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Refer to fig 4.2-2

0.7
0.6

0.5

0.1

A=28=6

10
—

Figure 4.2-2:

15

20

25



4.4

(b)
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4.10

(@) X(0) = ¥, v(n) = —1
(b) £X (w) == for all w
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4.16

(a) Yi(w) =X, wi(n)e7"" =¥ aven £(n)e= ™" The fourier transform Y3 (w) can easily be
obtained by combining the results of (b) and (e).
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