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8.1 Efficient computation of the DFT

 DFT formulation

N-1
X(K) =D x(MWY",  0<k<N-1
n=0
whereW, =e >
 The IDFT formulation

N-1
x(n) =%ZX(k)WN"‘“, 0O<n<N-1
k=0

» How to compute the DFT efficiently?
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8.1 Efficient computation of the DFT

» Direct computation of the DFT is basically
inefficient, primarily because it does not exploit
the symmetry and periodicity of the phase factor

Wy

Symmetry propertyV, "2 = W
Periodicity propertyW, ™ =W

2010/6/12 Introduction to Digital Signal Processing

8.1.1 Direct computation of the DFT

» For a complex-valued sequence x(n) of N points, the DFT
may be expresses as

Xg(K) = il[xR(n) cosznTkn+ X, (n)sin27[Tkn ]
Xg(K)= —El[xR(n)sinZHTkn— X, (n) cos;Z”Tkn ]

* The direct computation requires:

2N? evaluations of trigonometric functions

4N? real multiplications
4N (N —1) real additions
A number of indexing and addressing @igms
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8.1.2 Divide-and-Conquer Approach

» Decomposition of an N-point DFT into successively
smaller DFTs = N=LM

N-1

AN -1}

i}
N columm index
row index i N 0 1 ff =1
[} EiiR ] {1} ]
1 w1, 0) 1, 1

3 2,0} Z, 1}

L1

@)
Flgues 0.1 T dirnensdunal dute sy far steding the seepeenes =),
o

Bl
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8.1.2 Divide-and-Conquer Approach

* Mapping function n=Ml+m 0<p<L-1
* row-wise mapping > k=Mp+q 0<q<M -1

« column-wise mapping > "= I +mL
k=p+qL

Column-wise n=1+ml
m
l 0 I 2 M-1

0 w0} XL v(2L) - MM=1)L)

I w1} L+ 1) W2+ 1) (M=1)L+1)

2 w2y KL+ 2) M2L+2) i MM -1L+2)

-1 Wl—1) *(2L— 1) M3IL-1) +s M-y
] 6
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8.1.2 Divide-and-Conquer Approach

X(p, q) M-1L— lX(| ,m)W|\(,Mp+q)(mL+l) X(k) = X(p,q)
m=0 1=0 x(n) = x(l, m)

but

W,\(lMp+q)(mL+I) — WNMme\N,\tI"nLqWNMpIW q

where

VVNNmID =1, WNm ) :WNnﬁ_ :WI\;nq , VVNMIOI :WNp/IM :WLPI
With these simplications, it can be eapsed as
L-1
X(p,q)=Z{WN' {Z X(I, M }}
1=0 m=0
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8.1.2 Divide-and-Conquer Approach

» Total step
» First, computation of the M-point DFTs

M-1
Fa)=Y x(I,mWg", 0<q<M -1
m=0
» Second, computation of a new array

G(,q)=WF(,q), 0<I<L-1, Xq<M-:

* Finally, computatlon of the L-point DFTs
X(p,q) = ZG(I QWP, 0<p<L-1
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8.1.2 Divide-and-Conquer Approach

o Computational complexity

Complex multiplicationsN M +L+ 1
Complex additions: N M+L-
whereN = ML

» For example, suppose that N=1000 and we
select L=2 and M=500

 Direct computation: 108
» Divide-and-Conquer: 50300
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8.1.2 Divide-and-Conquer Approach

- Ex.8.1.1

e Toillustrate this computational procedure, let us consider the
computation of an N=15 point DFT. Since N=5x3=15, we select L=5
and M=3. In other words, we store the 15-point sequence x(n) column-
wise as follows:

Row 1: x (0,0 x (0)x (0,1 x (5% (0,8x (1
Row 2: x (LL0E=x ()x L, Bxx (X (L3HYx (@11
Row 3: x (2,0=x (2)x (2,2 x (7Xx (2,83x (L
Row 4: x (3,0=x (3)x (3,2 x 8x (3,)x (1
Row 5: x (4,0)= x(4) x(4,D)=x(9) x (4,2 x (14
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8.1.2 Divide-and-Conquer Approach

- Ex.8.1.1

e Compute the 3-point DFTs =» multiply each of the term F(l,q)

2010/6/12

F(0,0) F (0,1)F (0,2 Coll Col2 Col3
F@LO) F(LY)F (1,2) G(0,00 G(0,1) G (0,2
F(2,0) F(2,)F (2,2 G(L0) G@1) G (L2
F(3,0) FB)F (3,2 G(2,00 G(21) G (2.2
F(4,0) F (4,1)F (4,2 G(B0) G(B1 G (3=

G(4,0) G(41) G (4,2
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8.1.2 Divide-and-Conquer Approach

- Ex.8.1.1

e The final step is to compute the 5-point DFTs for each of the 3 columns

2010/6/12

X(0,00=X0) X O1pX @ X 03X (2
XL0=X@B) X @L1HEX 4 X @L3ayX (5
X(2,00=X®) XCL=X (7)) X (2,3X (8
X@B0=X@©O X @B1xEX 10 X B3ayX @
X(4,00=X(12) X(4D)=X13) X (42X (14
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8.1.2 Divide-and-Conquer Approach

« Ex.8.1.1
e The final step is to compute the 5-point DFTs for each of the 3 columns
»’f{
- [ ] . X(2)
— | -X(]}
. . * Xi5)
X0y
i . » Xi(%)
& X(3)
A , s
2 1]
. w - XL
-
w12

Figure 5,1.%  Computaticn of ¥ = 15 point DI by means of 3 peint and

S-point 3175,
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8.1.2 Divide-and-Conquer Approach
» Algorithm 1.

» Store the signal column-wise

e Compute the M-point DFT of each row

 Multiply the resulting array by the phase factorsWy'

e Compute the L-point DFT of each column

» Read the resulting array row-wise
2010/6/12 Introduction to Digital Signal Processing 14




Radix-2 FFT Algorithm

» Radix-2 FFT algorithm is

e N=rrr,.r,

e N=n=r=.=r, <€ riscalled the radix
 Derivation of a radix-2 algorithm

» Decimation-in-time algorithm

« M=N/2, L=2 (N=LM)
* Now the N-point DFT can be expressed as

><K%§§mw$,k= 0,L.N- 1

N/2-1 N/2-1
= Z X(I’I)WNkn + Z x(n)W,\'l‘n = Z X(szNka n Z x(2m+ 1 ’\|I<(2m+1)
n even n_odd m= 0 m o
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Radix-2 FFT Algorithm

« But WZ=W,,,, with this substitution, it can be

expressed as
N/2-1 N/2-1

X(k): Z fl(m)\Nr\Iﬁ]2+W|\ll( z fz(m)\N,\Isz
m=0 m=0
=F,(K)+W{F,(k), k=0,1,..N-1
wheref, 0 )=x (2 ) and, { ¥x @+ 1)h= O0,IN. /2

» Note that F;(k) and F,(k) are the N/2-point DFTs

2010/6/12 Introduction to Digital Signal Processing 16




Radix-2 FFT Algorithm

x[0] o—et XolO] o X[0]
i3 v . |Xelll \ /«% .

xX[2] o—= = —point o o X[1]

x4]o—w| DFT ol "

x[6] o—et

(1] o—ei

x[3] o—w %r—po'un:

%5 p—e] TEX

1[7] 0—nl

2010/6/12 Introduction to Digital Signal Processing 17

Radix-2 FFT Algorithm

« In addition, the factor Wy = -Wj
X (k) = F,(K) +W{F,(k), k=0,1,..N /2 1
X(k+%)=F1(k)—WN"F2(k), k=01..N /2

X(k) requires 20 /2D)+N [/2N? /2N /2
complex multiplications.

2010/6/12 Introduction to Digital Signal Processing 18




Radix-2 FFT Algorithm

» To be consistent with our previous notation, we

may define
G,(k)=F/(k), k=0,1,..N /2 1
G,(kK) =W\F,(k), k=0,1,..N /2 :

» Then the DFT X(k) may be expressed as
X (K) =G (K)+G,(k), k=0,1,.N /2 1
X(k+%)=Gl(k)—Gz(k), k=0,1..N /2 :

2010/6/12 Introduction to Digital Signal Processing 19
Radix-2 FFT Algorithm
*0y x(2) x(4) XN 3
o\- o & e ® a
x(1) x(3) f
- N/2 Pont
nDET
ORI F (} _ D
‘ Gk
7 “ " “ . - .o
Lo NN (% - 1)
who A o [rexal
S
G0} o - * -y
)
Figurs 8. 1.4 First step o ths decimation-in-time algorithm,
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Radix-2 FFT Algorithm

» Having performed the decimation-in-time once, we can
repeat the process for each of the sequences f;(n) and

fo(n)
u,(n) = f,(2n), n=0,1.N /4
u,(n)=f,(2n+1), n=0,1,.N /4 :
andf, 1) would yield
u,,(n) = f,(2n), n=0,1.N /4
u,,(n)=f,(2n+1), n=0,1,.N /4

2010/6/12 Introduction to Digital Signal Processing 21

Radix-2 FFT Algorithm

* By computing N/4-point DFTs, we would obtain the N/2-
point DFTs F;(k) and F,(k) from the relation

N |
Fl(k) :Vll(k) +W|\Il(/2\/12(k)1 k= 0,1, Z_ -
N . N
Rkt ) =Vaalk) WV, k=0, 1
N
Fz(k) :V21(k) +Wl\||(/2\/22(k)’ k= 0’11 Z_
N ) N
ok + ) =Vou(k) WV oK), k=01~ ]

2010/6/12 Introduction to Digital Signal Processing 22
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Radix-2 FFT Algorithm

; : Xool0] & "

x[0] o= %—point " X[q]

x[4] o—e| DFT | Xeolll -
1

2 > Xo1[0] N i

Xoy[1]

x[6] o DET

.'l‘[ t] Qe |

¥[5] o—e]

X[3] o—ai

X[7] o=t
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8.1.3 Radix-2 FFT Algorithm

TABLE 8.1 Comparison of Computational Complexity for the Direct Computation of the

DFT Versus the FFT Algorithm
Number of Complex Multiplications Complex Multiplications Speed
Points, in Direct Computation, in FFT Algorithm, Improvement
N N? (N/2)log, N Factor
. 16 4 4.0
8 64 12 53
16 256 32 8.0
32 1,024 80 12.8
64 4,096 192 213
128 16,384 448 36.6
256 65,536 1,024 64.0
512 262,144 2,304 113.8
1,024 1,048,576 5,120 204.8

2010/6/12 Introduction to Digital Signal Processing 24




Radix-2 FFT Algorithm

* N=8-point DFT.
* Four two-point DFT, two four-point DFT and finally,
one eight-point DFT

H®——— Z-pemt
W4y —— DFT S .
Combing — X{(})
2-podnt o X0l
22y Z-point DBFYs ) _{. :!
¥6) DFT I
i) i Combine | ¢ 3{(%
J-padnt A
. e X{4)
H1y———  Z-paint DET’s e X(5)
(5) DEY e o
®, Combvine —e Xi{f
2-point .
e X(7)
x(3) Z-point DELs
W —— DFT

Flgure 215 Thres stagss in the computation of an & = Spsuird DFT,
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Radix-2 FFT Algorithm

* The combination of the smaller DFTs to form the larger
DFT

Stage 1 Stage 2 Stage 3
(0 X(O)
wo >< \/ \ /
x(4) X()
—1
Wi >©< \ /
x(2) ° - X2
wi >< w3 A W
(6) u s X(3)
-1 -1
W(\
x(1) £ ] X()
wi >< v : />Q<\
x(5) £ Ws X(5)
WU 2
x(3) 5 Wi X(6)
et 1
Wy >< Wi /\ v / \
x(7) X(7)
-1 -1 —1
Figure 8.1.6 Eight-point decimation-in-time FFT algorithm.
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Radix-2 FFT Algorithm

* The basic computation, which is shown in Fig.
8.1.7, is called a “butterfly”

i . . = e A=a+ Wy b

A eR=q-W, b

Figure 8.1.7  Basic butterfly computation in the decimation-in-time FFT
algorithr.

* In general, each butterfly involves one complex
multiplication and two complex and log,N stages.

» Total numbers of complex multiplications and
additions

* (N/2)log,N and Nlog,N
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Radix-2 FFT Algorithm

Complex multiplications : (N/2) - log,N
Complex additions : N - log,N

TABLE 8.1 Comparison of Computational Complexity for the Direct Computation of the
DFT Versus the FFT Algorithm

Number of Complex Multiplications Complex Multiplications Speed
Points, in Direct Computation, in FFT Algorithm, Improvement

N N- (N/2)log; N Factor

4 - 16 4 40

8 64 12 53

16 256 32 8.0

32 1,024 80 128

64 4,096 192 213

128 16,384 448 36.6

256 65,536 1,024 64.0

512 262,144 2,304 1138

1,024 1,048,576 5,120 204.8
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8.1.3 Radix-2 FFT Algorithm

Data Data
Memory address Memary decimation 1 decimation 2
(decimal) (binary})

0 000 x(0) a0y 20y

1 001 al) x(2) >< x(4)

2 010 x2) x(4) X2y

3 011 x(3) x(6) x(6)

4 100 () (1) A1)

5 101 x(5) x(3) x(5)

6 110 W(6) x(5) >< 3) (margnp) —  (mpon2) —  (noryna)
{00y —¥ (oo — (0 00)

7 111 x(7) 7 x(7) 00 = 10 — (100
(0 10) - (oo - (01 0y
Oy = a1m - (110

Natural Bit-reversed  (100) — (001) — (001
order order (ol —- Oy - ((don
(@) (110) — (101 — (©11)
(Lin = 41y = (11
(b)
Figure 8.1.8 Shuffling of the data and bit reversal.
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Radix-2 FFT Algorithm

» Another important radix-2 FFT algorithm, called
the decimation-in-frequency algorithm

» Using divide-and-conquer approach
« M=2and L=N/2
* Thus, we obtain

N/2-1 N-1
X(K)= D XMW + > XMW"
n=0 n=N/2

N/2-1 N/2-1

= Z XMW" + WK Z x(nwL%)WNkn
n=0 n=0

2010/6/12 Introduction to Digital Signal Processing 30
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Radix-2 FFT Algorithm

« Since W"? = (1), the expression can be
rewritten as

X (K) = Z[ X(n) + (1 x(n%)}wﬁ“

n=0
Now, let us spliiX K ) into the even- abdd-numbered sample

X(2k)=Nfo(n)+ x(n+%)}v\/,§’,‘2, k= o,1,...%— 1

n=0
and
N/2-1 N - N
X(2k+1): Z |:X(n)—X(n+E):|W,\T WN/Z’ k= 0,1,...5— 1
n=0
2010/6/12 Introduction to Digital Signal Processing 31

Radix-2 FFT Algorithm

* If we define the N/2-point sequences g,(n) and
g(n) as

g,(n) = x(n)+x(n+%)

g,(n) = [x(n) - x(n+%)}wh’,‘, n=0,12, %— ;
then
N/2-1 o
X(2k)= Z 9 (n)WN/Z
n=0
N/2-1 o
X(2k+1)= z 9, (MW7,
n=0
2010/6/12 Introduction to Digital Signal Processing 32
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Radix-2 FFT Algorithm

x(0) = X(0)
x(1) —e X(2)
4-point
DIT
x(2) —e X(4)
x(3) —e X(6)
x(4) e x @ A=a+th
™.
N, .
. - R
x(5) _ X e T . e L e B {a — 26) Wy
4-point -1
DFT
x(6) —e X(5)
x(7) —e X(7)

Figure 8.1.9 First stage of the decimation-in-frequency FFT algorithm.
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8.1.3 Radix-2 FFT Algorithm

x(0) X(0y

Wi
x(1) \v / X(4)
-1

x(2) X(2)

*(3) X(6)

x(4) Xy

x(5) X(5)

A(6) X(3)

7 X(7
x(7) - ] " (O]
Figure 8.1.11 N = 8-point decimation-in-frequency FFT algorithm.
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8.1.4 Radix-4 FFT Algorithm

* If the number of data points N in the DFT is a

power of 4
« Still can use radix-2 algorithm
* Radix-4 algorithm is more efficient

3

X(p,q)=> [WF(.q) W, p=0123
1=0

whereF ( g ) is given by (8.1.16)

" 1-0,1,2,3
— mq
F(ha)= > x(, mW, N .
= q=0,1,2, ..o — -
4
2010/6/12 Introduction to Digital Signal Processing 35

8.1.4 Radix-4 FFT Algorithm

and
x(I,m) = x(4m+1)

X(p,q)=X(%p+q)

Thus, the four N/4-point DFTs obtained from (8.1.40) are
combined according to (8.1.39) to yield the N-point DFT
* Radix-4 decimation-in-time butterfly

XOq)] 1 1 1 1][WF©.q) |
XQa)| |1 -] -1 j ||WJF@La)
X2a)| |1 -1 1 -1|W*F(2,q)
X@al [T ] -1 -i]|W¥F(3,q)]

2010/6/12 Introduction to Digital Signal Processing 36
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8.1.4 Radix-4 FFT Algorithm

el
. ,_‘;fg,. B P P
‘\.\: -
L },./’ o
R e, P ﬂ,‘
e
By e
M_,,.-,v?‘"" e \n‘:\k ~~~~~~~~~
e * . -
Wy 3q,. e
3 . M
- ~,
- g
Wi
b}
Figure 8112 Basic butterfly computation in a radix-4 FFT algorithim.
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8.1.4 Radix-4 FFT Algorithm

* Itis possible to reduce the number of additions
per butterfly from 12 to 8

* By expressing the matrix of the linear transformation
in (8.1.43) as a product

X@Oaq] [1 0 1 o[t 0 1 O[WF(@©,q)]
X@La)| |01 0 —j{[1 0-1 O|WF(a)
X(2,q) |1 0 -1 0[[0 1 0 1|W¥F(2,q)
X(3,9) 01 0 | 01 0 - _W,\?qF(3,CI)_
2010/6/12 Introduction to Digital Signal Processing 38
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8.1.4 Radix-4 FFT Algorithm

x0) X(©)
0
) X(4)
x(2) X(8)
0
G X(12)
) X1y
:
x(5) \ X(5)
P .
2(6) \\( / X©)
0 > "." 0
«(7) &0 "é"’ x13)
; ‘\ ST ' ‘
«®) e 0 (‘Qé"(‘\ X@)
0 7 6”‘5 <X 0
X9) /’*'\\ X(6)
0 .
(10) X(10)
0 (G
(1) X(14)
MY X(3)
0 0
X(13) X(7)
14y & ° X1
A 9
w(15) X(15)

Figure 8.1.13  Sixteen-point radix-4 decimation-in-time algorithm with input in
2010/6/12 normal order and output in digit-reversed order. The integer multipliers shown 39
on the graph represent the exponents on Wie.

8.1.4 Radix-4 FFT Algorithm

* An radix-4 decimation-in-frequency FFT can be
obtained by selecting L=N/4. M=4,1, p=0,1,...,N/4-
1; m, g=0,1,2,3;n=(N/4)m+l; and k=4p+q.

* Choice of the parameters
» The general equation can be expressed as

N/4-1

X(p,q) = Z G(I, oW,

q=0,12,3

hereG W F ,
whereG (g =W,'F (q) {I:O,l,.--,N /4

2010/6/12 Introduction to Digital Signal Processing 40
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8.1.4 Radix-4 FFT Algorithm

» Choice of the parameters

FLa)= > X mwy, {qzo’l’z’?’

m=0

=0,1,...N /41
WenotethaX pq X (p+9 )g= 0,1,2,:

» Consequently, the N-point DFT is decimated into
four N/4-point DFTSs.

2010/6/12 Introduction to Digital Signal Processing 41

8.1.4 Radix-4 FFT Algorithm

x(0) X(0)
0 0
x(1) 0 X(4)
o 0
x(2) X(8)
0
x(3) X(12)
x(4) 0 X(1)
0
*(5) \ A 0 e X(5)
o 0
X(6) \\(/ X(9)
o ‘Wé‘ 0 ¥
we SIS
X X> < 0
X(9) [7 N 0_e X(6)
' \ ] :
x(10) X(10)
0
X1y 0 X(14)
X(12) X(3)
0
x(13) 0 X(7)
o 0
X(14) X(11)
0
x(15) X(15)

Figure 8.1.14  Sixteen-point, radix-4 decimation-in-frequency algorithm with

2010/6/12 input in normal order and output in digit-reversed order. 2
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8.1.4 Radix-4 FFT Algorithm

* Re-derive the radix-4 decimation-in-frequency
algorithm by breaking the N-point DFT into four
smaller DFTs

N-1
X (K) = D" x(nwgy"
n=0
N/4-1 N/2-1 N /41 N-1
= D XMW"+ D7 (MW" + XMW"+ D XMW"
n=0 n=N/4 n=N/2 n=3N\ /4
N/4-1 N/4-1 N
= D XMW" + W > x(n+Z)WN"“
n=0 n=0
N2 e N\ ko AN /4
HWNE D x(n+E)WN +W

n

N/4-1
x(n+37N)W,L‘”

n=0

2010/6/12 Introduction to Digital Signal Processing 43

8.1.4 Radix-4 FFT Algorithm

» From the definition of the phase factors, we have
WkN/4 _ (_j)k WNk/Z _ (_:U( W3Nk/4_ (l )(
N - ’ N - ' N -
After substitution of (8.1.49) into (848), we obtait

N/4-1

JORDY [x(n)+(—j>kx(n+%)+

k N £k 3N nk
(-1) X(n+5)+(J) X(n+7)]WN

* The relation in (8.1.50) is not an N/4-point DFT
because the phase factor depends on N and on
N/4

2010/6/12 Introduction to Digital Signal Processing 44
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8.1.4 Radix-4 FFT Algorithm

* To convert it into an N/4-point DFT

» Subdivide DFT sequence into X(4k), X(4k+1),
X(4k+2), and X(4k+3), k=0,1,...N/4-1.

Nt N N 3N n
X(4k)= Z [x(n)+ x(n+Z) + x(n+—2) + x(n+—4)]W£\NN,4
n=0
N . N N, . 3N n
X(4k+1)= " [x(n)- JX(MZ)_ X(n+3)+ JX(n+—4)]WN N4
n=0
N/4-1
X(4k + 2)= Z [X(n)—x(n +%) +x(n +ﬂ2) —x(n +3—2|)]\N,\f”\N,\‘f74
n=0
N/4-1
X(4k+3)= D" [x(n)+ jx(n+ %) —x(n +%) — jx(n +37N)]W§WNN‘“,‘4
n=0
2010/6/12 Introduction to Digital Signal Processing 45

8.1.5 Split-Radix FFT Algorithms

» Basic idea

» Use different computational methods for independent
parts of the algorithm with the objective of reducing
the # of computations

* Recall that in the radix-2 decimation-in-frequency
FFT algorithm

« Even-numbered samples of the N-point DFT are given as

N/2-1 N

X(2k)= Y [x(n)+x(n+%) k= 0,1,...3— :

* Note that thee DFT points can be obtained from an N/2-point DFT
without any additional multiplications.

2010/6/12 Introduction to Digital Signal Processing 46
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8.1.5 Split-Radix FFT Algorithms

» If we use aradix-4 decimation-in-frequency FFT
algorithm for the odd-numbered samples of the N-
point DFT

X(aks = 3 {bxo) xS0l it ) xS0 g,

X(dk+3)= > {[X(n)—X(n+%)]+ j[x(n+%)—x(n+%]}vv§"wﬁ74

n=0

* N-point DFT is decomposed into one N/2-point DFT
without additional phase factors and two N/4-point DFTs
with phase factors

2010/6/12 Introduction to Digital Signal Processing 47

8.1.5 Split-Radix FFT Algorithms

Figure 8.1.15 Length 32 split-radix FFT algorithms from paper by Duhamel

2010/6/12 (1986); reprinted with permission from the IEEE. 48
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8.1.5 Split-Radix FFT Algorithms

» At stage A of the computation for N=32, the top 16
points constitute the sequence

go(N) =x(n)+x(n+N/2), 0<n< 1t
* The next 8 points constitute the sequence
g,(nN)=x(n)—x(n+N/2), 0<n<7

» The bottom eight points constitute the sequence
]9,(n), where

9,(N)=x(n+N/4)-x(n+3N/4), O<n<
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8.1.5 Split-Radix FFT Algorithms

* For a 16-point DFT at stage A

* We decompose the computation into an eight-point,
radix-2 DFT and two four-point radix-4 DFTSs.

» Atstage B
« Top eight points constitute the sequence
9o(N) = go(N) + go(N+N/2), 0<n< 7

* and the next eight points constitute the two four-point
sequences &(n) andjg, )

0, (n) = go(n) — go(n+N/2), & X
g,(N)=g,(n+N/4)-g,(n+3N /4), 0K < ¢
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8.1.5 Split-Radix FFT Algorithms

* The bottom 16 points of stage B are in the form of
two eight-point DFTSs.

» Decomposed into
* Four-point, radix-2 DFT and four-point, radix-4 DFT

TABLE 8.2 Number of Nontrivial Real Multiplications and Additions to
Compute an N -point Complex DFT

Real Multiplications Real Additions
Radix Radix Radix Split Radix Radix Radix Split

N 2 4 8 Radix 2 4 8 Radix

16 24 20 20 152 148 148

32 88 68 408 388

64 264 208 204 196 1,032 976 972 964

128 712 ' 516 2,504 2,308

256 1,800 1,392 1,284 5,896 5,488 5,380

512 4,360 3,204 3,076 13,566 12,420 12,292

1,024 10,248 7,856 7172 30,728 28,336 27,652
Source: Extracted from Duhamel (1986).
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8.1.6 Implementation of FFT Algorithms

* Radix-2 FFT algorithm

« Perform butterfly computations of two data points
from memory

* Repeated many times
« Efficient implementation
+ Phase factors {W,} are computed first and stored

 If the number of data points is not a power of 2

» Itis a simple matter to pad the sequence with
zeros such that N=2v
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8.2 Applications of FFT Algorithms

» 8.2.1. efficient computation of the DFT of two real
sequences

* Input data may be real valued.

« After phase factors at first stage, all variables are basically
complex valued.

* Suppose that x,(n) and x,(n) are two real-valued sequences of length
N, and let x(n) be a complex-valued sequence defined as

X(N) =x(n)+ jx,(n), 0<n<N -1

e The DFT operation is linear and hence the DFT of x(n) can be
expressed as

X (k) = X, (k) + jX5(k)
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8.2.1. Efficient Computation of The DFT of Two Real
Sequences

« The sequences X;(n) and x,(n) can be expressed as
x(n) + X (n)

2
x(n) - X (n)

2]

X (n) =
X, (n) =
* Hence the DFTSs of x,(n) and x,(n) are

Xy (k) = %{DFT[ X )] +DFTLX(N]}

X,(K) = Zij{DFT[ X)) -DFT[X(n]}
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8.2.1. Efficient Computation of The DFT of Two Real
Sequences

e Recall that the DFT of x'(n)isX" (N-k). Therefore,
X,(K) = SIX(Q+ X (N-K]

xz(k)=2ij[><<k)—X*(N—k)]

* By performing a single DFT on the complex-valued
sequence x(n)

* We have obtained the DFT of the two real sequences with only
a small amount of additional computation.
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8.2.2. Efficient Computation of The DFT of 2N-point
Real Sequence

e Suppose that g(n) is a real-valued sequence of 2N
points x(n) = g(2n)
%(n)=g(2n+1)

» Thus we have subdivided the 2N-point real
sequence into two N-point ones.

» Let x(n) be the N-point complex-valued sequence
x(n) = x,(n) + jx,(n)
1 .
X, (k) =§[X(k) + X (N=K)]

xz(k)=2—1j[X(k)—X*(N—k)]
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8.2.2. Efficient Computation of The DFT of 2N-point
Real Sequence

* We must express the 2N-point DFT in terms of the
two N-point DFTSs.

N-1 N-1
G(K) =D gy + > g(2n+ IV
n=0

n=0
N-1 « K N-1 "
= Z Xl(n)Wl\T +W2N Z Xz(n)‘NI\T
n=0 n=0

Consequently,
G(K) = X, (K) +WSNX,(k), k=0,1,..N-1
G(k+N) = X,(K)-WSNX,(k), k=0,1,..N-:
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8.2.3. Use of the DDT Algorithm in Linear Filtering and
Correlation

* An important application of the FFT is in FIR linear
filtering of long data sequences

Leth(n), 0<n< M -1, be the unit sample respon$¢he FIR filter
x(n) denote the input data sequence

The block size of the FFT algorithmhs=L+M - 1

L : number of new data samples being processed Hil tée

e Assume:

* Given any value of M, and L is selected so that N is a
power of 2
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8.2.3. Use of the DDT Algorithm in Linear Filtering and
Correlation

* Overlap-save method:

» First M-1 data points of each data block are the last M-1
data points of the previous data block

» Each block contains L new data points
e N=L+M-1
» Perform FFT on each block
* Overlap-add method

* The computational method using the FFT is basically
the same

« Difference:

* N-point data blocks consist of L new data points and M-1
additional zeros
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8.2.3. Use of the DDT Algorithm in Linear Filtering and
Correlation

» Computational complexity issue
» Suppose that M=128=2 and N=2".
e The number of complex multiplications per output point for

an FFT size of N=2"is

Nlog, 2N  2"(v+1)
L N-M +1

c(v) =

_2'(v+])
2" -2
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8.2.3. Use of the DDT Algorithm in Linear Filtering and
Correlation

« Computational complexity issue

TABLE 8.3 Computational Complexity

Size of FFT ¢(v) Number of Complex
v =log, N Multiplications per Output Point
9 133
10 126
11 12.8
12 13.4
14 ) 15.1 -
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8.3 A linear Filter Approach to Computation of the DFT

» Some applications only require a selected number of
values of the DFT
* If the number is less tan log,N, then a direct computation
of the desired values is more efficient
» 8.3.1 The Goertzel algorithm
» The Goertzel algorithm exploits the periodicity of the
phase factor
* Can be expressed as a linear filtering operation
+ Since W™ =1, thus

X (k) =W'\IKN f x(m)WNkm :fx(m)wl\jkmfm)

m=0 m=0
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8.3.1 The Goertzel algorithm
+ If we define the sequence y,(n) as

N-1
Yie(n) = D x(mW ™
m=0

* Thenitis clear that y,(n) is the convolution of the finite-
duration input sequence x(n) of length N with a filter

h(n) =W, “u(n)

* The output of this filter at n=N yields the value of the DFT
at o, =27k /N

X(k) = yk(n) |n:N
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8.3.1 The Goertzel algorithm

 The filter with impulse response h,(n) has the system

function ’ 1
)=——
(2 1-W*z!

« A pole on the unit circle at @, =27k/N
* Block =» parallel bank of N single-pole filters

» We can use difference equation to compute y,(n)
recursively

Y (M =Wy (n-D+x(n), Y, €= C

* The desired output is X(k)=y,(N), fork=0,1,..N-:
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8.3.1 The Goertzel algorithm

» This leads to two-pole filters with system function of
the form

1-Wkz?
H ()= a 1, =2
1-2cos(zk N ¥ +z
s{n) N el N ‘_gf:l"
S A
u.(n) = Zcoszf\rl—kvk -1
o i Y, (n-2)+ x(n)
e 22t s
EcnaT, o yk(n) :Vk(n) _Wr\lka(n_l)
with initial condifions
V,(-D)=v,(-2)=0

Figure 83,1 Direct form 1l realization of twe-pole resonatar for computing the
DFT.
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8.3.2 The chirp-z transform Algorithm

» Suppose that we wish to compute the values of the
z-transform of x(n) at a set of points {z}

X(zk):fx(n)z;”, k=0,1,..L-

n=0

« If the contour is a circle of radius r and the z are N
equally spaces points, then
z =re” "™ k=0,1,2,..N- 1

X(z)= f[x(n)r’”]e*"z”k”m, k=0,1,2,.N-:
n=0
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8.3.2 The chirp-z transform Algorithm

» More generally, suppose that the points z in the z-
plane fall on an arc which begins at some point

7, = el
z =1, (Re"), k=01,..L-:

Unit

Ry<1 Ry>1
== ot

Imiz) Im(z)
-
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8.3.2 The chirp-z transform Algorithm

* When the points {z} in (8.3.12) are substituted into
the expression for the ztransform, we obtain

X(2)=3 X0z
i‘jx(n)(roe""‘))‘”V‘nk

n=

* Where, by definition, V = R e
* We can express (8.3.13) in the form of a convolution

nk:%[n2+k2—(k—n)2]

,  N-1 _ , ,
X(z)=V* /ZZ[X(H)(foelg")'”V'” 12\ ()2

n=0
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8.3.2 The chirp-z transform Algorithm

» Let us define a new sequence g(n) as

g(n) = x(M)(re'™) "V
Then (8.3.16) can be expressei

N-1
X (Zk) :V-kz/zz g(n)V (k-n)?/2
n=0

» It can be interpreted as the convolution of g(n) and
impulse response h(n) =V ™2

’ X(zk):v-szzy(k):%, K=0,1,..L -

y(k)=§g(n)h(k—n), k=0,1..L-1
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8.3.2 The chirp-z transform Algorithm

* The linear convolution in (8.3.21) is most efficiently
done by use of the FFT algorithm

* Let us consider the circular convolution of N-point
sequence with an M-point section of h(n)

* We should select a DFT of size: M=L+N-1, which would
yield L valid points and N-1 points corrupted by aliasing

h(n)=h(n-N+1), n=01.M-1
and compute it -point DFT via the FF§@rithm to obtairH, K

* From x(n) compute g(n) as specified by (8.3.17), pad g(n) with L-
1 zeros

» Compute its M-point DFT to yield G(k)
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8.3.2 The chirp-z transform Algorithm

» The first N-1 points of y,(n) are corrupted by aliasing
and are discarded.

* The desired values are y;(n) for N-1<n<M -1

+ Correspond to the range 0<n<L-1
« Y =y(+N-1), n=01.1-

» Alternatively, we can define a sequence h,(n) as

h(n), an<L -

hZ(n):{h(n—N—L+1), L<n<M -1

* The M-point DFT of h,(n) yields H,(K)

Y, (k) = G(K)H (k)
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8.3.2 The chirp-z transform Algorithm

» The IDFT of Y,(K) yields the sequence y,(n) for 0<n<M -1
* Now the desired values of y,(n) are in the range 0<n<L-1
y(n)=y,(n), n=01..L-.

* Finally, the complex values X(z) are computed by dividing y(k)
by h(k), k=0,1,...L-1.

» For the computation of DFT, we select
rh=R=16,=0,¢,=2r IN, and =N
2 2
V—n2/2 — e—jzmle :Cosﬂ-’: _ J si .17[’:

e The chirp filter with impulse response
n2/2 7Z'n2 . . 7Z'n2 .
h(n) =V ™ =cos—-—J sin—o-=h )+ jh 0)
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8.3.2 The chirp-z transform Algorithm
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8.4.1 Quantization Errors in the Direct Computation of
the DFT

» Given a finite-duration sequence {x(n)}, 0<sn<N-1
* The DFT of {x(n)} is defined as

N-1
X(K) =D x(MWy', k=0,1..N- 1, wherey, =e >

n=0

* The quantization errors:

e The quantization errors due to rounding are uniformly distributed
random variables in the range (-A/2,A /2) whereA = 2

e The 4N quantization errors are mutually uncorrelated

e The 4N quantization errors are uncorrelated with the sequence

{x(n)}
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8.4.1 Quantization Errors in the Direct Computation of
the DFT

« Variance of quantization errors

) AZ 2—2b
O'e =—
12 12

and the variance of the quantizatioroesrfrom the 8 multiplications

 When N is a power of 2, variance can be expressed
as

—2(b-v/2
, 2 ( )
O q = 3
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8.4.1 Quantization Errors in the Direct Computation of
the DFT

» Clearly, an upper bound on [X(K)| is
N-1
IX(K) KD Ix(O)]
n-0
If the dynamic range in addition is (1), then X Kk ) 1requires th
N-1
D Ix)|<1
n=0
o If [x(n)| is initially scaled such that |x(n)|<1 for all n

« Each point in the sequence can be divided by N to ensure that
(8.4.6) is satisfied.
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8.4.1 Quantization Errors in the Direct Computation of
the DFT
* The scaling implied by (8.4.6) is extremely severe.

« If the {x(n)} is white and then, after scaling, each value |(x(n)| of
the sequence is uniformly distributed in the range (-1/N,1/N)

o2 = (2/NYy _ 1

X 12 3N?

« And the variance of the output DFT coefficients is

1
0')2( = NO'EZﬁ

e The signal-to-noise power ratio is

2 2b
oy 2

2 7 N2
GqN
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8.4.1 Quantization Errors in the Direct Computation of
the DFT

» Scaling is responsible for reducing the SNR by N

» Scaling + quantization errors result in a total
reduction by N?

- Ex.84.1

» Use (8.4.9) to determine the number of bits required
to compute the DFT of a 1024-point sequence with a
SNR of 30dB

» Sol: The size of the sequence is N=210, Hence the
SNR is

o _ b-20
10log,—% = 10log,, 2
O,

q
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8.4.1 Quantization Errors in the Direct Computation of
the DFT

« Ex.8.4.1
e Sol. (cont.) : For an SNR of 30 dB, we have

3(2b— 20)= 30, b= 15 bit:
* Note that the 15 bits is the precision for both
multiplication and addition.
» Suppose we simply require that |x(n)|<1

* Must provide a sufficiently large dynamic range for
addition such that |X(k)|<N
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8.4.1 Quantization Errors in the Direct Computation of
the DFT

» In previous case, the variance of the sequence
{Ix(n)|} is 1/3 \
- The variance of [X(K)|is x =Nox=7
O'>2< _ g2

* Consequently, the SNRis

q

* If we repeat the computation in Ex. 8.4.1
* b=5 bits

« However, we need an additional 10 bits for
accumulator

* Precision in multiplication from 15 bits to 5 bits.
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8.4.2 Quantization Errors in the Direct Computation of
the FFT

* The FFT algorithms require significantly fewer
multiplications that the direct computation of the
DFT.

» Result in smaller quantization errors?
* No

» Let us consider the use of fixed-point arithmetic in the
computation radix-2 FFT

* N=8
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8.4.2 Quantization Errors in the Direct Computation of
the FFT

Stage 1 Stage 2 Stage 3
x(0) X(0)
wl >\/\ \/ \ /
) : X
. >< ) /
x(2) X(2)

Wy

’ -1

Wy /< ws A \W
(6) s il X3)

- -1 '\

«(1) Wi X4)
| X \/ \

WU Wl
«(5) £ ] $ / 1 X(5)
} wo M w? / \ X6
) - -
i \< w2 A . \
() —= : L/ X0

Figure 8.4.1 Decimation-in-time FFT algorithm.
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8.4.2 Quantization Errors in the Direct Computation of
the FFT

» Each butterfly computation involves one complex-
valued multiplication or four real multiplications.
* There are N/2 in the first stage of the FFT
* N/4 in the second stage

* N/8 in the third stage, and so on.
* The number of butterflies per output point is

27427 42412 % I é gyt

-2 £)1=N-1
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8.4.2 Quantization Errors in the Direct Computation of
the FFTFo

e The'putterfl 1at g the computation of X(3)
in the eight- pomt FFT\of Fig. 8.4.1 are illustrated

X@3)

° wi wi

Figure 8.4.2 Butterflies that affect the computation of X (3).
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8.4.2 Quantization Errors in the Direct Computation of
the FFT

» The quantization errors will be propagate to the
output

* They are phase shifted (phase rotated) by the phase
factor w;"

» Assume that the quantization errors in each butterfly
are uncorrelated with the errors in other butterflies

e There are 4(N-1) errors that affect the output of each point of
the FFT
* The variance of total quantization error at output is

2 2
<y§:4(N—l)A—zNA , WhereA= 2
12 3
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8.4.2 Quantization Errors in the Direct Computation of
the FFT

 Hence o; =%2‘2b

* This is exactly the same result that we obtained
for the direct computation of the DFT!

e Due to FFT doesn’t reduce the number of multiplications
required to compute a single point of the DFT

» Scaling issue
* The same SNR is obtained for the FFT

» Itis possible to devise a different scaling strategy that
is not as severe as dividing each input point by N
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8.4.2 Quantization Errors in the Direct Computation of
the FFT

 Alternative scaling strategy

max[| Xy, €) [, 1X.. O) [ max[X, K )1, 10)1]
max[| X,., €) [, X, () [ 2max(K, K )X, 1()

» We can distribute the total scaling of 1/N into
each of the stages of the FFT

o If |x(n)|<1 =» scale factor at first stage is 1/2

» After v stages we have achieved an overall scale
factor of 1/N
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8.4.2 Quantization Errors in the Direct Computation of
the FFT

» Total variance of the quantization errors at the
output of FFT is

{4(—)(—)V T+ 4( )(4)V + 4%)@2" *+ A}
—{(—)”+(—2)"2+...+—+1}

_2 {(1 (—)V}

. The signal has the variance ox =1/3N, SNR is

o?> 2N

q

2
o} 1 v
)(_ 22b:22bvl
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8.4.2 Quantization Errors in the Direct Computation of
the FFT

- Ex.6.4.2

« Determine the number of bits required to compute an FFT of
1024 points with an SNR of 30dB when the scaling is distributed
as described above.

e Sol: The size of the FFT is N=210, Hence SNR
according to (8.4.17) is
10log, 2°¥*= 30
3(2b-11)= 30, b:%l (11 bits

» This can be compared with the 15 bits required if all
the scaling is performed in the first stage of the FFT
algorithm
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