
1

Efficient Computation of the DFT:
Fast Fourier Transform Algorithms

清大電機系林嘉文
cwlin@ee.nthu.edu.tw
03-5731152

Chapter 8

8.1 Efficient computation of the DFT

• DFT formulation

• The IDFT formulation

• How to compute the DFT efficiently?

2010/6/12 Introduction to Digital Signal Processing 2

1

0

2 /

() () , 0 1

where

N
kn

N
n

j N
N

X k x n W k N

W e π

−

=

−

= ≤ ≤ −

=

∑

1

0

1
() () , 0 1

N
kn

N
k

x n X k W n N
N

−
−

=

= ≤ ≤ −∑

2

8.1 Efficient computation of the DFT

• Direct computation of the DFT is basically
inefficient, primarily because it does not exploit
the symmetry and periodicity of the phase factor
WN

2010/6/12 Introduction to Digital Signal Processing 3

/2Symmetry property:

Periodicity property:

k N k
N N

k N k
N N

W W

W W

+

+

= −

=

8.1.1 Direct computation of the DFT

• For a complex-valued sequence x(n) of N points, the DFT
may be expresses as

• The direct computation requires:

2010/6/12 Introduction to Digital Signal Processing 4

1

0

1

0

2 2
() [()cos ()sin]

2 2
() [()sin ()cos]

N

R R I
n

N

R R I
n

kn kn
X k x n x n

N N

kn kn
X k x n x n

N N

π π

π π

−

=

−

=

= +

= − −

∑

∑

2

2

2 evaluations of trigonometric functions

4 real multiplications

4 (1) real additions

A number of indexing and addressing operations

N

N

N N −

3

8.1.2 Divide-and-Conquer Approach

• Decomposition of an N-point DFT into successively
smaller DFTs � N=LM

2010/6/12 Introduction to Digital Signal Processing 5

8.1.2 Divide-and-Conquer Approach

• Mapping function
• row-wise mapping �

• column-wise mapping �

2010/6/12 Introduction to Digital Signal Processing 6

 0 -1

 0 -1

n Ml m p L

k Mp q q M

= + ≤ ≤

= + ≤ ≤

n l mL

k p qL

= +

= +

4

8.1.2 Divide-and-Conquer Approach

2010/6/12 Introduction to Digital Signal Processing 7

1 1
()()

0 0

()()

/ /

1

0

(,) (,)

but

where

1, ,

With these simplications, it can be expressed as

(,) (,)

M L
Mp q mL l

N
m l

Mp q mL l MLmp mLq Mpl lq
N N N N N

Nmp mqL mq mq Mpl pl pl
N N N L M N N M L

M
lq

N
m

X p q x l m W

W W W W W

W W W W W W W

X p q W x l m

− −
+ +

= =

+ +

−

=

=

=

= = = = =

=

∑∑

1

0

L
mq lp

M L
l

W W
−

=

  
  

  
∑ ∑

() (,)

() (,)

X k X p q

x n x l m

=

=

8.1.2 Divide-and-Conquer Approach

• Total step
• First, computation of the M-point DFTs

• Second, computation of a new array

• Finally, computation of the L-point DFTs

2010/6/12 Introduction to Digital Signal Processing 8

1

0

(,) (,) , 0 1
M

mq
M

m

F l q x l m W q M
−

=

≡ ≤ ≤ −∑

(,) (,), 0 1, 0 1lq
NG l q W F l q l L q M= ≤ ≤ − ≤ ≤ −

1

0

(,) (,) , 0 1
L

lp
L

l

X p q G l q W p L
−

=

= ≤ ≤ −∑

5

8.1.2 Divide-and-Conquer Approach

• Computational complexity

• For example, suppose that N=1000 and we
select L=2 and M=500

• Direct computation: 106

• Divide-and-Conquer: 50300

2010/6/12 Introduction to Digital Signal Processing 9

Complex multiplications: (1)

Complex additions: (2)

where

N M L

N M L

N ML

+ +

+ −

=

8.1.2 Divide-and-Conquer Approach

• Ex. 8.1.1
• To illustrate this computational procedure, let us consider the

computation of an N=15 point DFT. Since N=5x3=15, we select L=5
and M=3. In other words, we store the 15-point sequence x(n) column-
wise as follows:

2010/6/12 Introduction to Digital Signal Processing 10

Row 1: (0,0) (0) (0,1) (5) (0,2) (10)

Row 2: (1,0) (1) (1,1) (6) (1,2) (11)

Row 3: (2,0) (2) (2,1) (7) (2,2) (12)

Row 4: (3,0) (3) (3,1) (8) (3,2) (13)

Row 5: (4,0)

x x x x x x

x x x x x x

x x x x x x

x x x x x x

x x

= = =

= = =

= = =

= = =

= (4) (4,1) (9) (4,2) (14)x x x x= =

6

8.1.2 Divide-and-Conquer Approach

• Ex. 8.1.1
• Compute the 3-point DFTs � multiply each of the term F(l,q)

2010/6/12 Introduction to Digital Signal Processing 11

(0,0) (0,1) (0,2)

(1,0) (1,1) (1,2)

(2,0) (2,1) (2,2)

(3,0) (3,1) (3,2)

(4,0) (4,1) (4,2)

F F F

F F F

F F F

F F F

F F F

 Col 1 Col 2 Col 3

(0,0) (0,1) (0,2)

(1,0) (1,1) (1,2)

(2,0) (2,1) (2,2)

(3,0) (3,1) (3,2)

(4,0) (4,1) (4,2)

G G G

G G G

G G G

G G G

G G G

8.1.2 Divide-and-Conquer Approach

• Ex. 8.1.1
• The final step is to compute the 5-point DFTs for each of the 3 columns

2010/6/12 Introduction to Digital Signal Processing 12

(0,0) (0) (0,1) (1) (0,2) (2)

(1,0) (3) (1,1) (4) (1,2) (5)

(2,0) (6) (2,1) (7) (2,2) (8)

(3,0) (9) (3,1) (10) (3,2) (11)

(4,0) (12)

X X X X X X

X X X X X X

X X X X X X

X X X X X X

X X X

= = =

= = =

= = =

= = =

= (4,1) (13) (4,2) (14)X X X= =

7

8.1.2 Divide-and-Conquer Approach

• Ex. 8.1.1
• The final step is to compute the 5-point DFTs for each of the 3 columns

2010/6/12 Introduction to Digital Signal Processing 13

8.1.2 Divide-and-Conquer Approach

• Algorithm 1.

• Store the signal column-wise

• Compute the M-point DFT of each row

• Multiply the resulting array by the phase factors

• Compute the L-point DFT of each column

• Read the resulting array row-wise

2010/6/12 Introduction to Digital Signal Processing 14

lq
NW

8

Radix-2 FFT Algorithm

• Radix-2 FFT algorithm is
•
•  r is called the radix

• Derivation of a radix-2 algorithm
• Decimation-in-time algorithm

• M=N/2, L=2 (N=LM)

• Now the N-point DFT can be expressed as

2010/6/12 Introduction to Digital Signal Processing 15

1 2 3

1 2 3

...

...
v

v

N r r r r

r r r r

=

= = = =

1

0

/2 1 /2 1
2 (2 1)

 even odd 0 0

 () () , 0,1,..., 1

() () (2) (2 1)

N
kn

N
n

N N
kn kn mk k m

N N N N
n n m m

X k x n W k N

x n W x n W x m W x m W

−

=

− −
+

= =

= = −

= + = + +

∑

∑ ∑ ∑ ∑

Radix-2 FFT Algorithm

• But , with this substitution, it can be
expressed as

• Note that F1(k) and F2(k) are the N/2-point DFTs

2010/6/12 Introduction to Digital Signal Processing 16

/2 1 /2 1

1 /2 2 /2
0 0

1 2

1 2

() () ()

() (), 0,1,..., 1

where () (2) and () (2 1), 0,1,... / 2 -1

N N
km k km

N N N
m m

k
N

X k f m W W f m W

F k W F k k N

f n x n f n x n n N

− −

= =

= +

= + = −

= = + =

∑ ∑

2
/2N NW W=

9

Radix-2 FFT Algorithm

2010/6/12 Introduction to Digital Signal Processing 17

Radix-2 FFT Algorithm

• In addition, the factor

2010/6/12 Introduction to Digital Signal Processing 18

1 2

1 2

2 2

() () (), 0,1,..., / 2 1

() () (), 0,1,..., / 2 1
2

() requires 2(/ 2) / 2 / 2 / 2

complex multiplications.

k
N

k
N

X k F k W F k k N

N
X k F k W F k k N

X k N N N N

= + = −

+ = − = −

+ = +

/2k N k
N NW W+ = −

10

Radix-2 FFT Algorithm

• To be consistent with our previous notation, we
may define

• Then the DFT X(k) may be expressed as

2010/6/12 Introduction to Digital Signal Processing 19

1 1

2 2

() (), 0,1,..., / 2 1

() (), 0,1,..., / 2 1k
N

G k F k k N

G k W F k k N

= = −

= = −

1 2

1 2

() () (), 0,1,..., / 2 1

() () (), 0,1,..., / 2 1
2

X k G k G k k N

N
X k G k G k k N

= + = −

+ = − = −

Radix-2 FFT Algorithm

2010/6/12 Introduction to Digital Signal Processing 20

11

Radix-2 FFT Algorithm

• Having performed the decimation-in-time once, we can
repeat the process for each of the sequences f1(n) and
f2(n)

2010/6/12 Introduction to Digital Signal Processing 21

11 1

12 1

2

21 2

22 2

() (2), 0,1,... / 4 1

() (2 1), 0,1,... / 4 1

and () would yield

() (2), 0,1,... / 4 1

() (2 1), 0,1,... / 4 1

u n f n n N

u n f n n N

f n

u n f n n N

u n f n n N

= = −

= + = −

= = −

= + = −

Radix-2 FFT Algorithm

• By computing N/4-point DFTs, we would obtain the N/2-
point DFTs F1(k) and F2(k) from the relation

2010/6/12 Introduction to Digital Signal Processing 22

1 11 /2 12

1 11 /2 12

2 21 /2 22

2 21 /2 22

() () (), 0,1,..., 1
4

() () (), 0,1,..., 1
4 4

() () (), 0,1,..., 1
4

() () (), 0,1,..., 1
4 4

k
N

k
N

k
N

k
N

N
F k V k W V k k

N N
F k V k W V k k

N
F k V k W V k k

N N
F k V k W V k k

= + = −

+ = − = −

= + = −

+ = − = −

12

Radix-2 FFT Algorithm

2010/6/12 Introduction to Digital Signal Processing 23

8.1.3 Radix-2 FFT Algorithm

2010/6/12 Introduction to Digital Signal Processing 24

13

Radix-2 FFT Algorithm

• N=8-point DFT.
• Four two-point DFT, two four-point DFT and finally,

one eight-point DFT

2010/6/12 Introduction to Digital Signal Processing 25

Radix-2 FFT Algorithm
• The combination of the smaller DFTs to form the larger

DFT

2010/6/12 Introduction to Digital Signal Processing 26

14

Radix-2 FFT Algorithm

• The basic computation, which is shown in Fig.
8.1.7, is called a “butterfly”

• In general, each butterfly involves one complex
multiplication and two complex and log2N stages.
• Total numbers of complex multiplications and

additions

• (N/2)log2N and Nlog2N

2010/6/12 Introduction to Digital Signal Processing 27

Radix-2 FFT Algorithm

2010/6/12 Introduction to Digital Signal Processing 28

Complex multiplications : (N/2) ⋅ log2N
Complex additions : N ⋅ log2N

15

8.1.3 Radix-2 FFT Algorithm

2010/6/12 Introduction to Digital Signal Processing 29

Radix-2 FFT Algorithm

• Another important radix-2 FFT algorithm, called
the decimation-in-frequency algorithm
• Using divide-and-conquer approach
• M=2 and L=N/2

• Thus, we obtain

2010/6/12 Introduction to Digital Signal Processing 30

/2 1 1

0 /2

/2 1 /2 1
/2

0 0

() () ()

() ()
2

N N
kn kn

N N
n n N

N N
kn Nk kn

N N N
n n

X k x n W x n W

N
x n W W x n W

− −

= =

− −

= =

= +

= + +

∑ ∑

∑ ∑

16

Radix-2 FFT Algorithm

• Since , the expression can be
rewritten as

2010/6/12 Introduction to Digital Signal Processing 31

/2 1

0

/2 1

/2
0

() () (1) ()
2

Now, let us split () into the even- abd odd-numbered samples.

(2) () () , 0,1,..., 1
2 2

and

(2 1) () ()
2

N
k kn

N
n

N
kn

N
n

n
N

N
X k x n x n W

X k

N N
X k x n x n W k

N
X k x n x n W

−

=

−

=

 = + − +  

 = + + = −  

  + = − +    

∑

∑

/2 1

/2
0

, 0,1,..., 1
2

N
kn

N
n

N
W k

−

=

= −∑

/2 (1)kN k
NW = −

Radix-2 FFT Algorithm

• If we define the N/2-point sequences g1(n) and
g2(n) as

2010/6/12 Introduction to Digital Signal Processing 32

1

2

/2 1

1 /2
0

/2 1

2 /2
0

() () ()
2

() () () , 0,1,2,... 1
2 2

then

(2) ()

(2 1) ()

n
N

N
kn

N
n

N
kn

N
n

N
g n x n x n

N N
g n x n x n W n

X k g n W

X k g n W

−

=

−

=

= + +

 = − + = −  

=

+ =

∑

∑

17

Radix-2 FFT Algorithm

2010/6/12 Introduction to Digital Signal Processing 33

8.1.3 Radix-2 FFT Algorithm

2010/6/12 Introduction to Digital Signal Processing 34

18

8.1.4 Radix-4 FFT Algorithm

• If the number of data points N in the DFT is a
power of 4
• Still can use radix-2 algorithm
• Radix-4 algorithm is more efficient

2010/6/12 Introduction to Digital Signal Processing 35

3

4
0

/4 1

/4
0

(,) (,) , 0,1,2,3

where (,) is given by (8.1.16)

0,1,2,3
(,) (,) ,

0,1,2,..., 1
4

lq lp
N

l

N
mq

N
m

X p q W F l q W p

F l q

l
F l q x l m W N

q

=

−

=

 = = 

=


= 
= −

∑

∑

8.1.4 Radix-4 FFT Algorithm

• and

• Thus, the four N/4-point DFTs obtained from (8.1.40) are
combined according to (8.1.39) to yield the N-point DFT
• Radix-4 decimation-in-time butterfly

2010/6/12 Introduction to Digital Signal Processing 36

(,) (4)

(,) ()
4

x l m x m l

N
X p q X p q

= +

= +

0

2

3

(0,)(0,) 1 1 1 1

(1,)(1,) 1 1

(2,) 1 1 1 1 (2,)
(3,) 1 1 (3,)

N

q
N

q
N

q
N

W F qX q

W F qX q j j

X q W F q

X q j j W F q

    
    − −     =     − −
    

− −       

19

8.1.4 Radix-4 FFT Algorithm

2010/6/12 Introduction to Digital Signal Processing 37

8.1.4 Radix-4 FFT Algorithm

• It is possible to reduce the number of additions
per butterfly from 12 to 8

• By expressing the matrix of the linear transformation
in (8.1.43) as a product

•

2010/6/12 Introduction to Digital Signal Processing 38

0

2

3

(0,)(0,) 1 0 1 0 1 0 1 0

(1,)(1,) 0 1 0 1 0 1 0

(2,) 1 0 1 0 0 1 0 1 (2,)
(3,) 0 1 0 0 1 0 1 (3,)

N

q
N

q
N

q
N

W F qX q

W F qX q j

X q W F q

X q j W F q

      
      − −       =       −
      

−         

20

8.1.4 Radix-4 FFT Algorithm

2010/6/12 39

8.1.4 Radix-4 FFT Algorithm

• An radix-4 decimation-in-frequency FFT can be
obtained by selecting L=N/4. M=4, l, p=0,1,…,N/4-
1; m, q=0,1,2,3; n=(N/4)m+l; and k=4p+q.

• Choice of the parameters

• The general equation can be expressed as

2010/6/12 Introduction to Digital Signal Processing 40

/4 1

/4
0

(,) (,)

0,1,2,3
where (,) (,),

0,1,..., / 4 1

N
lp

N
l

lq
N

X p q G l q W

q
G l q W F l q

l N

−

=

=

=
= 

= −

∑

21

8.1.4 Radix-4 FFT Algorithm

• Choice of the parameters

• Consequently, the N-point DFT is decimated into
four N/4-point DFTs.

2010/6/12 Introduction to Digital Signal Processing 41

3

4
0

0,1,2,3
(,) (,) ,

0,1,..., / 4 1

We note that (,) (4), 0,1,2,3.

mq

m

q
F l q x l m W

l N

X p q X p q q

=

=
= 

= −
= + =

∑

8.1.4 Radix-4 FFT Algorithm

2010/6/12 42

22

8.1.4 Radix-4 FFT Algorithm

• Re-derive the radix-4 decimation-in-frequency
algorithm by breaking the N-point DFT into four
smaller DFTs

2010/6/12 Introduction to Digital Signal Processing 43

1

0

/4 1 /2 1 3 /4 1 1

0 /4 /2 3 /4

/4 1 /4 1
/4

0 0

/4 1 /4 1
/2 3 /4

0 0

() ()

() () () ()

() ()
4

3
() ()

2 4

N
kn

N
n

N N N N
kn kn kn kn

N N N N
n n N n N n N

N N
kn Nk kn

N N N
n n

N N
kN kn kN kn

N N N N
n n

X k x n W

x n W x n W x n W x n W

N
x n W W x n W

N N
W x n W W x n W

−

=

− − − −

= = = =

− −

= =

− −

= =

=

= + + +

= + +

+ + + +

∑

∑ ∑ ∑ ∑

∑ ∑

∑ ∑

8.1.4 Radix-4 FFT Algorithm

• From the definition of the phase factors, we have

• The relation in (8.1.50) is not an N/4-point DFT
because the phase factor depends on N and on
N/4

2010/6/12 Introduction to Digital Signal Processing 44

/4 /2 3 /4

/4 1

0

() , (1) , ()

After substitution of (8.1.49) into (8.1.48), we obtain

() [() () ()
4

3
(1) () () ()]

2 4

kN k Nk k Nk k
N N N

N
k

n

k k nk
N

W j W W j

N
X k x n j x n

N N
x n j x n W

−

=

= − = − =

= + − + +

− + + +

∑

23

8.1.4 Radix-4 FFT Algorithm

• To convert it into an N/4-point DFT

• Subdivide DFT sequence into X(4k), X(4k+1),
X(4k+2), and X(4k+3), k=0,1,…,N/4-1.

2010/6/12 Introduction to Digital Signal Processing 45

/4 1
0

/4
0

/4 1

/4
0

/4 1
2

/4
0

3
(4) [() () () ()]

4 2 4

3
(4 1) [() () () ()]

4 2 4

3
(4 2) [() () () ()]

4 2 4

(4 3) [() () (
4

N
kn

N N
n

N
n kn

N N
n

N
n kn

N N
n

N N N
X k x n x n x n x n W W

N N N
X k x n jx n x n jx n W W

N N N
X k x n x n x n x n W W

N N
X k x n jx n x n

−

=

−

=

−

=

= + + + + + +

+ = − + − + + +

+ = − + + + − +

+ = + + − +

∑

∑

∑
/4 1

3
/4

0

3
) ()]

2 4

N
n kn

N N
n

N
jx n W W

−

=

− +∑

8.1.5 Split-Radix FFT Algorithms

• Basic idea

• Use different computational methods for independent
parts of the algorithm with the objective of reducing
the # of computations

• Recall that in the radix-2 decimation-in-frequency
FFT algorithm

• Even-numbered samples of the N-point DFT are given as

• Note that thee DFT points can be obtained from an N/2-point DFT
without any additional multiplications.

2010/6/12 Introduction to Digital Signal Processing 46

/2 1

/2
0

(2) [() ()] , 0,1,..., 1
2 2

N
nk

N
n

N N
X k x n x n W k

−

=

= + + = −∑

24

8.1.5 Split-Radix FFT Algorithms

• If we use a radix-4 decimation-in-frequency FFT
algorithm for the odd-numbered samples of the N-
point DFT

• N-point DFT is decomposed into one N/2-point DFT
without additional phase factors and two N/4-point DFTs
with phase factors

2010/6/12 Introduction to Digital Signal Processing 47

/4 1

/4
0

/4 1
3

/4
0

3
(4 1) [() ()] [() ()]

2 4 4

3
(4 3) [() ()] [() ()]

2 4 4

N
n kn

N N
n

N
n kn

N N
n

N N N
X k x n x n j x n x n W W

N N N
X k x n x n j x n x n W W

−

=

−

=

 + = − + − + − + 
 

 + = − + + + − + 
 

∑

∑

8.1.5 Split-Radix FFT Algorithms

2010/6/12 48

25

8.1.5 Split-Radix FFT Algorithms

• At stage A of the computation for N=32, the top 16
points constitute the sequence

• The next 8 points constitute the sequence

• The bottom eight points constitute the sequence
jg2(n), where

2010/6/12 Introduction to Digital Signal Processing 49

0() () (/ 2), 0 15g n x n x n N n= + + ≤ ≤

1() () (/ 2), 0 7g n x n x n N n= − + ≤ ≤

()2() (/ 4) 3 / 4 , 0 7g n x n N x n N n= + − + ≤ ≤

8.1.5 Split-Radix FFT Algorithms

• For a 16-point DFT at stage A

• We decompose the computation into an eight-point,
radix-2 DFT and two four-point radix-4 DFTs.

• At stage B

• Top eight points constitute the sequence

• and the next eight points constitute the two four-point
sequences

2010/6/12 Introduction to Digital Signal Processing 50

'
1 0 0

'
2 0 0

() () (/ 2), 0 n 3

() (/ 4) (3 / 4), 0 n 3

g n g n g n N

g n g n N g n N

= − + ≤ ≤

= + − + ≤ ≤

'
0 0 0() () (/ 2), 0 7g n g n g n N n= + + ≤ ≤

' '
1 2() and ()g n jg n

26

8.1.5 Split-Radix FFT Algorithms

• The bottom 16 points of stage B are in the form of
two eight-point DFTs.
• Decomposed into

• Four-point, radix-2 DFT and four-point, radix-4 DFT

2010/6/12 Introduction to Digital Signal Processing 51

8.1.6 Implementation of FFT Algorithms

• Radix-2 FFT algorithm

• Perform butterfly computations of two data points
from memory

• Repeated many times

• Efficient implementation

• Phase factors are computed first and stored

• If the number of data points is not a power of 2

• It is a simple matter to pad the sequence with
zeros such that N=2v

2010/6/12 Introduction to Digital Signal Processing 52

{ }kNW

27

8.2 Applications of FFT Algorithms

• 8.2.1. efficient computation of the DFT of two real
sequences

• Input data may be real valued.

• After phase factors at first stage, all variables are basically
complex valued.

• Suppose that x1(n) and x2(n) are two real-valued sequences of length
N, and let x(n) be a complex-valued sequence defined as

• The DFT operation is linear and hence the DFT of x(n) can be
expressed as

2010/6/12 Introduction to Digital Signal Processing 53

1 2() () (), 0 -1x n x n jx n n N= + ≤ ≤

1 2() () ()X k X k jX k= +

8.2.1. Efficient Computation of The DFT of Two Real
Sequences

• The sequences x1(n) and x2(n) can be expressed as

• Hence the DFTs of x1(n) and x2(n) are

2010/6/12 Introduction to Digital Signal Processing 54

*

1

*

2

() ()
()

2
() ()

()
2

x n x n
x n

x n x n
x n

j

+
=

−
=

*
1

*
2

1
() {DFT[()] DFT[()]}

2
1

() {DFT[()] DFT[()]}
2

X k x n x n

X k x n x n
j

= +

= −

28

8.2.1. Efficient Computation of The DFT of Two Real
Sequences

• Recall that the DFT of . Therefore,

• By performing a single DFT on the complex-valued
sequence x(n)

• We have obtained the DFT of the two real sequences with only
a small amount of additional computation.

2010/6/12 Introduction to Digital Signal Processing 55

* *() is ()x n X N k−

*
1

*
2

1
() [() ()]

2
1

() [() ()]
2

X k X k X N k

X k X k X N k
j

= + −

= − −

8.2.2. Efficient Computation of The DFT of 2N-point
Real Sequence

• Suppose that g(n) is a real-valued sequence of 2N
points

• Thus we have subdivided the 2N-point real
sequence into two N-point ones.

• Let x(n) be the N-point complex-valued sequence

2010/6/12 Introduction to Digital Signal Processing 56

1

2

() (2)

() (2 1)

x n g n

x n g n

=

= +

1 2

*
1

*
2

() () ()

1
() [() ()]

2
1

() [() ()]
2

x n x n jx n

X k X k X N k

X k X k X N k
j

= +

= + −

= − −

29

8.2.2. Efficient Computation of The DFT of 2N-point
Real Sequence

• We must express the 2N-point DFT in terms of the
two N-point DFTs.

2010/6/12 Introduction to Digital Signal Processing 57

1 1
2 (2 1)

2 2
0 0

1 1

1 2 2
0 0

1 2 2

1 2 2

() (2) (2 1)

() ()

Consequently,

() () (), 0,1,..., 1

() () (), 0,1,..., 1

N N
nk n k

N N
n n

N N
nk k nk

N N N
n n

k

k

G k g n W g n W

x n W W x n W

G k X k W NX k k N

G k N X k W NX k k N

− −
+

= =

− −

= =

= + +

= +

= + = −

+ = − = −

∑ ∑

∑ ∑

8.2.3. Use of the DDT Algorithm in Linear Filtering and
Correlation

• An important application of the FFT is in FIR linear
filtering of long data sequences

• Assume:
• Given any value of M, and L is selected so that N is a

power of 2

2010/6/12 Introduction to Digital Signal Processing 58

Let (), 0 1, be the unit sample response of the FIR filter

() denote the input data sequence

The block size of the FFT algorithm is 1

: number of new data samples being processed by the fil

h n n M

x n

N L M

L

≤ ≤ −

= + −

ter

30

8.2.3. Use of the DDT Algorithm in Linear Filtering and
Correlation

• Overlap-save method:
• First M-1 data points of each data block are the last M-1

data points of the previous data block

• Each block contains L new data points
• N=L+M-1
• Perform FFT on each block

• Overlap-add method
• The computational method using the FFT is basically

the same

• Difference:
• N-point data blocks consist of L new data points and M-1

additional zeros

2010/6/12 Introduction to Digital Signal Processing 59

8.2.3. Use of the DDT Algorithm in Linear Filtering and
Correlation

• Computational complexity issue

• Suppose that M=128=27 and N=2v.

• The number of complex multiplications per output point for
an FFT size of N=2v is

2010/6/12 Introduction to Digital Signal Processing 60

2

7

log 2 2 (1)
()

1

2 (1)

2 2

v

v

v

N N v
c v

L N M

v

+
= =

− +
+

≈
−

31

8.2.3. Use of the DDT Algorithm in Linear Filtering and
Correlation

• Computational complexity issue

2010/6/12 Introduction to Digital Signal Processing 61

8.3 A linear Filter Approach to Computation of the DFT

• Some applications only require a selected number of
values of the DFT
• If the number is less tan log2N, then a direct computation

of the desired values is more efficient

• 8.3.1 The Goertzel algorithm
• The Goertzel algorithm exploits the periodicity of the

phase factor
• Can be expressed as a linear filtering operation

• Since

2010/6/12 Introduction to Digital Signal Processing 62

1, thuskN
NW − =

1 1
()

0 0

() () ()
N N

kN km k N m
N N N

m m

X k W x m W x m W
− −

− − −

= =

= =∑ ∑

32

8.3.1 The Goertzel algorithm

• If we define the sequence yk(n) as

• Then it is clear that yk(n) is the convolution of the finite-
duration input sequence x(n) of length N with a filter

• The output of this filter at n=N yields the value of the DFT
at

2010/6/12 Introduction to Digital Signal Processing 63

1
()

0

() ()
N

k n m
k N

m

y n x m W
−

− −

=

=∑

() ()kn
k Nh n W u n−=

2 /k k Nω π=

() () |k n NX k y n ==

8.3.1 The Goertzel algorithm

• The filter with impulse response hk(n) has the system
function

• A pole on the unit circle at

• Block � parallel bank of N single-pole filters

• We can use difference equation to compute yk(n)
recursively

• The desired output is

2010/6/12 Introduction to Digital Signal Processing 64

1

1
()

1k k
N

H z
W z− −

=
−

() (1) (), (1) 0k
k N k ky n W y n x n y−= − + − =

2 /k k Nω π=

() (), for 0,1,..., 1kX k y N k N= = −

33

8.3.1 The Goertzel algorithm

• This leads to two-pole filters with system function of
the form

2010/6/12 Introduction to Digital Signal Processing 65

1

1 2

1
()

1 2cos(2 /)

k
N

k

W z
H z

k N z zπ

−

− −

−
=

− +

2
() 2cos (1)

(2) ()

() () (1)

with initial condifions

(1) (2) 0

k k

k

k
k k N k

k k

k
u n v n

N
v n x n

y n v n W v n

v v

π
= −

− − +

= − −

− = − =

8.3.2 The chirp-z transform Algorithm

• Suppose that we wish to compute the values of the
z-transform of x(n) at a set of points {zk}

• If the contour is a circle of radius r and the zk are N
equally spaces points, then

2010/6/12 Introduction to Digital Signal Processing 66

1

0

() () , 0,1,..., 1
N

n
k k

n

X z x n z k L
−

−

=

= = −∑

2 /

1
2 /

0

, 0,1,2,..., 1

() [()] , 0,1,2,..., 1

j kn N
k

N
n j kn N

k
n

z re k N

X z x n r e k N

π

π
−

− −

=

= = −

= = −∑

34

8.3.2 The chirp-z transform Algorithm

• More generally, suppose that the points zk in the z-
plane fall on an arc which begins at some point

2010/6/12 Introduction to Digital Signal Processing 67

0

0 0

0 0

0 0() , 0,1,..., 1

j

j j k
k

z r e

z r e R e k L

θ

θ φ

=

= = −

8.3.2 The chirp-z transform Algorithm

• When the points {zk} in (8.3.12) are substituted into
the expression for the z-transform, we obtain

• Where, by definition,

• We can express (8.3.13) in the form of a convolution

2010/6/12 Introduction to Digital Signal Processing 68

0

1

0

1

0
0

() ()

()()

N
n

k k
n

N
j n nk

n

X z x n z

x n r e Vθ

−
−

=

−
− −

=

=

=

∑

∑

2 2 2
0

2 2 2

1
/2 /2 () /2

0
0

1
[()]

2

() [()()]
N

jk n n k n
k

n

nk n k k n

X z V x n r e V Vθ
−

− − − −

=

= + − −

= ∑

0
0

jV R e φ=

35

8.3.2 The chirp-z transform Algorithm

• Let us define a new sequence g(n) as

• It can be interpreted as the convolution of g(n) and
impulse response

•

2010/6/12 Introduction to Digital Signal Processing 69

2
0

2 2

/2
0

1
/2 () /2

0

() ()()

Then (8.3.16) can be expressed as

() ()

j n n

N
k k n

k
n

g n x n r e V

X z V g n V

θ − −

−
− −

=

=

= ∑

2 /2() nh n V=

2 /2

1

0

()
() () , 0,1,..., -1

()

() () (), 0,1,..., 1

k
k

N

n

y k
X z V y k k L

h k

y k g n h k n k L

−

−

=

= = =

= − = −∑

8.3.2 The chirp-z transform Algorithm

• The linear convolution in (8.3.21) is most efficiently
done by use of the FFT algorithm

• Let us consider the circular convolution of N-point
sequence with an M-point section of h(n)

• We should select a DFT of size: M=L+N-1, which would
yield L valid points and N-1 points corrupted by aliasing

• From x(n) compute g(n) as specified by (8.3.17), pad g(n) with L-
1 zeros

• Compute its M-point DFT to yield G(k)

2010/6/12 Introduction to Digital Signal Processing 70

1

1

() (1), 0,1,..., 1

and compute its -point DFT via the FFT algorithm to obtain ()

h n h n N n M

M H k

= − + = −

36

8.3.2 The chirp-z transform Algorithm

• The first N-1 points of y1(n) are corrupted by aliasing
and are discarded.
• The desired values are y1(n) for

• Correspond to the range

•

• Alternatively, we can define a sequence h2(n) as

• The M-point DFT of h2(n) yields H2(K)

2010/6/12 Introduction to Digital Signal Processing 71

1() (1), 0,1,..., 1y n y n N n L= + − = −

1 1N n M− ≤ ≤ −

0 1n L≤ ≤ −

2

(), 0 -1
()

(1), -1

h n n L
h n

h n N L L n M

≤ ≤
= 

− − + ≤ ≤

2 2() () ()Y k G k H k=

8.3.2 The chirp-z transform Algorithm

• The IDFT of Y2(k) yields the sequence y2(n) for

• Now the desired values of y2(n) are in the range

• Finally, the complex values X(zk) are computed by dividing y(k)
by h(k), k=0,1,…,L-1.

• For the computation of DFT, we select

• The chirp filter with impulse response

2010/6/12 Introduction to Digital Signal Processing 72

2() (), 0,1,..., 1y n y n n L= = −

0 1n L≤ ≤ −

2 2

0 0 0 0

2 2
/2 /

1, 0, 2 / , and

cos sinn j n N

r R N L N

n n
V e j

N N
π

θ φ π

π π− −

= = = = =

= = −

0 1n M≤ ≤ −

2
2 2

/2() cos sin () ()n
r i

n n
h n V j h n jh n

N N

π π
= = − = +

37

8.3.2 The chirp-z transform Algorithm

2010/6/12 Introduction to Digital Signal Processing 73

8.4.1 Quantization Errors in the Direct Computation of
the DFT

2010/6/12 Introduction to Digital Signal Processing 74

• Given a finite-duration sequence {x(n)},

• The DFT of {x(n)} is defined as

• The quantization errors:

• The quantization errors due to rounding are uniformly distributed
random variables in the range

• The 4N quantization errors are mutually uncorrelated

• The 4N quantization errors are uncorrelated with the sequence
{x(n)}

0 1n N≤ ≤ −

1
2 /

0

() () , 0,1,..., 1, where
N

kn j N
N N

n

X k x n W k N W e π
−

−

=

= = − =∑

(/ 2, / 2) where 2b−−∆ ∆ ∆ =

38

8.4.1 Quantization Errors in the Direct Computation of
the DFT

• Variance of quantization errors

• When N is a power of 2, variance can be expressed
as

2010/6/12 Introduction to Digital Signal Processing 75

2 2
2

2 2 2

2

12 12
and the variance of the quantization errors from the 4 multiplications is

4 2
3

b

e

b
q e

N

N
N

σ

σ σ

−

−

∆
= =

= = ⋅

2(/2)
2 2

3

b v

qσ
− −

=

8.4.1 Quantization Errors in the Direct Computation of
the DFT

• Clearly, an upper bound on |X(k)| is

• If |x(n)| is initially scaled such that |x(n)|<1 for all n

• Each point in the sequence can be divided by N to ensure that
(8.4.6) is satisfied.

2010/6/12 Introduction to Digital Signal Processing 76

1

0

1

0

| () | | () |

If the dynamic range in addition is (-1,1), then | ()| 1 requires that

| () | 1

N

n

N

n

X k x n

X k

x n

−

−

−

=

≤

<

<

∑

∑

39

8.4.1 Quantization Errors in the Direct Computation of
the DFT

• The scaling implied by (8.4.6) is extremely severe.
• If the { x(n)} is white and then, after scaling, each value |(x(n)| of

the sequence is uniformly distributed in the range (-1/N,1/N)

• And the variance of the output DFT coefficients is

• The signal-to-noise power ratio is

2010/6/12 Introduction to Digital Signal Processing 77

2
2

2

(2 /) 1

12 3x

N

N
σ = =

2 2 1

3X xN
N

σ σ= =

2 2

2 2

2 b
X

q N

σ
σ

=

8.4.1 Quantization Errors in the Direct Computation of
the DFT

• Scaling is responsible for reducing the SNR by N

• Scaling + quantization errors result in a total
reduction by N2

• Ex. 8.4.1

• Use (8.4.9) to determine the number of bits required
to compute the DFT of a 1024-point sequence with a
SNR of 30dB

• Sol: The size of the sequence is N=210. Hence the
SNR is

2010/6/12 Introduction to Digital Signal Processing 78

2
2 20

10 102
10 log 10 log 2bX

q

σ
σ

−=

40

8.4.1 Quantization Errors in the Direct Computation of
the DFT

• Ex. 8.4.1

• Sol. (cont.) : For an SNR of 30 dB, we have

• Note that the 15 bits is the precision for both
multiplication and addition.

• Suppose we simply require that |x(n)|<1

• Must provide a sufficiently large dynamic range for
addition such that |X(k)|<N

2010/6/12 Introduction to Digital Signal Processing 79

3(2 20) 30, 15 bits.b b− = =

8.4.1 Quantization Errors in the Direct Computation of
the DFT

• In previous case, the variance of the sequence
{|x(n)|} is 1/3

• The variance of |X(k)| is

• Consequently, the SNR is

• If we repeat the computation in Ex. 8.4.1

• b=5 bits

• However, we need an additional 10 bits for
accumulator

• Precision in multiplication from 15 bits to 5 bits.

2010/6/12 Introduction to Digital Signal Processing 80

2 2

3X x

N
Nσ σ= =
2

2
2

2 bX

q

σ
σ

=

41

8.4.2 Quantization Errors in the Direct Computation of
the FFT

• The FFT algorithms require significantly fewer
multiplications that the direct computation of the
DFT.

• Result in smaller quantization errors?

• No

• Let us consider the use of fixed-point arithmetic in the
computation radix-2 FFT

• N=8

2010/6/12 Introduction to Digital Signal Processing 81

8.4.2 Quantization Errors in the Direct Computation of
the FFT

2010/6/12 Introduction to Digital Signal Processing 82

42

8.4.2 Quantization Errors in the Direct Computation of
the FFT

• Each butterfly computation involves one complex-
valued multiplication or four real multiplications.

• There are N/2 in the first stage of the FFT

• N/4 in the second stage

• N/8 in the third stage, and so on.

• The number of butterflies per output point is

2010/6/12 Introduction to Digital Signal Processing 83

1 2 1 11 1
2 2 ... 2 1 2 [1 () ... ()]

2 2
1

2 [1 ()] 1
2

v v v v

v v N

− − − −+ + + + = + + +

= − = −

8.4.2 Quantization Errors in the Direct Computation of
the FFT

• The butterflies that affect the computation of X(3)
in the eight-point FFT of Fig. 8.4.1 are illustrated
in Fig. 8.4.2

2010/6/12 Introduction to Digital Signal Processing 84

43

8.4.2 Quantization Errors in the Direct Computation of
the FFT

• The quantization errors will be propagate to the
output

• They are phase shifted (phase rotated) by the phase
factor

• Assume that the quantization errors in each butterfly
are uncorrelated with the errors in other butterflies

• There are 4(N-1) errors that affect the output of each point of
the FFT

• The variance of total quantization error at output is

2010/6/12 Introduction to Digital Signal Processing 85

kn
NW

2 2
2 4(1) , where 2

12 3
b

q

N
Nσ −∆ ∆

= − ≈ ∆ =

8.4.2 Quantization Errors in the Direct Computation of
the FFT

• Hence

• This is exactly the same result that we obtained
for the direct computation of the DFT!
• Due to FFT doesn’t reduce the number of multiplications

required to compute a single point of the DFT

• Scaling issue

• The same SNR is obtained for the FFT

• It is possible to devise a different scaling strategy that
is not as severe as dividing each input point by N

2010/6/12 Introduction to Digital Signal Processing 86

2 22
3

b
q

N
σ −=

44

8.4.2 Quantization Errors in the Direct Computation of
the FFT

• Alternative scaling strategy

• We can distribute the total scaling of 1/N into
each of the stages of the FFT

• If |x(n)|<1 � scale factor at first stage is 1/2

• After v stages we have achieved an overall scale
factor of 1/N

2010/6/12 Introduction to Digital Signal Processing 87

1 1

1 1

max[| () |,| () |] max[| () |,| () |]

max[| () |,| () |] 2max[| () |,| () |]
n n n n

n n n n

X k X l X k X l

X k X l X k X l
+ +

+ +

≥

≤

8.4.2 Quantization Errors in the Direct Computation of
the FFT

• Total variance of the quantization errors at the
output of FFT is

• The signal has the variance . SNR is

2010/6/12 Introduction to Digital Signal Processing 88

2
2 1 2 3

2
1 2

2
2

1 1 1
4()() 4()() 4()() ... 4

12 2 4 4 4 8 4

1 1 1
() () ... 1

3 2 2 2

2 1 2
(1 () 2

3 2 3

v v v
q

v v

v b

N N N
σ − − −

− −

−

∆  = + + + + 
 

∆  = + + + + 
 

∆  = − ≈ 
 

2
2 2 1

2

1
2 2

2
b b vX

q N

σ
σ

− −= =

2 1/ 3X Nσ =

45

8.4.2 Quantization Errors in the Direct Computation of
the FFT

• Ex. 6.4.2
• Determine the number of bits required to compute an FFT of

1024 points with an SNR of 30dB when the scaling is distributed
as described above.

• Sol: The size of the FFT is N=210. Hence SNR
according to (8.4.17) is

• This can be compared with the 15 bits required if all
the scaling is performed in the first stage of the FFT
algorithm

2010/6/12 Introduction to Digital Signal Processing 89

2 1
1010 log 2 30

21
3(2 11) 30, (11 bits)

2

b v

b b

− − =

− = =

