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The pole-zero patterns are as follows:
(a) Double pole at z =1 ancl a zero at z = (.
(b) Poles at = = a and z == Zerosat » =0 and z = %(a-l—
(c)] Pole at 2 = —5 and zero at z =10,
(d) Double poles at z = ael®r and z = ae” ™ and zeros at = = 0, z = *£a.
(e] Double poles at 2 = ae?™® and 2z = ae™™"® and zeros are obtained by solving the quadratic
a msum:z — 2% 4 agcaswg =10.
(f) Poles at z = re?™ and z = ae ™7™ and zeros at z = 0, and z = reos(wg — ¢)/cose.

(g) Triple pole at = = % and zeros at z = 0 and =z = % Hence there 15 a pole-zero cancellation so



that in reality there is only a double pole at = = % and a zero at z = 0.

(h) X(z) has a pole of order 9 at = = 0. For nine zeros which we find from the roots of
1
1—(=="1" = 0
(2 )
1
or, equivalently, (ij —0 =
1 T
Hence, 2, = 7€ T n=12...,k
Note the pole-zero cancellation at =z = %
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= Xi(z) = 1_—%“_1
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Y(z) = X(=)Xa(2)

14271
(1—Z2-1)(1 42271 4 2-2)

B A1+ =74 N B
142214 a2 1— 311
2 1
A = -, B=—
3 3
2 1.1
yln) = §cos-‘m+§{§j” u(n)
(d)
riin) = nuln)
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(a)
r1(n) = rUsinuwgnu(n), 0<r<1
. -1
) TSI
Xqy(z) =
() 1 — Zreoswgz—1 4 r2z-12

Zero at z = 0 and poles at z = reT0 = r{coswy & jsinuyg).

(b)

Xa(z) = - -
2(2) (1 —refwoz—1)(1 — re—jwoz—1)

1 — 2reoswgz—! 4 r2z—2

(e) Aq(z) and Xaolz) differ by a constant, which can be determined by giving the value of Xq(z)

at z = 1.



3.18

< |z| < 3,x(n)

1
3

ROC:
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3.22

(a)
Viz)[1-02:71 = X(2)[1—03271 —0.02:7%
Yiz)  (1-0171(1-02:71)
X(z) 1—0.2:-1
= 1-01=71
(h)
Viz) = X(z)[1—01271]
Y(z) 1
— = 1-0.1=
X(z)

Therefore, (a) and (b) are equivalent svstems.
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3.25

yin) = 0Tyin—1)-012yn—-2)+xn—-1)+z(n—2)
=l 2
Yiz) = Xi=
() =07t roiz2 )
rin) = nu(n)
-1
.Yl:ﬁ:l = m
=2 -3
L. _ - +"
Yiz) = (1—2=1)2(1— 552 1)(1 — Z2-2)
= System is stable
Y(z) — 176271 L1236 265 389
I e N e B R
- . 3 n 2]
y(n) = |4.76n —12.36 - 26.5(35)" +38.9(2)" | u(n)
5
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3.28

1
H(z) =
(=) 14+ ajz—1 4 agz—2
It a% —dag; = 0, there are two complex poles
—aq £ j4/das — c.:zl
Mma2 =
' 2

2
9 L .9 v dan —ﬂf
el = (=" + | ——— <1
' 2 2
= a2 < 1

If af — adas

I

0, there are two real poles

—a1 &91 — dag
2

M2

—aq + \,fﬂzl — daa 1 and
2
—aq — -.,.-"1121 — dag 1

2
== a1 —aa

A

W

1 and

N

W
,_.

aq + g

Refer to fig 3.41-1.
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Figure 3.41-1:
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3.31

z —red®)(z — re=1®)
z(z 4+ 0.8)
1 — Zreos®z~1 4 p2z72
(140821
1.8

Hiz) = C(

= C

H(z)i=1=C = =277

1 — 2reose + 2

ib) The poles are inside the unit circle, so the system 1s stable.

(e) yln)

—0.8y(n — 1)+ Cx(n) — 1.5v3Cx(n — 1) + 2.25Cx(n — 2). Refer to fig 3.46-1.
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Figure 3.46-1:
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3.35

x(n) is causal.

(a)
Xiz) = Zm(nj:_”

=0

iy XN(z) = x(0)

4
(bi1) X(=) = E:—:% = lim;oe X (2) = 00 = z(n) s not causal.
- T
(i) X(z) = UT_%EQ = lim:~oX(z) = 1 Hence X (z) can be associated wih a causal

—I.-1
BeqUence.

2
(i) Xiz) = Ez—:% = lims .o X(z) = 0. Hence X(z) can he associated wih a cansal
sequence. *
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3.37

s(n) = (%)“-?u{wr 2)
(a)
hin) = s(n)—s(in—1)
1 n—2 1 n—3
= (ﬁj ul[n+2]l—(§]l u(n+ 1)
= 3(n+2)—5dd(n+1)— 18(%)%(?1)
H(z) = 81z2—54z+4 lﬁ_ls—l
- E:_
8lz(z—1)
- o1- %:—1
H(z) has zeros at 2 = 0,1 and a pole at =z = %

(b) hin) =81d(n+2) —546(n + 1) — 18{%]”‘1:,[?1]
(¢) The svstem is not cansal, but it is stable since the pole is inside the unit circle
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3.39

Xiz)

xwin)

x(—18)
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