

© The McGraw-Hill Companies, Inc., 2007
Original PowerPoint slides prepared by S. K. Mitra

• By constraining the X2, Y1, terminal-pair with the multiplier 
d1, we arrive at the Type 1A allpass filter structure shown 
below:

8-51

First-Order All-Pass Filter Structures
• In a similar fashion, the other three single multiplier first-

order allpass filter structures can be developed as shown 
belowbelow 

© The McGraw-Hill Companies, Inc., 2007
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Second-Order All-Pass Structures
• A 2nd-order allpass transfer function is characterized by 2 

unique coefficients
• Hence, it can be realized using only 2 multipliersHence, it can be realized using only 2 multipliers
• Type 2 allpass transfer function:

© The McGraw-Hill Companies, Inc., 2007
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Type-3 All-Pass Structures
• Type 3 allpass transfer function:

© The McGraw-Hill Companies, Inc., 2007
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Realization Using Multiplier 
Extraction Approaches

• Example – Realize

• A 3-multiplier cascade realization of the above allpass 
transfer function is shown below

© The McGraw-Hill Companies, Inc., 2007
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Realization Using Two-Pair 
Extraction Approaches

• The algorithm is based on the development of a series of 
(m−1)th-order allpass transfer functions Am−1(z) from an 
mth-order allpass transfer function A (z) for m = M Mmth-order allpass transfer function Am(z) for m = M, M 
−1,...,1

• Let

• We use the recursion

© The McGraw-Hill Companies, Inc., 2007
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where km = Am(∞) = dm

• It has been shown earlier that AM(z) is stable if and only if

8-56
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Realization Using Two-Pair 
Extraction Approaches

• If the allpass transfer function Am−1(z) is expressed in the 
form

• then the coefficients of Am−1(z) are simply related to the 
coefficients of Am(z) through

• To develop the realization method we express Am(z) in 
terms of A (z)
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terms of Am−1(z) 
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Realization Using Two-Pair 
Extraction Approaches

• The transfer function Am(z) = Y1/X1 of the constrained two-
pair can be expressed as

• Comparing the above with

we arrive at the two-pair transfer parameters
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• Corresponding input-output relations are
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Realization Using Two-Pair 
Extraction Approaches

• A direct realization of the above equations leads to the 
following 3-multiplier two-pair 

• The transfer parameters

lead to the 4 multiplier two pair structure shown below
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lead to the 4-multiplier two-pair structure shown below
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Realization Using Two-Pair 
Extraction Approaches

• Likewise, the transfer parameters

lead to the 4-multiplier two-pair structure shown below
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Realization Using Two-Pair 
Extraction Approaches

• A 2-multiplier realization can be derived by manipulating 
the input-output  relations:

• Making use of the second equation, we can rewrite the 
equations as

Y1 = kmY2 + z−1X2

Y2 = X1 − kmz−1X2

© The McGraw-Hill Companies, Inc., 2007
Original PowerPoint slides prepared by S. K. Mitra

2 1 m 2

lead to the 2-multiplier two-pair structure, known as the 
lattice structure, shown below
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Realization Using Two-Pair 
Extraction Approaches

• Consider the two-pair described by
t11 = km, t22 = −kmz−1, t12 = (1 − km)z−1, t21 = 1 + km

• Its input-output relations are given by
Y1 = kmX1 + (1 − km)z−1X2

Y2 = (1 + km)X1 − kmz−1X2

• Define  V1 = km(X1 − z−1X2)
• We can then rewrite the input-output relations as

Y = V + z−1X and Y = X + V leading to the following 1
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Y1 = V1 + z 1X2 and Y2 = X1 + V1, leading to the following 1-
multimplier architecture
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Realization Using Two-Pair 
Extraction Approaches

• An mth-order allpass transfer function Am(z) is then 
realized by constraining any one of the two-pairs of the  
(m 1)th order allpass transfer f nction A ( )(m-1)th-order allpass transfer function Am−1(z)

• The process is repeated until the constraining transfer 
function is A0(z) = 1
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0( )
• The realization of Am(z) based on the extraction of the two-

pair lattice is shown below

8-63

Realization Using Two-Pair 
Extraction Approaches

• It follows from our earlier discussion that Am(z) is stable if 
the magnitudes of all multiplier coefficients in the realization 
are less than 1 i e |k | < 1 for m M M 1 1are less than 1, i.e., |km| < 1, for m = M, M − 1, ...,1

• The cascaded lattice allpass filter structure requires 2M 
multipliers

• A realization with M multipliers is obtained if instead the 
single multiplier two-pair is used

• Example - Realize
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Realization Using Two-Pair 
Extraction Approaches

• We first realize A3(z) in the form of a lattice two-pair 
characterized by the multiplier coefficient k3 = d3 = −0.2 and 
constrained b a 2nd order allpass A ( ) as indicated beloconstrained by a 2nd-order allpass A2(z) as indicated below

• The allpass transfer function A2(z) is of the form
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• Its coefficients are given by
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Realization Using Two-Pair 
Extraction Approaches

• Next, the allpass A2(z) is realized as a lattice two-pair 
characterized by the multiplier coefficient k2 = d2

’ = −0.2708 
and constrained b an allpass A ( ) as indicated beloand constrained by an allpass A1(z) as indicated below

• The allpass transfer function A1(z) is of the form
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• Its coefficients is given by

8-66



2008/6/7

34

Realization Using Two-Pair 
Extraction Approaches

• Finally, the allpass A1(z) is realized as a lattice two-pair 
characterized by the multiplier coefficient k1 = d1

” = −0.3574 
and constrained b an allpass A ( ) as indicated beloand constrained by an allpass A0(z) as indicated below
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Tunable Lowpass and Highpass 
Digital Filters

• We have shown earlier that the 1st-order lowpass transfer 
function

and the 1st-order highpass transfer function

are doubly-complementary pair
• Moreover they can be expressed as
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• Moreover, they can be expressed as
HLP(z) = 1/2[1 + A1(z)]
HHP(z) = 1/2[1 − A1(z)]

• where
8-68

is a 1st-order allpass transfer function
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Tunable Lowpass and Highpass 
Digital Filters

• A realization of HLP(z) and HHP(z) based on the allpass-
based decomposition is shown below

• The 1st-order allpass filter can be realized using any one of 
the 4 single-multiplier allpass structures

• In the following example the 3-dB cutoff frequency can be
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In the following example, the 3-dB cutoff frequency can be 
varied by changing the multiplier coefficient α
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Tunable Lowpass and Highpass 
Digital Filters

• Figure below shows the composite magnitude responses of 
the two filters for two different values of α
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Tunable Bandpass and Bandstop 
Digital Filters

• The 2nd-order bandpass transfer function

and the 2nd-order bandstop transfer function

also form a doubly-complementary pair
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• Thus, they can be expressed in the form
HBP(z) = 1/2[1 − A2(z)]
HBS(z) = 1/2[1 + A2(z)]

• where
8-71

Tunable Bandpass and Bandstop 
Digital Filters

• A realization of HBP(z) and HBS(z) based on the allpass-
based decomposition is shown below

• The 2nd-order allpass filter is realized using a cascaded 
single-multiplier lattice structure 
In the following structure the multiplier β controls the center
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• In the following structure, the multiplier β controls the center 
frequency and the multiplier α controls the 3-dB bandwidth
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Tunable Bandpass and Bandstop 
Digital Filters

• Figure below illustrates the parametric tuning property of the 
overall structure
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IIR Tapped Cascaded Lattice 
Structures

• Consider the cascaded lattice structure derived earlier for 
the realization of an allpass transfer function

• A typical lattice two-pair here is as shown below
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• Its input-output relations are given by
Wm(z) = Wm+1(z) − kmz−1Sm(z)
Sm+1(z) = kmWm (z) + z−1Sm(z) 8-74



2008/6/7

38

IIR Tapped Cascaded Lattice 
Structures

• From the input-output relations we derive the chain matrix 
description of the two-pair:

• The chain matrix description of the cascaded lattice 
structure is therefore
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• From the above equation we arrive at
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IIR Tapped Cascaded Lattice 
Structures

• Using the relation S1(z) = W1(z) and the relations

• The transfer function W1(z)/X1(z) is thus an all-pole function 
with the same denominator as that of the 3rd-order allpass 
function A3(z)
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IIR Tapped Cascaded Lattice 
Structures

Gray-Markel Method
• A two-step method to realize an Mth-order arbitrary IIR p y

transfer function
H(z) = PM(z)/DM(z)

• Step 1: An intermediate allpass transfer function Am(z) = 
z−MDM(z−1)/DM(z) is realized in the form of a cascaded lattice 
structure

• Step 2: A set of independent variables are summed with 
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Step set o depe de t a ab es a e su ed t
appropriate weights to yield the desired numerator PM(z)
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IIR Tapped Cascaded Lattice 
Structures

• To illustrate the method, consider the realization of a 3rd-
order transfer function

• In the first step, we form a 3rd-order allpass transfer function
A3(z) = Y1(z)/X1(z) = z−3D3(z−1)/D3(z)

• Realization of A3(z) has been illustrated earlier resulting in 
the structure shown below

© The McGraw-Hill Companies, Inc., 2007
Original PowerPoint slides prepared by S. K. Mitra

the structure shown below

8-78



2008/6/7

40

IIR Tapped Cascaded Lattice 
Structures

• Objective: Sum the independent signal variables Y1, S1, S2, 
and S3 with weights {αi} as shown below to realize the 
desired numerator P3(z)

• To this end, we first analyze the cascaded lattice structure 
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realizing and determine the transfer functions S1(z)/ X1(z), 
S2(z)/ X1(z), and S3(z)/ X1(z)
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IIR Tapped Cascaded Lattice 
Structures

• We have already shown

• From the figure it follows that

and hence

• The following relation are shown previously
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• From the last equation we get
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IIR Tapped Cascaded Lattice 
Structures

• Note: The numerator of is precisely the numerator of the 
allpass transfer function

• We now form
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• Substituting the expressions for the various transfer 
functions in the above equation we arrive at
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IIR Tapped Cascaded Lattice 
Structures

• Comparing the numerator of Y0(z)/ X1(z) with the desired 
numerator P3(z) and equating like powers of z−1 we obtain

• Solving the above equations we arrive at
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IIR Tapped Cascaded Lattice 
Structures

• Example - Consider

• The corresponding intermediate allpass transfer function is 
given by

• The allpass transfer function was realized earlier in the 
cascaded lattice form as shown below

© The McGraw-Hill Companies, Inc., 2007
Original PowerPoint slides prepared by S. K. Mitra

• where
8-83

IIR Tapped Cascaded Lattice 
Structures

• Other pertinent coefficients are:

• Substituting these coefficients in

• The final realization is as shown below
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FIR Cascaded Lattice Structures
• An arbitrary Nth-order FIR transfer function of the form

can be realized as a cascaded lattice structure as shown 
below

F fi i f ll h
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• From figure, it follows that
Xm(z) = Xm−1(z) + kmz−1Ym−1(z)
Ym(z) = kmXm−1(z) + z−1Ym−1(z)
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FIR Cascaded Lattice Structures
• In matrix form the above equations can be written as

where m = 1,2,...,N
• Denote

• Then it follows from the input-output relations of the m-th
i h
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two-pair that
Hm(z) = Hm−1(z) + kmz−1Gm−1(z)
Gm(z) = kmHm−1(z) + z−1Gm−1(z)
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FIR Cascaded Lattice Structures
• From the previous equation we observe

H1(z) = 1+ k1z−1, G1(z) = k1 + z−1
1( ) 1 1( ) 1

where we have used the facts
H0(z) = X0(z)/ X0(z) = 1

G0(z) = Y0(z)/ X0(z) = X0(z)/ X0(z) = 1
• It follows from the above that

G1(z) = z−1(zk1+ 1) = z−1H1(z−1)
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⇒ G1(z) is the mirror-image of H1(z)
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FIR Cascaded Lattice Structures
• From the input-output relations of the m-th two-pair we 

obtain for m = 2:
H2(z) = H1(z) + k2z−1G1(z)
G2(z) = k2H1(z) + z−1G1(z)

• Since H1(z) and G1(z) are 1st-order polynomials, H2(z) and 
G2(z) are 2nd-order polynomials

• Substituting G1(z) = z−1H1(z−1) in the two above equations 
we get
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we get
H2(z) = H1(z) + k2z−2H1(z−1)
G2(z) = k2H1(z) + z−2H1(z−1)

• We can write G2(z) = z−2[k2z2H1(z) + H1(z−1)] = z−2H2(z−1) 
⇒ G2(z) is the mirror-image of H2(z) 
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FIR Cascaded Lattice Structures
• In the general case, from the input-output relations of the m-

th two-pair we obtain
Hm(z) = Hm−1(z) + kmz−1Gm−1(z)
Gm(z) = kmHm−1(z) + z−1Gm−1(z)

• It can be easily shown by induction that
• Substituting G1(z) = z−1H1(z−1) in the two above equations 

we get
G (z) = z−mH (z−1) m = 1 2 N−1 N
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Gm(z) = z Hm(z ), m = 1, 2,... N 1, N
⇒ Gm(z) is the mirror-image of Hm(z) 
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FIR Cascaded Lattice Structures
• To develop the synthesis algorithm, we express Hm−1(z) and 

Gm−1(z) in terms of Hm(z) and Gm(z) for m = N,  N−1,...,2,1 
arriving at

• Substituting the expressions for 

and

© The McGraw-Hill Companies, Inc., 2007
Original PowerPoint slides prepared by S. K. Mitra

and

in the first equation we get
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FIR Cascaded Lattice Structures
• If we choose kN = pN, then HN−1(z) reduces to an FIR 

transfer function of order N−1 and can be written in the form

• where

• Continuing the above recursion algorithm, all multiplier 
coefficients of the cascaded lattice structure can be 
computed
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• Example - Consider

H4(z) = 1 + 1.2z−1 + 1.12z−2 + 0.12z−3 − 0.08z−4

• From the above, we observe k4 = p4 = −0.08
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FIR Cascaded Lattice Structures
• Using

we determine the coefficients of H3(z) 
p3’= 0.2173913, p2’= 1.2173913, p1’= 1.2173913

• As a result 
H3(z) = 1 + 1.2173913z−1 + 1.2173913z−2 + 0.2173913z−3

• Thus, k3 = p3’= 0.2173913
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3 3

• Using

we determine the coefficients of H2(z) 
p2”= 1.0, p1”= 1.0
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FIR Cascaded Lattice Structures
• As a result, H2(z) = 1 + z−1 + z−2

• From the above, we get k2 = p2”= 1From the above, we get k2 p2  1
• The final recursion yields the last multiplier coefficient 

k2 = p2”/(1+ k2) = 0.5
• The complete realization is shown below
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k1 = 0.5, k2 =1, k3 = 0.2173913, k4 = −0.08
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