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Chapter 8

8.1 Efficient computation of the DFT

• DFT formulation

• The IDFT formulation

• How to compute the DFT efficiently?
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8.1 Efficient computation of the DFT

• Direct computation of the DFT is basically 
inefficient, primarily because it does not exploit 
the symmetry and periodicity of the phase factor 
WN
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8.1.1 Direct computation of the DFT

• For a complex-valued sequence x(n) of N points, the DFT 
may be expresses as

• The direct computation requires:
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2  evaluations of trigonometric functions

4  real multiplications
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A number of indexing and addressing operations

N

N

N N −



3

8.1.2 Divide-and-Conquer Approach

• Decomposition of an N-point DFT into successively 
smaller DFTs � N=LM
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8.1.2 Divide-and-Conquer Approach

• Mapping function
• row-wise mapping          �

• column-wise mapping    �
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8.1.2 Divide-and-Conquer Approach
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8.1.2 Divide-and-Conquer Approach

• Total step
• First, computation of the M-point DFTs

• Second, computation of a new array

• Finally, computation of the L-point DFTs
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8.1.2 Divide-and-Conquer Approach

• Computational complexity

• For example, suppose that N=1000 and we 
select L=2 and M=500

• Direct computation: 106

• Divide-and-Conquer: 50300
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Complex multiplications: ( 1)

Complex additions:          ( 2)
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8.1.2 Divide-and-Conquer Approach

• Ex. 8.1.1
• To illustrate this computational procedure, let us consider the 

computation of an N=15 point DFT. Since N=5x3=15, we select L=5 
and M=3. In other words, we store the 15-point sequence x(n) column-
wise as follows:
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Row 1:  (0,0) (0)  (0,1) (5)  (0,2) (10)

Row 2:  (1,0) (1)  (1,1) (6)  (1,2) (11)

Row 3:  (2,0) (2)  (2,1) (7)  (2,2) (12)

Row 4:  (3,0) (3)  (3,1) (8)  (3,2) (13)

Row 5:  (4,0)
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8.1.2 Divide-and-Conquer Approach

• Ex. 8.1.1
• Compute the 3-point DFTs   � multiply each of the term F(l,q) 
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8.1.2 Divide-and-Conquer Approach

• Ex. 8.1.1
• The final step is to compute the 5-point DFTs for each of the 3 columns
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8.1.2 Divide-and-Conquer Approach

• Ex. 8.1.1
• The final step is to compute the 5-point DFTs for each of the 3 columns
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8.1.2 Divide-and-Conquer Approach

• Algorithm 1.

• Store the signal column-wise

• Compute the M-point DFT of each row

• Multiply the resulting array by the phase factors 

• Compute the L-point DFT of each column

• Read the resulting array row-wise
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Radix-2 FFT Algorithm

• Radix-2 FFT algorithm is
•
•  r is called the radix

• Derivation of a radix-2 algorithm
• Decimation-in-time algorithm

• M=N/2, L=2 (N=LM)

• Now the N-point DFT can be expressed as
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Radix-2 FFT Algorithm

• But               , with this substitution, it can be 
expressed as 

• Note that F1(k) and F2(k) are the N/2-point DFTs

2010/6/12 Introduction to Digital Signal Processing 16

/2 1 /2 1

1 /2 2 /2
0 0

1 2

1 2

( ) ( ) ( )

( ) ( ),     0,1,..., 1

where ( ) (2 ) and ( ) (2 1),   0,1,... / 2 -1

N N
km k km

N N N
m m

k
N

X k f m W W f m W

F k W F k k N

f n x n f n x n n N

− −

= =

= +

= + = −

= = + =

∑ ∑

2
/2N NW W=



9

Radix-2 FFT Algorithm
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Radix-2 FFT Algorithm

• In addition, the factor 
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Radix-2 FFT Algorithm

• To be consistent with our previous notation, we 
may define 

• Then the DFT X(k) may be expressed as
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Radix-2 FFT Algorithm
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Radix-2 FFT Algorithm

• Having performed the decimation-in-time once, we can 
repeat the process for each of the sequences f1(n) and 
f2(n)
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Radix-2 FFT Algorithm

• By computing N/4-point DFTs, we would obtain the N/2-
point DFTs F1(k) and F2(k) from the relation
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Radix-2 FFT Algorithm
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8.1.3 Radix-2 FFT Algorithm
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Radix-2 FFT Algorithm

• N=8-point DFT.
• Four two-point DFT, two four-point DFT and finally, 

one eight-point DFT
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Radix-2 FFT Algorithm
• The combination of the smaller DFTs to form the larger 

DFT
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Radix-2 FFT Algorithm

• The basic computation, which is shown in Fig. 
8.1.7, is called a “butterfly”

• In general, each butterfly involves one complex 
multiplication and two complex and log2N stages.
• Total numbers of complex multiplications and 

additions

• (N/2)log2N and Nlog2N
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Radix-2 FFT Algorithm
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Complex multiplications : (N/2) ⋅ log2N
Complex additions : N ⋅ log2N
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8.1.3 Radix-2 FFT Algorithm
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Radix-2 FFT Algorithm

• Another important radix-2 FFT algorithm, called 
the decimation-in-frequency algorithm
• Using divide-and-conquer approach
• M=2 and L=N/2

• Thus, we obtain
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Radix-2 FFT Algorithm

• Since                     , the expression can be 
rewritten as  
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Radix-2 FFT Algorithm

• If we define the N/2-point sequences g1(n) and 
g2(n) as
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Radix-2 FFT Algorithm
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8.1.3 Radix-2 FFT Algorithm
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8.1.4 Radix-4 FFT Algorithm

• If the number of data points N in the DFT is a 
power of 4
• Still can use radix-2 algorithm
• Radix-4 algorithm is more efficient
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8.1.4 Radix-4 FFT Algorithm

• and

• Thus, the four N/4-point DFTs obtained from (8.1.40) are 
combined according to (8.1.39) to yield the N-point DFT
• Radix-4 decimation-in-time butterfly
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8.1.4 Radix-4 FFT Algorithm
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8.1.4 Radix-4 FFT Algorithm

• It is possible to reduce the number of additions 
per butterfly from 12 to 8

• By expressing the matrix of the linear transformation 
in (8.1.43) as a product

•
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8.1.4 Radix-4 FFT Algorithm
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8.1.4 Radix-4 FFT Algorithm

• An radix-4 decimation-in-frequency FFT can be 
obtained by selecting L=N/4. M=4, l, p=0,1,…,N/4-
1; m, q=0,1,2,3; n=(N/4)m+l; and k=4p+q.

• Choice of the parameters

• The general equation can be expressed as
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8.1.4 Radix-4 FFT Algorithm

• Choice of the parameters

• Consequently, the N-point DFT is decimated into 
four N/4-point DFTs.
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8.1.4 Radix-4 FFT Algorithm

• Re-derive the radix-4 decimation-in-frequency 
algorithm by breaking the N-point DFT into four 
smaller DFTs
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8.1.4 Radix-4 FFT Algorithm

• From the definition of the phase factors, we have

• The relation in (8.1.50) is not an N/4-point DFT 
because the phase factor depends on N and on 
N/4
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8.1.4 Radix-4 FFT Algorithm

• To convert it into an N/4-point DFT

• Subdivide DFT sequence into X(4k), X(4k+1), 
X(4k+2), and X(4k+3), k=0,1,…,N/4-1.
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8.1.5 Split-Radix FFT Algorithms

• Basic idea

• Use different computational methods for independent 
parts of the algorithm with the objective of reducing 
the # of computations

• Recall that in the radix-2 decimation-in-frequency 
FFT algorithm

• Even-numbered samples of the N-point DFT are given as

• Note that thee DFT points can be obtained from an N/2-point DFT 
without any additional multiplications.
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8.1.5 Split-Radix FFT Algorithms

• If we use a radix-4 decimation-in-frequency FFT 
algorithm for the odd-numbered samples of the N-
point DFT

• N-point DFT is decomposed into one N/2-point DFT 
without additional phase factors and two N/4-point DFTs 
with phase factors
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8.1.5 Split-Radix FFT Algorithms
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8.1.5 Split-Radix FFT Algorithms

• At stage A of the computation for N=32, the top 16 
points constitute the sequence

• The next 8 points constitute the sequence

• The bottom eight points constitute the sequence 
jg2(n), where
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8.1.5 Split-Radix FFT Algorithms

• For a 16-point DFT at stage A

• We decompose the computation into an eight-point, 
radix-2 DFT and two four-point radix-4 DFTs.

• At stage B

• Top eight points constitute the sequence

• and the next eight points constitute the two four-point 
sequences 
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8.1.5 Split-Radix FFT Algorithms

• The bottom 16 points of stage B are in the form of 
two eight-point DFTs.
• Decomposed into

• Four-point, radix-2 DFT and four-point, radix-4 DFT
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8.1.6 Implementation of FFT Algorithms

• Radix-2 FFT algorithm

• Perform butterfly computations of two data points 
from memory

• Repeated many times

• Efficient implementation

• Phase factors           are computed  first and stored

• If the number of data points is not a power of 2

• It is a simple matter to pad the sequence with 
zeros such that N=2v
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8.2 Applications of FFT Algorithms

• 8.2.1. efficient computation of the DFT of two real 
sequences

• Input data may be real valued.

• After phase factors at first stage, all variables are basically 
complex valued.

• Suppose that x1(n) and x2(n) are two real-valued sequences of length 
N, and let x(n) be a complex-valued sequence defined as

• The DFT operation is linear and hence the DFT of x(n) can be 
expressed as
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8.2.1. Efficient Computation of The DFT of Two Real 
Sequences

• The sequences x1(n) and x2(n) can be expressed as

• Hence the DFTs of x1(n) and x2(n) are
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8.2.1. Efficient Computation of The DFT of Two Real 
Sequences

• Recall that the DFT of                        . Therefore,  

• By performing a single DFT on the complex-valued 
sequence x(n)

• We have obtained the DFT of the two real sequences with only 
a small amount of additional computation.
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8.2.2. Efficient Computation of The DFT of 2N-point 
Real Sequence

• Suppose that g(n) is a real-valued sequence of 2N
points

• Thus we have subdivided the 2N-point real 
sequence into two N-point ones.

• Let x(n) be the N-point complex-valued sequence
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8.2.2. Efficient Computation of The DFT of 2N-point 
Real Sequence

• We must express the 2N-point DFT in terms of the 
two N-point DFTs.
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8.2.3. Use of the DDT Algorithm in Linear Filtering and 
Correlation

• An important application of the FFT is in FIR linear 
filtering of long data sequences

• Assume:
• Given any value of M, and L is selected so that N is a 

power of 2
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8.2.3. Use of the DDT Algorithm in Linear Filtering and 
Correlation

• Overlap-save method:
• First M-1 data points of each data block are the last M-1 

data points of the previous data block

• Each block contains L new data points
• N=L+M-1
• Perform FFT on each block

• Overlap-add method
• The computational method using the FFT is basically 

the same

• Difference:
• N-point data blocks consist of L new data points and M-1 

additional zeros
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8.2.3. Use of the DDT Algorithm in Linear Filtering and 
Correlation

• Computational complexity issue

• Suppose that M=128=27 and N=2v.

• The number of complex multiplications per output point for 
an FFT size of N=2v is
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8.2.3. Use of the DDT Algorithm in Linear Filtering and 
Correlation

• Computational complexity issue
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8.3 A linear Filter Approach to Computation of the DFT

• Some applications only require a selected number of 
values of the DFT
• If the number is less tan log2N, then a direct computation 

of the desired values is more efficient

• 8.3.1 The Goertzel algorithm
• The Goertzel algorithm exploits the periodicity of the 

phase factor 
• Can be expressed as a linear filtering operation

• Since 
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8.3.1 The Goertzel algorithm

• If we define the sequence yk(n) as

• Then it is clear that yk(n) is the convolution of the finite-
duration input sequence x(n) of length N with a filter 

• The output of this filter at n=N yields the value of the DFT 
at 
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8.3.1 The Goertzel algorithm

• The filter with impulse response hk(n) has the system 
function

• A pole on the unit circle at 

• Block � parallel bank of N single-pole filters

• We can use difference equation to compute yk(n)
recursively

• The desired output is 

2010/6/12 Introduction to Digital Signal Processing 64

1

1
( )

1k k
N

H z
W z− −

=
−

( ) ( 1) ( ),      ( 1) 0k
k N k ky n W y n x n y−= − + − =

2 /k k Nω π=

( ) ( ),     for 0,1,..., 1kX k y N k N= = −



33

8.3.1 The Goertzel algorithm

• This leads to two-pole filters with system function of 
the form
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8.3.2 The chirp-z transform Algorithm

• Suppose that we wish to compute the values of the 
z-transform of x(n) at a set of points {zk}

• If the contour is a circle of radius r and the zk are N
equally spaces points, then
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8.3.2 The chirp-z transform Algorithm

• More generally, suppose that the points zk in the z-
plane fall on an arc which begins at some point
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8.3.2 The chirp-z transform Algorithm

• When the points {zk} in (8.3.12) are substituted into 
the expression for the z-transform, we obtain

• Where, by definition,

• We can express (8.3.13) in the form of a convolution

2010/6/12 Introduction to Digital Signal Processing 68

0

1

0

1

0
0

( ) ( )

( )( )

N
n

k k
n

N
j n nk

n

X z x n z

x n r e Vθ

−
−

=

−
− −

=

=

=

∑

∑

2 2 2
0

2 2 2

1
/2 /2 ( ) /2

0
0

1
[ ( ) ]

2

( ) [ ( )( ) ]
N

jk n n k n
k

n

nk n k k n

X z V x n r e V Vθ
−

− − − −

=

= + − −

= ∑

0
0

jV R e φ=



35

8.3.2 The chirp-z transform Algorithm

• Let us define a new sequence g(n) as

• It can be interpreted as the convolution of g(n) and 
impulse response

•
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8.3.2 The chirp-z transform Algorithm

• The linear convolution in (8.3.21) is most efficiently 
done by use of the FFT algorithm

• Let us consider the circular convolution of N-point 
sequence with an M-point section of h(n)

• We should select a DFT of size: M=L+N-1, which would 
yield L valid points and N-1 points corrupted by aliasing

• From x(n) compute g(n) as specified by (8.3.17), pad g(n) with L-
1 zeros

• Compute its M-point DFT to yield G(k)
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8.3.2 The chirp-z transform Algorithm

• The first N-1 points of y1(n) are corrupted by aliasing 
and are discarded.
• The desired values are y1(n) for

• Correspond to the range

•

• Alternatively, we can define a sequence h2(n) as

• The M-point DFT of h2(n) yields H2(K)
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8.3.2 The chirp-z transform Algorithm

• The IDFT of Y2(k) yields the sequence y2(n) for 

• Now the desired values of y2(n) are in the range 

• Finally, the complex values X(zk) are computed by dividing y(k)
by h(k), k=0,1,…,L-1.

• For the computation of DFT, we select 

• The chirp filter with impulse response
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8.3.2 The chirp-z transform Algorithm
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8.4.1 Quantization Errors in the Direct Computation of 
the DFT
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• Given a finite-duration sequence {x(n)}, 

• The DFT of {x(n)} is defined as

• The quantization errors:

• The quantization errors due to rounding are uniformly distributed 
random variables in the range  

• The 4N quantization errors are mutually uncorrelated

• The 4N quantization errors are uncorrelated with the sequence 
{x(n)}
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8.4.1 Quantization Errors in the Direct Computation of 
the DFT

• Variance of quantization errors

• When N is a power of 2, variance can be expressed 
as

2010/6/12 Introduction to Digital Signal Processing 75

2 2
2

2 2 2

2

12 12
and the variance of the quantization errors from the 4  multiplications is

4 2
3

b

e

b
q e

N

N
N

σ

σ σ

−

−

∆
= =

= = ⋅

2( /2)
2 2

3

b v

qσ
− −

=

8.4.1 Quantization Errors in the Direct Computation of 
the DFT

• Clearly, an upper bound on |X(k)| is

• If |x(n)| is initially scaled such that |x(n)|<1 for all n

• Each point in the sequence can be divided by N to ensure that 
(8.4.6) is satisfied.

2010/6/12 Introduction to Digital Signal Processing 76

1

0

1

0

| ( ) | | ( ) |

If the dynamic range in addition is (-1,1), then | ( )| 1 requires that

| ( ) | 1

N

n

N

n

X k x n

X k

x n

−

−

−

=

≤

<

<

∑

∑



39

8.4.1 Quantization Errors in the Direct Computation of 
the DFT

• The scaling implied by (8.4.6) is extremely severe.
• If the { x(n)} is white and then, after scaling, each value |(x(n)| of 

the sequence is uniformly distributed in the range (-1/N,1/N)

• And the variance of the output DFT coefficients is

• The signal-to-noise power ratio is
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8.4.1 Quantization Errors in the Direct Computation of 
the DFT

• Scaling is responsible for reducing the SNR by N

• Scaling + quantization errors result in a total 
reduction by N2

• Ex. 8.4.1

• Use (8.4.9) to determine the number of bits required 
to compute the DFT of a 1024-point sequence with a 
SNR of 30dB

• Sol: The size of the sequence is N=210. Hence the 
SNR is
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8.4.1 Quantization Errors in the Direct Computation of 
the DFT

• Ex. 8.4.1

• Sol. (cont.) : For an SNR of 30 dB, we have

• Note that the 15 bits is the precision for both 
multiplication and addition.

• Suppose we simply require that |x(n)|<1

• Must provide a sufficiently large dynamic range for 
addition such that |X(k)|<N
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3(2 20) 30,    15 bits.b b− = =

8.4.1 Quantization Errors in the Direct Computation of 
the DFT

• In previous case, the variance of the sequence 
{|x(n)|} is 1/3

• The variance of |X(k)| is

• Consequently, the SNR is

• If we repeat the computation in Ex. 8.4.1

• b=5 bits

• However, we need an additional 10 bits for 
accumulator

• Precision in multiplication from 15 bits to 5 bits.
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8.4.2 Quantization Errors in the Direct Computation of 
the FFT

• The FFT algorithms require significantly fewer
multiplications that the direct computation of the 
DFT.

• Result in smaller quantization errors?

• No

• Let us consider the use of fixed-point arithmetic in the 
computation radix-2 FFT

• N=8
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8.4.2 Quantization Errors in the Direct Computation of 
the FFT
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8.4.2 Quantization Errors in the Direct Computation of 
the FFT

• Each butterfly computation involves one complex-
valued multiplication or four real multiplications.

• There are N/2 in the first stage of the FFT

• N/4 in the second stage

• N/8 in the third stage, and so on.

• The number of butterflies per output point is
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8.4.2 Quantization Errors in the Direct Computation of 
the FFT

• The butterflies that affect the computation of X(3) 
in the eight-point FFT of Fig. 8.4.1 are illustrated 
in Fig. 8.4.2
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8.4.2 Quantization Errors in the Direct Computation of 
the FFT

• The quantization errors will be propagate to the 
output

• They are phase shifted (phase rotated) by  the phase 
factor

• Assume that the quantization errors in each butterfly 
are uncorrelated with the errors in other butterflies 

• There are 4(N-1) errors that affect the output of each point of 
the FFT

• The variance of total quantization error at output is
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8.4.2 Quantization Errors in the Direct Computation of 
the FFT

• Hence

• This is exactly the same result that we obtained 
for the direct computation of the DFT!
• Due to FFT doesn’t reduce the number of multiplications 

required to compute a single point of the DFT

• Scaling issue

• The same SNR is obtained for the FFT

• It is possible to devise a different scaling strategy that 
is not as severe as dividing each input point by N
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8.4.2 Quantization Errors in the Direct Computation of 
the FFT

• Alternative scaling strategy

• We can distribute the total scaling of 1/N into 
each of the stages of the FFT

• If |x(n)|<1 � scale factor at first stage is 1/2

• After v stages we have achieved an overall scale 
factor of 1/N
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8.4.2 Quantization Errors in the Direct Computation of 
the FFT

• Total variance of the quantization errors at the 
output of FFT is

• The signal has the variance              .  SNR is 
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8.4.2 Quantization Errors in the Direct Computation of 
the FFT

• Ex. 6.4.2
• Determine the number of bits required to compute an FFT of 

1024 points with an SNR of 30dB when the scaling is distributed 
as described above.

• Sol: The size of the FFT is N=210. Hence SNR 
according to  (8.4.17) is

• This can be compared with the 15 bits required if all 
the scaling is performed in the first stage of the FFT 
algorithm
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