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Introduction

Frequency analysis of discrete-time signals is usually
and most conveniently performed on a digital signal
processor.

To perform frequency analysis on a discrete-time signal,
we convert the time-domain sequence to an equivalent
frequency-domain representation.

{XnN} —— X4
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Frequency-Domain Sampling: The
Discrete Fourier Transform
= Before we introduce the DFT, we consider the sampling

of the Fourier transform of an aperiodic discrete-time
sequence.

= Thus, we establish the relationship between the sampled
Fourier transform and the DFT.
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Frequency-Domain Sampling and
Reconstruction of Discrete-Time Signals

= We recall that aperiodic finite-energy signals have
continuous spectra.

= Let us consider such an aperiodic discrete-time signal X(n)
with Fourier transform

o0

X(w)= > x(n)e "

Nn=—o0
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Frequency-Domain Sampling and
Reconstruction of Discrete-Time Signals

= Suppose that we sample X (@) periodically in
frequency at a spacing of 0w radius between
successive samples.

= Since X(®) is periodic with period 27, only samples in
the fundamental frequency range are necessary.
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Frequency-Domain Sampling and

Reconstruction of Discrete-Time Signals

= For convenience, we take N equidistant samples in the
interval 0< w < 27 with spacing 6w =27 /N, as
shown below:

o Frequency-domain sampling of the Fourier transform

X(w)

X(kSw)

- 0 kéw 418wt 2w
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Frequency-Domain Sampling and
Reconstruction of Discrete-Time Signals

= First, we consider the selection of N, the number of
samples in the frequency domain.

00

= If we evaluate X(w) = Z:x(n)e‘j‘"n at o=27k/N

N=—o0
= We obtain

X(Z—I\Tk) = > x(ne Z*™ k=0,1,..N-:

Nn=—o0
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Frequency-Domain Sampling and
Reconstruction of Discrete-Time Signals

= The summation above equation can be subdivided into
an infinite number of summations, where each sum
contains N terms. Thus

2r = . N-1 _
X(W K)=...+ Z x(n)e 127N +Zx(n)e—]27rkn/N
n=—N =0

2N-1

+ o x QN4 L
n=N

o IN+N-1

:Z Z X 0 ¢—jznkn/N

|=—0 n=IN
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Frequency-Domain Sampling and
Reconstruction of Discrete-Time Signals

= If we change the index in the inner summation from n to
n - IN and interchange the order of the summation, we
obtain the result

n=0

|=—0

N-1 0
x(z—l\fk) =Z{Z X(n—IN)}e"'z”"”’N fork=0,1,2,..N- 1

2010/6/12 Introduction to Digital Signal Processing 9

Frequency-Domain Sampling and
Reconstruction of Discrete-Time Signals

o0

= Thesignal X,(n) = Z Xx(n—IN) obtained by the

|=—c0

peoiodic repetition of X(N) every N samples, is clearly
periodic with fundamental period N.

= It can be expanded in a Fourier series as

N-1
x,(N)=> ce* ™ n=0,1..N-:
k=0
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Frequency-Domain Sampling and
Reconstruction of Discrete-Time Signals

= With Fourier coefficients
1 N-1 )
C == X, (Me’*"™ k=0,1..N-:
N n=0
= We can conclude that

1. .2x
== X(ZK), k=01..N—:
G = (N ) N

N-1 27[ _
X, (N)==> X(—ke**"" n=0,1,..N- 1
N& N
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Frequency-Domain Sampling and
Reconstruction of Discrete-Time Signals

= The relationship in above equation provides the
reconstruction of the periodic signal Xp(n) from the
samples of the spectrum X(w) .

= However, it does not imply that we can recover X(w)
or x(n) from the samples.

= To accomplish this, we need to consider the relationship
between X,(Nn) and Xx(n).

2010/6/12 Introduction to Digital Signal Processing 12




Frequency-Domain Sampling and
Reconstruction of Discrete-Time Signals

= Since X,(N) is the periodic extension of x(n). Itis clear
that x(n) can be recovered from X,(N) if there is no
aliasing in the time domain, that is, if XSn) is time-
limited to less than the period N of X,(N).

Original signal
....... [Tt1ee,,....
0 L

...NHHTTf_,,u”TfIM:__U”TH,_"L . No aliaSing

n__Urmnhmﬁm,H-- ~ Allasing

N
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Frequency-Domain Sampling and
Reconstruction of Discrete-Time Signals

= We conclude that the spectrum of an aperiodic discrete-
time signal with finite duration L can be exactly
recovered from its samples at frequencies

o, =27k IN, if N> L

= The procedure is to compute X,(N), N=0,1,..N—:

X (n), 0<n<N-1
then  x(n)= ()
0, elsewhere

and finally, X (@) can be computed.
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Frequency-Domain Sampling and
Reconstruction of Discrete-Time Signals

As in the case of continuous-time signals, it is possible to
express the spectrum X(w) directly in terms of its
samples X(2zk /N), k=0,1,...N — .. To derive such an
interpolation formula for X (w) , we assume that N > L.

Since x(n)=x,(n) for 0<n<N-1

N-1 _
x(n) :iz X(gk)eﬁ”"”’”, 0<n<N-1
N i3 N
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Frequency-Domain Sampling and
Reconstruction of Discrete-Time Signals

o0

If we use X(w) = Z x(n)e " and substitute for x(n),
we obtain n=—co

N-1 N-1
X(w):Z[% X(%k)ejZHKn/N:|e—jwn

_V'x T K {i N_le—j(a)—Zﬂk/N)n:|
k=0 N N =
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Frequency-Domain Sampling and
Reconstruction of Discrete-Time Signals

= The inner summation term in the brackets of above

represents the basic interpolation function  shifted
by 27k /N in frequency. Indeed, if we define

: Nz_le‘j““ _11e™

P(w = i
(@) = N & N 1-e
Nsm(a)/2)
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Frequency-Domain Sampling and
Reconstruction of Discrete-Time Signals

= Then, we can obtain
X (@) = ZX(—k)P( —zk) N>L

= The interpolation function P(@) is not the familiar (sin@)/6
but instead, it is a periodic counterpart of it, and it is
due to the periodic nature of X(w).
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Frequency-Domain Sampling and
Reconstruction of Discrete-Time Signals

= The phase shift reflects the fact that the signal x(n) is a
causal, finite-duration sequence of length N. The function

(sinwN /2)/ (N sing /2); is plotted for N = 5.
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Frequency-Domain Sampling and
Reconstruction of Discrete-Time Signals

= We observe that the function P(w) has the property

1, k=0
P k) =
N 0, k=1,2,..N-:

= Consequently, the interpolation formula gives exactly the
sample values X (27k /N) for o = 27k /N. At all other
frequencies, the formula provides a properly weighted
linear combination of the original spectral samples.
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Frequency-Domain Sampling and
Reconstruction of Discrete-Time Signals

Example : Consider the signal x(n)=a"u(n), O<a<1
the spectrum of this signal is sampled at frequencies

o, =27k /N fork=0,1,..N-1

Determine the reconstructed spectra for a = 0.8 when
N=5 and N=50.

Solution : The Fourier transform of the sequence Xx(n) is

1

X ) = 3 ane_j”nz—.
(@) ; 1-ae
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Frequency-Domain Sampling and
Reconstruction of Discrete-Time Signals

Suppose that we sample X (@) at N equidistant
frequencies @, =27k /N, k=0,1,...N - 1Thus we
obtain the spectral samples

B 1
- 1— gg j27kIN

X(a)k)zX(sz) k=0,1,..N—:

The periodic sequence Xp(n), corresponding to the
frequency samples X (2zk /N), k= 0,1,...N — . can be
obtained.
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Frequency-Domain Sampling and
Reconstruction of Discrete-Time Signals

0

= Hence Xp(n) = Z X(n—IN) = Z a" N

| =—0

where the factor 1/ (1-a") represents the effect of
aliasing. Since 0< a< 1, the aliasing error tends toward
zeroas N — oo .
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Frequency-Domain Sampling and
Reconstruction of Discrete-Time Signals

= For a=0.8, the sequence X(n) and its spectrum X (w)
are shown below (a)(b):

1X(w)l

x(n)
1.0

mﬁmm_ ,Z

0 50
(a)
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Frequency-Domain Sampling and
Reconstruction of Discrete-Time Signals

= The aliased sequences X,(n) forN =5 andN = 5( and
the corresponding spectral samples are shown below

(©)(d).

.
=

H =4
K=§
] B I N S
[T b 1
72!
Hmy & *‘;3
L N
=
Whm - et T .
El £ Ed
(e
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Frequency-Domain Sampling and
Reconstruction of Discrete-Time Signals

= We note that the aliasing effects are negligible for N=50.

= If we define the aliased finite-duration sequence Xx(n) as
- X,(n), 0<n<N-1
0, otherwise

= Then its Fourier transform is

R N-1 N-1 1 1— a‘N e jon
A i _ioN
X(w) =) K(n)e " => x (ne! =—. —
n=0 n=0 1_ a 1_ ae
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Frequency-Domain Sampling and
Reconstruction of Discrete-Time Signals

Note that although X (@) = X (@) , the sample values at
o, =27k I N are identical. That is,

1 1-a"
1-a" 1-ae 2™

X(%k): :X(%k)
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The Discrete Fourier Transform (DFT)

The development in the preceding section is concerned
with the frequency-domain sampling of an aperiodic finite-
energy sequence X(n).

In general, the equally spaced frequency samples
X(27zk/N), k=0,1,..N-1

do not uniquely represent the original sequence X(n)
when x(n) has infinite duration.
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The Discrete Fourier Transform (DFT)

Instead, the frequency samples
X(2zk/N), k=0,1,...N- 1

correspond to a periodic sequence Xp(n) of period N,
where X,(N) is an aliased version of X(N), as indicated
by the relation in the preceding equation, that is,

0

x,(N) =" x(n—IN).

|=—c0
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The Discrete Fourier Transform (DFT)

When the sequence x(n) has a finite duration of length
L < N, then X,(Nn) is simply a periodic repetition of x(n),
where Xp(n) over a single period is given as

x(n), 0<n<L-1
Xp(n):{ 0 L <
, <n<N-1

Consequently, the frequency samples
X(2zk IN), k=0,1,...N- 1

uniquely represent the finite-duration sequence X(n).

2010/6/12 Introduction to Digital Signal Processing 30

15



The Discrete Fourier Transform (DFT)

Since x(n) = X,(n) over a single period (padded by N-L
zeros), the original finite-duration sequence x(n) can be
obtained from the frequency samples { X(2 zk/ N)} by
means of the formula

N-1

X, (n) :%Z X(%k)ejz”k”’“‘, n=0,1..N-1
k=0
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The Discrete Fourier Transform (DFT)

Note that zero padding does not provide any additional
information about the spectrum X(w) of the sequence

{X(n}.

In summary, a finite-duration sequence X(Nn) of length L

has a Fourier transform
L-1
X(w)=) x(ne'", 0<w<2r
n=0
Where the upper and lower indices in the summation

reflect the fact that x(n) =0 outside the range 0<n<L-1.
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The Discrete Fourier Transform (DFT)

When we sample X (w) at equally spaced frequencies
o, =27k IN, k=0,1,2,..N- 1, where X

the resultant samples are

X (k) = X(Z%k) = 3 x(nye iz

n=

[N

N-1 _
X(k)=> x(ne "™ k=0,1,2,..N- !
n=0
where for convenience, the upper index in the sum has
been increased from L-1 to N-1 since x(n)=0 for n>L .
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The Discrete Fourier Transform (DFT)

The relation
L-1 _
X (K) = X (2zk) _ Z X(n)e—JZHKn/N
n=0

X (K) = ix(n)e“'z”"”’“, k=0,1,2,..N—

[iny

>

is called the discrete Fourier transform (DFT)  of x(n).
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The Discrete Fourier Transform (DFT)

To summarize, the formulas for the DFT and IDFT are

N-—
DFT:  X(k)=> x(n)e "™ k=0,1,2,..N- 1

=0

=

>

1 N-1 )
IDFT: X(N)==> X(k)e’**™, n=0,1,2,.N-
N i
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The Discrete Fourier Transform (DFT)

Example : A finite-duration sequence of length L is given
1, 0<n<L-1

as x(n) = ]
0, otherwise

Determine the N-point DFT of this sequence for N > L.
Solution : The Fourier transform of this sequence is

L-1 _ L1
X(w) =) x(ne’"=> e’
n=0 n=0

_1- e‘jf’L _SIN@L 12) juyr2
1-e'  sin/2)
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The Discrete Fourier Transform (DFT)

= The magnitude and phase of X(w) are illustrated in the
below for L=10.

]
fn ¢
T /
s / .

y \ / Magnitude
ab % i

u ‘f\uf.‘ YNNI /\ff\j A

i
= B

2

NN \ [\P“a[“‘a . Phase
R
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The Discrete Fourier Transform (DFT)

= The N-point DFT of x(n) is simply X (w) evaluated at the
set of N equally spaced frequencies

o, =27k /N, k=01,..N- 1

= Hence
1_ @ i2rkN
X(k) ZW, k= 0,1,,N -]
_ sin(zkL /N )e—jzrk(L—l)/N
sin(zk /N)
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The Discrete Fourier Transform (DFT)

= If N is selected such that N=L, then the DFT becomes

L, k=0

x(k)z{o, k=1,2,..L—
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The Discrete Fourier Transform (DFT)

N=50 N=100
)

10
8
6 N=50

4

d (@) o (b)
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The DFT as a Linear Transformation

The formulas for the DFT and IDFT may be expressed

as -

X(K)=> x(MWL", k=0,1,2,..N- 1
=0

=

>
=

x(n) = X (KW, n=0,1,2,..N-

k=0
whereW, = e 1"/

Z|-

which is an Nt root of unity.
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The DFT as a Linear Transformation

We note that the computation of each point of the DFT
can be accomplished by N complex multiplications and
(N-1) complex additions.

Hence the N-point DFT values can be computed in a
total of N2 complex multiplications and N(N-1) complex
additions.

It is instructive to view the DFT and IDFT as linear
transformations on sequences {X N} and { X(K)} ,
respectively.
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The DFT as a Linear Transformation

Let us define an N-point vector x,, of the signal sequence
x(n), n=0,1,...,N-1, an N-point vector X of frequency
samples, and an NxN matrix Wy, as

(0) X(0) 11 1
X
@ X(1) oW W W
X ] ]
N : N . W= We WS w2
X(N-1) X(N-1) 1 WNN—l WNZ(Nfl) WN(N’l)(N’l)

With these definitions, the N-point DFT may be
expressed in matrix forms as X =W X.

Where W, is the matrix of the linear transformation.
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The DFT as a Linear Transformation

We observe that Wy, is a symmetric matrix.

If we assume that the inverse of W, exists, then
Xy = WX
But this is just an expression for the IDFT.

In fact, the IDFT can be expressed in matrix form as

1. .-
XN :NWNXN
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The DFT as a Linear Transformation

Where WN denotes the complex conjugate of the
matrix W, . Then we can conclude that

1

Wt==—wW’
N N N

Which, in turn, implies that
WN W; = NI

Where | is an NxN identity matrix.
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The DFT as a Linear Transformation

Therefore, the matrix Wy, in the transformation is an
orthogonal (unitary) matrix.

Furthermore, its inverse exists and is given as W; I'N.

Of course, the existence of the inverse of W, was
established previously from our derivation of the IDFT.
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The DFT as a Linear Transformation

The DFT and IDFT are computational tools that play a
very important role in many digital signal processing
applications, such as frequency analysis (spectrum
analysis) of signals, power spectrum estimation, and
linear filtering.

The importance of the DFT and IDFT in such practical
applications is due to a large extent to the existence of
computationally efficient algorithms, known collectively
as fast Fourier transform (FFT) algorithms, for computing
the DFT and IDFT.
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Relationship of the DFT to Other
Transforms

Relationship to the Fourier series coefficients of a
periodic sequence

A periodic sequence {X,(N} with fundamental period N
can be represented in a Fourier series of the form

N-1
X, (nN)=> e ™, —o<n<o
k=0

N-1 _
o =%pr(n)e’2”k””“, k=0,1,..N—1
n=0

Where C, is the Fourier series coefficients.
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Relationship of the DFT to Other
Transforms

= Relationship to the Fourier transform of an aperiod ic
sequence

= If x(n) is an aperiodic finite energy sequence with
Fourier transform X (w) , which is sampled at N equally
spaced frequencies o, =27k /N, k= 0,1,...N — 1the
spectral components

X(k) = X(Ct)) |w:27rk/N: Z X(n)e_jZHKn/N ’ k = 0111 N -
are the DFT coefficients of the periodic sequence of
period N.

2010/6/12 Introduction to Digital Signal Processing 49

Relationship of the DFT to Other
Transforms

= Relationship to the Fourier transform of an aperiod ic
sequence

0

x,(n) =Y x(n-IN)

=—00

= Thus X,(N) is determined by aliasing { X N} over the
interval 0<n< N -1 The finite-duration sequence

x (n), 0<n<N-1
%) = o(N) |
0, otherwise
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Relationship of the DFT to Other
Transforms

= Relationship to the Fourier transform of an aperiod ic
sequence

= Bears no resemblance to the original sequence {X N} ,
unless X(N) is of finite duration and length L < N, in
which case x(n) =X(n), 0<N<N-1

= Only in this case will the IDFT of { X(K)} vyield the
original sequence {X N} .
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Relationship of the DFT to Other
Transforms

= Relationship to the Fourier transform of an aperiod ic
sequence

= Bears no resemblance to the original sequence {X N} ,
unless X(N) is of finite duration and length L < N, in
which case x(n) =X(n), 0<N<N-1

= Only in this case will the IDFT of { X(K)} yield the
original sequence {X N} .
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Relationship of the DFT to Other
Transforms

= Relationship to the z-transform

= Consider a sequence X(Nn) having the z-transform

X(2)=) x(n)z™"

N=—o0

with an ROC that includes the unit circle.
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Relationship of the DFT to Other
Transforms

= Relationship to the z-transform

= If X(2) is sampled at the N equally spaced points on
the unit circle z =€, k=0,1,2,...N - ;, we obtain

X(k) = X(Z) |Z=ej2/mk/N y k: 0;1;--N - .

S j K/
— X (,1 p—] 2znk/N
=—00

n
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Relationship of the DFT to Other
Transforms

= Relationship to the Fourier series coefficients of a
continuous-time signal

= Suppose that X,(t) is a continuous-time periodic signal
with fundamental period T, =1/F,. The signal can be
expressed in a Fourier series

o0

X ()= D e

k=—0

= Where {C} are the Fourier coefficients.
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Relationship of the DFT to Other
Transforms

= Relationship to the Fourier series coefficients of a
continuous-time signal

= If we sample % (t) at a uniform rate F,=N /Tp =1/T,
we obtain the discrete-time sequence

o0 0

x(n) = x, (nt) = Z CkejZfrkFonT _ Z Cke127rkn/N

k=—0 k=—c0

Nl{ - i 27kn/N
— ¥4

= 2 ‘, Cn |€

k=0 LI

0 =—00
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Relationship of the DFT to Other
Transforms

Relationship to the Fourier series coefficients of a
continuous-time signal

It is clear the above equation is in the form of an IDFT
formula, where

X(k)=N Z Con =NG and ¢, = Z G
|=—c0 |=—c0

Thus the {€} sequence is an aliased version of the
sequence {C} -
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Properties of the DFT

The DFT as a set of N samples { X(K)} of the Fourier
transform X (w) for a finite-duration sequence {X N} of
length L<N.

The sampling of X(@) occurs at the N equally spaced
frequencies o, =27k /N, k=0,1,2,..N—- 1
N-1

DFT: X(k)=> x(MW", k=0,1,2,..N- 1

n=0

it DFT
IDFT: x(n) :%2 X (W, n=0,1,2,..N - x(n) «—21— X (k)
k=0

whereW, = e />N
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Periodicity, Linearity, and Symmetry
Properties
Periodicity . If x(n) and X(k) are an N-point DFT pair,
then
X(n+N)=x(n) ¥n
X(k+N)=X(k) vk

Linearity . If x(n)<«—— X, (k) andx, 6 y=— X, k)

then for any real-valued or complex-valued constants &,
and &, ,

DFT

a,%,(n) +a,x,(n) «——a,X (k) +a X (k)
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Periodicity, Linearity, and Symmetry
Properties

Circular Symmetries of a Sequence . As we have seen,
the N-point DFT of a finite duration sequence x(n), of
length L <N, is equivalent to the N-point DFT of a
periodic sequence x,(n), of period N, which is obtained
by periodically extending x(n), that is

0

x,(n) =Y x(n-IN)

|=—c0
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Periodicity, Linearity, and Symmetry
Properties

= Circular Symmetries of a Sequence . Suppose that we
shift the periodic sequence x,(n) by k units to the right.
Thus we obtain another periodic sequence

0

X, (M) = x,(n—K) = 3 x(n—k—IN)

| =—0

= The finite-duration sequence

' <n<N -
x'(n) = X, (N), O_n_N. 1
0, otherwise

is related to the original sequence x(n) by a circular shift.
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Periodicity, Linearity, and Symmetry
Properties

= Circular Symmetries of a Sequence . This relationship
is illustrated as below for N=4.

E

Al

| (

BB o S ©2) o3 wn) | 1§ A0 vi2 Vi) )
1 in L |

A 2 z
gl el e

A A 45 2 & 1 5 3 4 % ¢ 4 M

-
fa
2t

x(3) X3
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Periodicity, Linearity, and Symmetry
Properties

Circular Symmetries of a Sequence

In general, the circular shift of the sequence can be
represented as the index modulo N. thus we can write

x'(n) = x(n—k, moduloN °

=x(O-k))

Time reversal of N-point sequence
X((-n))y =xX(N—-n), 0<n<N-1
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Periodicity, Linearity, and Symmetry
Properties
Circular Symmetries of a Sequence . An equivalent

definition of even and odd sequences for the associated
periodic sequence X,(n) is given as follows

Even:  X,(n)=x,(-n)=Xx,(N-n)
Odd:  X,(n)=-%,(-n)=-x,(N-n)

If the periodic sequence is complex valued, we have

Conjugate even:  X,(n) =X (N-n)
Conjugate odd:  x,(n) =-x,(N—n)
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Periodicity, Linearity, and Symmetry
Properties

Circular Symmetries of a Sequence . These relationships
suggest that we decompose the sequence X,(") as

%, (N) = Xpe (N) + X0 (N)

where xpe(n):%[xp(n)+x*p(N -n)]

o) = S1,() = X,(N -]
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Periodicity, Linearity, and Symmetry
Properties

Symmetry properties of the DFT . The sequences can be
expressed as

X(n) =X, (N)+ jx (n), 0<SN<N-1
X(K) = Xg(K)+ jX,(k), 0<k<N-1

We can obtain

X (K) =

N-1
[ R(n)cos—+x (n)sm%kn}
n=0
N-1
0

X, (K) = —Z{ (n)sm%— X, (n)cosZETkn}
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Periodicity, Linearity, and Symmetry
Properties

= Symmetry properties of the DFT

= Similarly,

xR(n>—%Nz[ (K052 - x «)smz”Tk”}

k=0

+ X, k)co

JOR: { Xx(K)sin 2 2”‘(”}
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Periodicity, Linearity, and Symmetry
Properties
= Real-valued sequences . If the sequence x(n) is real, it

follows
X (N =K) = X" (k) = X (=k)

= Consequently,
| X(N=K)|=|X (k)
ZX(N-k)=-2X(k)
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Periodicity, Linearity, and Symmetry
Properties
Real and even sequences . If x(n) is real and even, that is
x(n)=x(N—-n), 0<n<N-1
And X, (k)=0. Hence the DFT reduces to
N-1

X(k)=Zx(n)cosZ7[Tkn, k<N-:

n=0

N-1
IDFT () =3 X(K)cos™ ", 0<ns N -
k=0
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Periodicity, Linearity, and Symmetry
Properties

Real and odd sequences . If x(n) is real and odd, that is
X(n)=—=X(N-n), 0<SN<N-1
And X,(k) =0. Hence the DFT reduces to

N-1
X(k)z-jzx(n)sin%, O<k<N-—1

n=0

N-1
IDFT x(n):j%ZX(k)sinZﬂTkn, 0<n<N-1

k=0
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Periodicity, Linearity, and Symmetry

Properties

= Purely imaginary sequences . x(n)= jx (n)

Xg(K) =§X, (n)sin
X| (k) =

= We observe that X,(k) is odd and X, (k) is even.

27kn
N

= 27kn
D% (n)cos——
n=0 N
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Periodicity, Linearity, and Symmetry
Properties
N -Point Sequence x(n),
0<n<N-1 N -Point DFT
x(n) XK
x*(n) X*(N —k)
x*(N —n) X*(k)
xg () Xee(k) = 5[X () + X* (N — 0]
JXi(n) Xeolk) = §[X k) — X* (N — k)]
xee(n) =[x (m) + x*(N —n)] X (k)
eo(n) = 3x(n) —x" (N —m)] JXi (R
Real Signals
Any real signal X(k) = X*(N —k)
x(n) Xp(k) = Xp(N — k)
X(k) ==X (N —k)
1X (k) = IX(N = k)|
(X (k)= —LX(N k)
Xee@) = Flx(n) + x(N —m)] X (k)
Xeo(n) = x(n) — x(N = m)] jXr(k)
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Multiplication of Two DFTs and Circular
Convolution

Suppose that we have two finite-duration sequences of

length N, X (n) andx, ). Their respective N-point DFTs
are

N-1
X, (k)= x(ne!#*™ k=0,1,.N- 1
n=0

N-1
X, (k) = x,(n)e ¥ ™ k=0,1,..N-:

n=0

If we multiply the two DFTs together, the result is a DFT,
say X,(k), of a sequence x;(n) of length N.

X, (K) = X, (K) X ,(k), k=0,1,...N -
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Multiplication of Two DFTs and Circular
Convolution

The IDFT of { XK} is

1& i2zken L — j 27km/N
X;(m) =ﬁzxg(k)e zﬁle(k)xz(k)e
k=0 k=0

Suppose that we substitute for X, (k) andX, k ) using the
DFTs, thus we obtain

x,(M) :%Z{ixl(n)ejZIﬂm/N}[Z_: Xz(l)ej2nkn/Nj|ej 27kmIN

k=0|_n=0 1=0
N-1

1 N-1 N-1
:_le (,.. )sz ( {Ze]ZIIK(n’FnU/N}
N n=0 1=0 k=0
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Multiplication of Two DFTs and Circular
Convolution

The inner sum in the brackets in the above equation has

the form
N, a=1
k

a =y1-a"
1-a’

pzd

-1

azxl

T
<)

where a is defined as a=¢e/# MmN

We observe that a=1 when m—-n-1 is a multiple of N.
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Multiplication of Two DFTs and Circular
Convolution

On the other hand, gV =1 for any value of a=0.

Consequently, the above equation reduces to

N—lak _ N, | =m-n+ pN = ((m_ n))N’ p an intege
k=0 0, otherwise

Then we obtain the desired expression for X(M) in the
form

X(m) = ¥ % (X (M=), m=0,1,..N- -
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Multiplication of Two DFTs and Circular
Convolution

= Circular convolution . If
¥ (N) «—— X, (k) andx, 6 x—— X, k

then  x(N@x, ()X, €)X, k)

where Xl(rl)@x2 (h) denotes the circular convolution of
the sequence x(n) andx, ()
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Additional DFT Properties

= Time reversal of a sequence . If
x(n) <2 X (K)

then  x((-n)),, = X(N —1) <25 X ((~k)),, = X (N —k)

= Hence reversing the N-point sequence in time is
equivalent to reversing the DFT values.

W) § *(n D) ad) ! ) (0
5 (7 3 1
,U,K v e T

=
(6 xX(2)
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Additional DFT Properties

= Circular time shift of a sequence . If
x(n) <2 X (K)

then X((N—1))y, <2 X (K)e 127

= Circular frequency shift . If
x(n) <= X (k)

X(n)eszIn/N D;T X((k—l))N
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Additional DFT Properties

= Complex-conjugate properties . If
x(n) <2 X (K)

then X (M) <215 X ((=k))y = X' (N —k)
= The IDFT of X' (K)is

NZ4 X* (k)ejZIrkn/N — |:iN21X(k)ej2/rk(N—n)/Nj|
k=0 N k=0

Z||—\

therefore, X ((-n))y =X (N—n)«>— X (k)
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Additional DFT Properties

Circular correlation . If
x(nN)«=21> X (k) andy O x> Y k)
then fw(l)% Rw(k) = X(K)Y (k)

where T, () is the (unnormalized) circular
crosscorrelation sequence, defined as

N-1

Fy () =2 XY ((n-1)),

n=0

2010/6/12 Introduction to Digital Signal Processing
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Additional DFT Properties

Multiplication of two sequences . If
% (N) <= X, (k) and x, 0 x—5— X, k;
then xl(n)xz(n)%% Xl(k)@xz(k)

Parseval’'s Theorem . If
x(n)%X(k) andy 6 )(DNL)Y k>

N-1 . 1 N-1 )
then 2 XNy (n=—=> X(K)Y (k)
n= N k=0
2010/6/12 Introduction to Digital Signal Processing
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Linear Filtering Methods based on the
DFT

The DFT provides a discrete frequency representation of
a finite-duration sequence in the frequency domain, it
explore its use as a computational tool for linear system
analysis and, especially, for linear filtering.

We have already established that a system with
frequency response H(w), when excited with an input
signal that has a spectrum X(w) , possesses an output
spectrum Y(w) = X(o)H (@) .

The output sequence Y(N) is determined from its
spectrum via the inverse Fourier transform.
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Use of the DFT in Linear Filtering

Suppose that we have a finite-duration sequence x(n) of
length L which excites an FIR filter of length M. Without
loss of generality, let

x(n)=0, n<Oandh>L

h(n)=0, n<O0andh>M
where h(n) is the impulse response of the FIR filter.

The output sequence

Y = ¥ hkx(n-K)
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Use of the DFT in Linear Filtering

The frequency-domain equivalent to the above is
Y(w) = X(w)H (w)

If Y(K) =Y(@) |, 2mn s k=0,1,..N-1
=X@H @) onm k= 01N~

then Y(K) = X (K)H (k), k=0,1,...N

where {X(k)}and {H(K} are the N-point DFTs of the
corresponding sequences x(n) andh @)
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Filtering of Long Data Sequences

In practical applications involving linear filtering of
signals, the input sequence X(n) is often a very long
sequence. This is especially true in some real-time
signal processing applications concerned with signal
monitoring and analysis.

Since linear filtering performed via the DFT involves
operations on a block of data, which by necessity must
be limited in size due to limited memory of a digital
computer, a long input signal sequence must be
segmented to fixed-size blocks prior to processing.
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‘ Overlap-Add Method
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‘ Overlap-Add Method

= We first segment x(n), assumed to be a causal sequence
here without any loss of generality, into a set of contiguous
finite-length subsequences of length L each:
x(n) = X X, (n—mL)
m=0

x(n+mL), 0<n<L-1
0, otherwise

where % (1) ={

= Thus we can write
y(n) = h(n)* x(n) = 3y, (n—mL)

Ym(N) = h(n)* x,(n)

= Since h(n) is of length M and x,,(n) is of length L, y,,(n) is of
length L + M -1

where
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Overlap-Add Method

The desired linear convolution y(n) = h(n) % x(n) is broken
up into a sum of infinite number of short-length linear
convolutions of length L + M -1 each: y,,(n) = h(n) * x.,(n)

Consider implementing the following convolutions using the
DFT-based method, where now the DFTs (and the IDFT)
are computed on the basis of (L + M —1) points

y(n) =2 Yn(n—mL)
m=0
The first convolution in the above sum, y,(n) = h(n) * Xx,(n),
isoflengthL+ M -1 andis definedforO<sn<L+M-2

The second short convolution y,[n] = h(n) *Xx,(n), is also of
length L + M -1 but is definedforL<n<3L+M -2

= There is an overlap of samples between these two short
linear convolutions
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Overlap-Add Method

In general, there will be an overlap of M -1 samples
between the samples of the short convolutions h(n) * x,;(n)
and h(n) % x,(n)for(r-1)Lsn<rL+M-2
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Overlap-Add Method

il 11y o
vlD R T
il .l -
o o Il
oty o f TT? TT R
l‘L \l'! J-‘A 10
y,n]

overlap

Therefore, y(n) obtained by a linear convolution of x(n) and
h(n) is given by

y(n) = y,(n), @n< ¢

y(n) =y,(n)+y,(n-7), 7<n<10

y(n) = y,(n-7), 1kn< 1
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Overlap-Add Method

The above procedure is called the overlap-add method
since the results of the short linear convolutions overlap and

the overlapped portions are added to get the correct final
result

The MATLAB function fftfilt can be used to implement the
above method

The following illustrates an example of filtering of a noise-
corrupted signal using a length-3 moving average filter:

— sn]
5 “ — ¥in]

9 =

Amplitude
7

1 I
o} e

2 L L L L L L
0 10 20 30 40 50 60

Time index n
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Overlap-Save Method
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Overlap-Save Method

In implementing the overlap-add method using the DFT, we
need to compute two (L + M —1)-point DFTs and one (L + M
—1)-point IDFT for each short linear convolution

It is possible to implement the overall linear convolution by
performing instead circular convolution of length shorter than
(L+M-1)

To this end, it is necessary to segment x(n) into
overlapping blocks  x,,(n), keep the terms of the circular
convolution of h(n) with that corresponds to the terms
obtained by a linear convolution of h(n) and x,(n), and throw
away the other parts of the circular convolution
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Overlap-Save Method

To understand the correspondence between the linear and
circular convolutions, consider a length-4 sequence x(n) and
a length-3 sequence h(n)
Let y, (n) denote the result of a linear convolution of x(n) with
h(n)
The six samples of y, (n) are given by

yL(0) = h(0)x(0)

yL(1) = h(0)x(1) + h(1)x(0)

yL(2) = h(0)x(2) + h(1)x(1) + h(2)x(0)

yL(3) = h(0)x(3) + h(1)x(2) + h(2)x(1)

yL(0) = h(1)x(3) + h(2)x(2)

y.(5) = h(2)x(3)
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Overlap-Save Method

If we append h(n) with a single zero-valued sample and
convert it into a length-4 sequence h,(n), the 4-point circular
convolution Yc(n) of h,(n) and x(n) is given by

yc(0) = h(0)x(0) + h(1)x(3) + h(2)x(2)

yc(1) = h(0)x(1) + h(1)x(0) + h(2)x(3)

Ye(2) = h(0)x(2) + h(1)x(1) + h(2)x(0)

Ye(3) = h(0)x(3) + h(1)x(2) + h(2)x(1)
If we compare the expressions for the samples y, (n) of with
those of y-(n), we observe that the first 2 terms of y(n) do
not correspond to the first 2 terms of y, (n), whereas the last
2 terms of y(n) are precisely the same as the 3rd and 4th
terms of y (n), i.e.

¥1(0) #yc(0), y1 (1) # yc(1), ¥1(2) = Ye(2), ¥1(3) = yc(3)
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Overlap-Save Method

General case : N-point circular convolution of a length-M
sequence h(n) with a length-L sequence x(n) with N > M

First M — 1 samples of the circular convolution are incorrect
and are rejected

Remaining L — M + 1 samples correspond to the correct
samples of the linear convolution of h(n) with x(n)

Now, consider an infinitely long or very long sequence x(n)

Break it up as a collection of smaller length (length-4)
overlapping sequences x,,(n) as x,,(n) = x(n + 2m), 0 < n < 3,
Osmsw

Next, form w,,(n) = h(n)@x,,(n)
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Overlap-Save Method

Or, equivalently,
Wir(0) = h(0)%(0) + h(1)x,(3) + h(2)x,(2)
Wi(1) = h(0)x(1) + h(1)x,(0) + h(2)x,,(3)
Wi(2) = h(0)x,(2) + h(1)X,(1) + h(2)x,(0)
Win(3) = h(0)x,(3) + h(1)X(2) + h(2)X,(1)

Computing the above form=0,1, 2,3, ..., and substituting
the values of x,,[n] we arrive at
Wy(0) = h(0)x(0) + h(1)x(3) + h(2)x(2) < Reject
Wy(1) = h(0)x(1) + h(1)x(0) + h(2)x(3) < Reject

Wo(2) = h(0)x(2) + h(1)x(1) + h(2)x(0) =y[2] < Save
Wy(3) = h(0)x(3) + h(1)x(2) + h(2)x(1) =y[3] < Save
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Overlap-Save Method

w;,(0) = h(0)x(2) + h(1)x(5) + h(2)x(4) < Reject
w; (1) = h(0)x(3) + h(1)x(2) + h(2)x(5) < Reject
w,(2) = h(0)x(4) + h(1)x(3) + h(2)x(2) =y(4) < Save
w;,(3) = h(0)x(5) + h(1)x(4) + h(2)x(3) =y(5) < Save

w,(0) = h(0)x(4) + h(1)x(7) + h(2)x(6) < Reject
W,(1) = h(0)x(5) + h(1)x(4) + h(2)x(7) < Reject
W,(2) = h(0)x(6) + h(1)x(5) + h(2)x(4) =y(6) < Save
W,(3) = h(0)x(7) + h(1)x(6) + h(2)x(5) = y(7) < Save
It should be noted that to determine y(0) and y(1), we need
to form x_;(n): x_,(0) = 0, x_;(1) = 0, x_;(2) = x(0) , x_;(3) =
X(1) and compute w_;(n) = h(n) ® x_;(n) for 0 < n < 3, reject
w_,(0) and w_,(1), and save w_,(2) = y(0), and w_,(3) = y(1)
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Overlap-Save Method

General Case : Let h(n) be a length-L sequence

Let x,,(n) denote the m-th section of an infinitely long
seqguence x[n] of length L and defined by

Xp()=x(n+m(L-m+1)),0snsL-1withM<L
Let wy(n) = h(n)® X(n)
Then, we reject the first M — 1 samples of w,,,(n) and “abut”

the remaining L — M + 1 samples of w,,(n) to form y, (n), the
linear convolution of h(n) and x(n)
If y,[n] denotes the saved portion of w,,(n), i.e.,
0, &n<M - 2
y(n):{wm(n), M -1<n<l-2

Theny(n+m(L-M+1))=y,(n),M-1<sn<|-1
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‘ Overlap-Save Method

= The approach is called overlap-save method since the
input is segmented into overlapping sections and parts of the
results of the circular convolutions are saved and abutted to
determine the linear convolution result
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‘ Overlap-Save Method
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Frequency Analysis of Signals Using the
DFT

Let {X N} denote the sequence to be analyzed. Limiting
the duration of the sequence to L samples, in the interval
0<n<L-1 is equivalent to multiplying {X N} by a
rectangular window w(n) of length L. That is

X(n) = x(n)w(n)

where
1, 0<n<L-1

0, otherwise

w(n) = {
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Frequency Analysis of Signals Using the
DFT

Suppose that the sequence x(n) consists of a signal

sinusoid, that is
X(n) = cosm,n

Then the Fourier transform of the finite-duration
sequence X(n) can be expresses as

>“<(co)=%[W<w—wo> FW(@+ )]

where W(w) is the Fourier transform of the window
sequence, which is

W(0) = sin(wL /Z)e—jw(L—l)/Z

sin(w / 2)
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Frequency Analysis of Signals Using the
DFT

= Magnitude spectrum for L=25 and N=2048, illustrating the
occurrence of leakage.

Magnitude

Frequency
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Frequency Analysis of Signals Using the
DFT

= Xx(n) =cosw,n+ cosy,N+ CO&,N
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‘ Signal Transform

* Motivation:

— Represent a vector (e.g. a block of image samples) as
the superposition of some typical vectors (block
patterns)
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‘ Transform Coding of a Image

original image

image
ﬁ;igg": : reconstructed
block block
‘ Transform A Inverse
N . ¥ transform A-1
Quantization &
transform Transmission quantized
coefficients / - transform
& = coefficients
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1-D 16-Pont DFT Basis Vectors
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Disadvantages of DFT in Signal Coding

* Fourier Transform of a real function results in
complex numbers

* May result in artifacts due to discontinuity
at the block boundary

«~— N =

ot /] .

N

Discontinuities (high freq. components)
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From DFT to DCT

* DFT of any real and symmetric sequence contains only
real coefficients corresponding to the cosine terms of
the series

» Construct a new symmetric sequence y(n) of length 2N
out of x(n) of length N

y(n)=x(n),0<n<N-1],
y(n)=Xx(2N -1-n),N <n<2N -1.

* Y(n) is symmetrical aboutn = N - (1/2)
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From DFT to DCT

* DCT has a higher compression ration than DFT

» DCT avoids the generation of spurious spectral
components

No discontinuities
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From DFT to DCT

2N -1 (n+=)k
Y (k)= 2 y(nW,, ?
n=0
N -1 (n+Xyk 2N -1 (n+2yk
:ZY(H)\NzN2 + y(n)W2N2
n=0 n=N
N -1 (n+l)k 2N -1 (n+£)k
=2 XMW,y 27 + D x(2N = 1-n)W , 2
n=0 n=N
N1 (n+iyk N5t [2N - (n+2)k]
=D XMW, 27 + X (N)W 2
n=0 n=0
N -1
_ 2x(n)cos”(2” + Dk
n=0 2N
_j2r
0<k <2N -1and W,, =e 2N
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1-D N-Point DCT
e [ (2n + Dk |
F(k)=C(k)Y f(n)cos (2n + k= |
n=0 L 2N
k =0,1,--- ,N -1,
NSt [ (2n + kx|
f(n)=Y C(k)F(k)cos (2n + k= |
k=0 i 2N ]
n=20,1-,N -1,
where
C(O)—\/I C(k)—\/z k=212---N-1
N’ N’ ) )
* The constants are often defined differently
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'1-D N-Point DCT

cos( (h+ 1)@ /1§ coy (h+ Dz /1§

coy (h+ D)4 /1§ cos( (h+ L& /1§

cos( (h+ Dk /16 cos( (h+ D& /16 cog( (h+ 1)

& /1§ coy (h+ V& /1§

2010/6/12
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‘ Example of 1-D DCT

Row 256 of Lena 2500.00

200.00
160.00- 200000 absolute DCT values of Lena row 256
120.00 1500.00
80.00 1000.00—{
I
40.00—| 500.00
0.00 ; | : cgoﬁm‘ Aobssiutha - : ‘ |
0.00 200.00 400.00 600.00.00 200.00 400.00 600.00
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‘ Illustration of Image Coding Using 2-D
DCT

block
quantized DCT reconstructed
: DCT coefficients coefficients from quantized
image block of block of block coefficients
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‘ DCT-Based Image Coding with
Different Quantization Levels

« DCT coding with increasingly coarse quantization, block size 8x8

quantizer step-size guantizer step-size guantizer step-size
for AC coefficient: for AC coefficient: for AC coefficient:
25 100 200

2010/6/12 Introduction to Digital Signal Processing 118
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‘ Image Coding with Different Numbers
of DCT Coefficients

7 ‘ .“‘ - i {

o with 16/64
original coefficients
with 8/64 with 4/64

coefficients coefficients
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‘ DCT-Based Coding: JPEG
/ 8x8 blocks DC Compressed
image data
. l Zigzag Entropy |
DeT IEII AC scan encoder

Source 1

image data Quantization Table
table specification
8x8 blocks
DC Compressed
DPCM AT BT image data
[ m scan [ |decoder |7 ]
AC
Reconstructed ' l l
image data —
Quantization Table
table specification
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