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Chapter 7

� Frequency analysis of discrete-time signals is usually 
and most conveniently performed on a digital signal 
processor.

� To perform frequency analysis on a discrete-time signal, 
we convert the time-domain sequence to an equivalent 
frequency-domain representation.
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Introduction
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� Before we introduce the DFT, we consider the sampling 
of the Fourier transform of an aperiodic discrete-time 
sequence.

� Thus, we establish the relationship between the sampled 
Fourier transform and the DFT.
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Frequency-Domain Sampling: The 
Discrete Fourier Transform

� We recall that aperiodic finite-energy signals have 
continuous spectra.

� Let us consider such an aperiodic discrete-time signal 
with Fourier transform
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Frequency-Domain Sampling and 
Reconstruction of Discrete-Time Signals
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� Suppose that we sample             periodically in 
frequency at a spacing of         radius between 
successive samples.

� Since             is periodic with period       , only samples in 
the fundamental frequency range are necessary.
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Frequency-Domain Sampling and 
Reconstruction of Discrete-Time Signals
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� For convenience, we take N equidistant samples in the 
interval                     with spacing                      , as 
shown below:

� Frequency-domain sampling of the Fourier transform
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Frequency-Domain Sampling and 
Reconstruction of Discrete-Time Signals
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� First, we consider the selection of N, the number of 
samples in the frequency domain.

� If we evaluate                                       at                       

� We obtain
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Frequency-Domain Sampling and 
Reconstruction of Discrete-Time Signals
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� The summation above equation can be subdivided into 
an infinite number of summations, where each sum 
contains N terms. Thus
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Frequency-Domain Sampling and 
Reconstruction of Discrete-Time Signals
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� If we change the index in the inner summation from n to 
n - lN and interchange the order of the summation, we 
obtain the result
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Frequency-Domain Sampling and 
Reconstruction of Discrete-Time Signals
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� The signal                                       obtained by the 

peoiodic repetition of             every N samples, is clearly 
periodic with fundamental period N.

� It can be expanded in a Fourier series as
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Frequency-Domain Sampling and 
Reconstruction of Discrete-Time Signals
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� With Fourier coefficients

� We can conclude that
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Frequency-Domain Sampling and 
Reconstruction of Discrete-Time Signals
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� The relationship in above equation provides the 
reconstruction of the periodic signal            from the 
samples of the spectrum            .

� However, it does not imply that we can recover              
or           from the samples.

� To accomplish this, we need to consider the relationship 
between             and          .
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Frequency-Domain Sampling and 
Reconstruction of Discrete-Time Signals
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� Since             is the periodic extension of          . It is clear 
that           can be recovered from           if there is no 
aliasing in the time domain, that is, if          is time-
limited to less than the period N of           .          

2010/6/12 Introduction to Digital Signal Processing 13

Frequency-Domain Sampling and 
Reconstruction of Discrete-Time Signals
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� We conclude that the spectrum of an aperiodic discrete-
time signal with finite duration L can be exactly 
recovered from its samples at frequencies

� The procedure is to compute

then

and finally,             can be computed. 
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Frequency-Domain Sampling and 
Reconstruction of Discrete-Time Signals
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� As in the case of continuous-time signals, it is possible to 
express the spectrum             directly in terms of its 
samples                                                 . To derive such an 
interpolation formula for            , we assume that             .

� Since            
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Frequency-Domain Sampling and 
Reconstruction of Discrete-Time Signals
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� If we use                                      and substitute for          , 
we obtain            
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Frequency-Domain Sampling and 
Reconstruction of Discrete-Time Signals

( )x n( ) ( ) j n

n

X x n e ωω
∞

−

=−∞

= ∑

1 1
2 /

0 0

1 1
( 2 / )

0 0

1 2
( ) ( )

2 1
         ( )

N N
j kn N j n

n k

N N
j k N n

k n

X X k e e
N N

X k e
N N

π ω

ω π

π
ω

π

− −
−

= =

− −
− −

= =

 
=  

 

 
=  

 

∑ ∑

∑ ∑



9

� The inner summation term in the brackets of above 
represents the basic interpolation function shifted 
by                 in frequency. Indeed, if we define  
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Frequency-Domain Sampling and 
Reconstruction of Discrete-Time Signals
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� Then, we can obtain

� The interpolation function            is not the familiar      
but instead, it is a periodic counterpart of it, and it is 
due to the periodic nature of           .   
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Frequency-Domain Sampling and 
Reconstruction of Discrete-Time Signals
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� The phase shift reflects the fact that the signal           is a 
causal, finite-duration sequence of length N. The function    

is plotted for N = 5.
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Frequency-Domain Sampling and 
Reconstruction of Discrete-Time Signals
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� We observe that the function             has the property

� Consequently, the interpolation formula gives exactly the 
sample values                                                . At all other 
frequencies, the formula provides a properly weighted 
linear combination of the original spectral samples. 
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Frequency-Domain Sampling and 
Reconstruction of Discrete-Time Signals
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� Example :  Consider the signal                                            
the spectrum of this signal is sampled at frequencies

� Determine the reconstructed spectra for              when 
N=5 and N=50. 

2010/6/12 Introduction to Digital Signal Processing 21

Frequency-Domain Sampling and 
Reconstruction of Discrete-Time Signals
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� Suppose that we sample             at N equidistant 
frequencies                                                     Thus we 
obtain the spectral samples

� The periodic sequence            , corresponding to the 
frequency samples                                                  can be 
obtained. 
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Frequency-Domain Sampling and 
Reconstruction of Discrete-Time Signals
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� Hence

where the factor                     represents the effect of 
aliasing. Since                , the aliasing error tends toward 
zero as               .  
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Frequency-Domain Sampling and 
Reconstruction of Discrete-Time Signals
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� For              , the sequence           and its spectrum            
are shown below (a)(b):  

2010/6/12 Introduction to Digital Signal Processing 24

Frequency-Domain Sampling and 
Reconstruction of Discrete-Time Signals
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� The aliased sequences                                                and 
the corresponding spectral samples are shown below 
(c)(d).  
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Frequency-Domain Sampling and 
Reconstruction of Discrete-Time Signals

( ) for 5 and 50px n N N= =

� We note that the aliasing effects are negligible for N=50.

� If we define the aliased finite-duration sequence

� Then its Fourier transform is   
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Frequency-Domain Sampling and 
Reconstruction of Discrete-Time Signals
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� Note that although                          , the sample values at
are identical. That is,
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Frequency-Domain Sampling and 
Reconstruction of Discrete-Time Signals
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� The development in the preceding section is concerned 
with the frequency-domain sampling of an aperiodic finite-
energy sequence         .

� In general, the equally spaced frequency samples

do not uniquely represent the original sequence            
when            has infinite duration. 
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The Discrete Fourier Transform (DFT)
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� Instead, the frequency samples

correspond to a periodic sequence            of period N, 
where             is an aliased version of          , as indicated 
by the relation in the preceding equation, that is, 
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The Discrete Fourier Transform (DFT)
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� When the sequence           has a finite duration of length    
, then            is simply a periodic repetition of          , 

where            over a single period is given as

� Consequently, the frequency samples

uniquely represent the finite-duration sequence         .         
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The Discrete Fourier Transform (DFT)
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� Since                        over a single period (padded by N-L 
zeros), the original finite-duration sequence         can be 
obtained from the frequency samples                         by 
means of the formula             
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The Discrete Fourier Transform (DFT)
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� Note that zero padding does not provide any additional 
information about the spectrum             of the sequence    

. 

� In summary, a finite-duration sequence           of length L
has a Fourier transform

� Where the upper and lower indices in the summation 
reflect the fact that                 outside the range            
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The Discrete Fourier Transform (DFT)
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� When we sample            at equally spaced frequencies

the resultant samples are

where for convenience, the upper index in the sum has 
been increased from L-1 to N-1 since x(n)=0 for            . 
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The Discrete Fourier Transform (DFT)
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� The relation

is called the discrete Fourier transform (DFT) of x(n). 
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The Discrete Fourier Transform (DFT)
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� To summarize, the formulas for the DFT and IDFT are
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The Discrete Fourier Transform (DFT)
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DFT:

IDFT:

� Example :  A finite-duration sequence of length L is given

as

Determine the N-point DFT of this sequence for           . 
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� Solution :  The Fourier transform of this sequence is 
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� The magnitude and phase of             are illustrated in the 
below for L=10.
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The Discrete Fourier Transform (DFT)
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� The N-point DFT of x(n) is simply            evaluated at the 
set of N equally spaced frequencies

� Hence 
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The Discrete Fourier Transform (DFT)
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� If N is selected such that N=L, then the DFT becomes
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The Discrete Fourier Transform (DFT)
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The Discrete Fourier Transform (DFT)

N=50 N=100
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� The formulas for the DFT and IDFT may be expressed 
as

which is an Nth root of unity. 
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The DFT as a Linear Transformation
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� We note that the computation of each point of the DFT 
can be accomplished by N complex multiplications and 
(N-1) complex additions.

� Hence the N-point DFT values can be computed in a 
total of N2 complex multiplications and N(N-1) complex 
additions.

� It is instructive to view the DFT and IDFT as linear 
transformations on sequences             and              , 
respectively. 
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The DFT as a Linear Transformation
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� Let us define an N-point vector xN of the signal sequence 
x(n), n=0,1,…,N-1, an N-point vector XN of frequency 
samples, and an N×N matrix WN as

� With these definitions, the N-point DFT may be 
expressed in matrix forms as                      .

� Where         is the matrix of the linear transformation.

2010/6/12 Introduction to Digital Signal Processing 43

The DFT as a Linear Transformation
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X W xN N N=

WN

� We observe that         is a symmetric matrix.

� If we assume that the inverse of         exists, then

� But this is just an expression for the IDFT.

� In fact, the IDFT can be expressed in matrix form as
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� Where          denotes the complex conjugate of the 
matrix         . Then we can conclude that

� Which, in turn, implies that

� Where         is an N×N identity matrix.
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The DFT as a Linear Transformation
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� Therefore, the matrix         in the transformation is an 
orthogonal (unitary) matrix.

� Furthermore, its inverse exists and is given as              .

� Of course, the existence of the inverse of          was 
established previously from our derivation of the IDFT.  

2010/6/12 Introduction to Digital Signal Processing 46

The DFT as a Linear Transformation
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� The DFT and IDFT are computational tools that play a 
very important role in many digital signal processing 
applications, such as frequency analysis (spectrum 
analysis) of signals, power spectrum estimation, and 
linear filtering. 

� The importance of the DFT and IDFT in such practical 
applications is due to a large extent to the existence of 
computationally efficient algorithms, known collectively 
as fast Fourier transform (FFT) algorithms, for computing 
the DFT and IDFT.
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The DFT as a Linear Transformation

� Relationship to the Fourier series coefficients of a 
periodic sequence

� A periodic sequence                with fundamental period N
can be represented in a Fourier series of the form

� Where      is the Fourier series coefficients.
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Relationship of the DFT to Other 
Transforms
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� Relationship to the Fourier transform of an aperiod ic
sequence

� If           is an aperiodic finite energy sequence with 
Fourier transform            , which is sampled at N equally 
spaced frequencies                                                    the 
spectral components

are the DFT coefficients of the periodic sequence of 
period N. 
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Relationship of the DFT to Other 
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� Relationship to the Fourier transform of an aperiod ic
sequence

� Thus            is determined by aliasing            over the 
interval                       . The finite-duration sequence
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Relationship of the DFT to Other 
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� Relationship to the Fourier transform of an aperiod ic
sequence

� Bears no resemblance to the original sequence            , 
unless          is of finite duration and length           , in 
which case  

� Only in this case will the IDFT of               yield the 
original sequence             . 
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Relationship of the DFT to Other 
Transforms
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� Relationship to the Fourier transform of an aperiod ic
sequence

� Bears no resemblance to the original sequence            , 
unless          is of finite duration and length           , in 
which case  

� Only in this case will the IDFT of               yield the 
original sequence             . 
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Relationship of the DFT to Other 
Transforms

{ ( )}x n
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L N≤

{ ( )}X k
{ ( )}x n
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� Relationship to the z-transform

� Consider a sequence          having the z-transform

with an ROC that includes the unit circle.  
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Relationship of the DFT to Other 
Transforms

( )x n

( ) ( ) n

n

X z x n z
∞

−

=−∞

= ∑

� Relationship to the z-transform

� If            is sampled at the N equally spaced points on 
the unit circle                                                   , we obtain 
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Relationship of the DFT to Other 
Transforms

( )X z
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� Relationship to the Fourier series coefficients of a 
continuous-time signal

� Suppose that           is a continuous-time periodic signal 
with fundamental period                 . The signal can be 
expressed in a Fourier series

� Where          are the Fourier coefficients.      
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Relationship of the DFT to Other 
Transforms

( )ax t

01/pT F=

02( ) j ktF
a k

k

x t c e π
∞

=−∞

= ∑
{ }kc

� Relationship to the Fourier series coefficients of a 
continuous-time signal

� If we sample          at a uniform rate                              , 
we obtain the discrete-time sequence      
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Relationship of the DFT to Other 
Transforms
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� Relationship to the Fourier series coefficients of a 
continuous-time signal

� It is clear the above equation is in the form of an IDFT 
formula, where

� Thus the         sequence is an aliased version of the 
sequence       .       
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Relationship of the DFT to Other 
Transforms

( )   and  k lN k k k lN
l l

X k N c Nc c c
∞ ∞

− −
=−∞ =−∞

= ≡ =∑ ∑� �

{ }kc�
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� The DFT as a set of N samples               of the Fourier 
transform            for a finite-duration sequence             of 
length            .   

� The sampling of            occurs at the N equally spaced 
frequencies        
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Properties of the DFT
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� Periodicity . If          and            are an N-point DFT pair, 
then

� Linearity . If

then for any real-valued or complex-valued constants      
and       ,
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Periodicity, Linearity, and Symmetry 
Properties

( )X k( )x n
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x n N x n n

X k N X k k
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+ = ∀

1 1 2 2( ) ( )  and  ( ) ( )DFT DFT
N N

x n X k x n X k←→ ←→

1a
2a

1 1 2 2 1 1 2 2( ) ( ) ( ) ( )DFT
N

a x n a x n a X k a X k+ ←→ +

� Circular Symmetries of a Sequence . As we have seen, 
the N-point DFT of a finite duration sequence        , of 
length          , is equivalent to the N-point DFT of a 
periodic sequence        , of period N, which is obtained 
by periodically extending        , that is  
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Periodicity, Linearity, and Symmetry 
Properties
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� Circular Symmetries of a Sequence . Suppose that we 
shift the periodic sequence          by k units to the right. 
Thus we obtain another periodic sequence

� The finite-duration sequence

is related to the original sequence         by a circular shift. 
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Periodicity, Linearity, and Symmetry 
Properties

( )px n

' ( ) ( ) ( )p p
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' ( ), 0 1
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

( )x n

� Circular Symmetries of a Sequence . This relationship 
is illustrated as below for N=4. 
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Periodicity, Linearity, and Symmetry 
Properties
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� Circular Symmetries of a Sequence .

� In general, the circular shift of the sequence can be 
represented as the index modulo N. thus we can write

� Time reversal of N-point sequence
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Periodicity, Linearity, and Symmetry 
Properties

'( ) ( ,  modulo )

        (( ))N

x n x n k N

x n k

= −

= −

(( )) ( ),  0 1Nx n x N n n N− = − ≤ ≤ −

� Circular Symmetries of a Sequence . An equivalent 
definition of even and odd sequences for the associated 
periodic sequence          is given as follows

� If the periodic sequence is complex valued, we have
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Periodicity, Linearity, and Symmetry 
Properties

( )px n
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� Circular Symmetries of a Sequence . These relationships 
suggest that we decompose the sequence           as

where 
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Periodicity, Linearity, and Symmetry 
Properties
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� Symmetry properties of the DFT . The sequences can be 
expressed as 

� We can obtain
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Periodicity, Linearity, and Symmetry 
Properties
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� Symmetry properties of the DFT .

� Similarly,
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Periodicity, Linearity, and Symmetry 
Properties
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� Real-valued sequences . If the sequence         is real, it 
follows 

� Consequently,
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Periodicity, Linearity, and Symmetry 
Properties
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� Real and even sequences . If         is real and even, that is 

� And                  . Hence the DFT reduces to

� IDFT 
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Periodicity, Linearity, and Symmetry 
Properties
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� Real and odd sequences . If         is real and odd, that is 

� And                  . Hence the DFT reduces to

� IDFT 
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Periodicity, Linearity, and Symmetry 
Properties
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� Purely imaginary sequences .

� We observe that             is odd and            is even.  
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Periodicity, Linearity, and Symmetry 
Properties
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Periodicity, Linearity, and Symmetry 
Properties
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� Suppose that we have two finite-duration sequences of 
length N,                        . Their respective N-point DFTs 
are

� If we multiply the two DFTs together, the result is a DFT, 
say           , of a sequence           of length N. 
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Multiplication of Two DFTs and Circular 
Convolution
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� The IDFT of               is

� Suppose that we substitute for                            using the 
DFTs, thus we obtain   
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Multiplication of Two DFTs and Circular 
Convolution
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� The inner sum in the brackets in the above equation has 
the form

where      is defined as 

� We observe that           when               is a multiple of N.  
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Multiplication of Two DFTs and Circular 
Convolution
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� On the other hand,            for any value of          .

� Consequently, the above equation reduces to

� Then we obtain the desired expression for           in the 
form   
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Multiplication of Two DFTs and Circular 
Convolution
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� Circular convolution . If

then

where                          denotes the circular convolution of 
the sequence                          . 
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Multiplication of Two DFTs and Circular 
Convolution

1 1 2 2( ) ( )  and  ( ) ( )DFT DFT
N N
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� Time reversal of a sequence . If

then

� Hence reversing the N-point sequence in time is 
equivalent to reversing the DFT values.
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Additional DFT Properties
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� Circular time shift of a sequence . If

then

� Circular frequency shift . If
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Additional DFT Properties
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� Complex-conjugate properties . If

then

� The IDFT of            is

therefore, 
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Additional DFT Properties
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� Circular correlation . If

then

where            is the (unnormalized) circular 
crosscorrelation sequence, defined as 
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Additional DFT Properties
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� Multiplication of two sequences . If

then

� Parseval’s Theorem . If

then
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Additional DFT Properties
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� The DFT provides a discrete frequency representation of 
a finite-duration sequence in the frequency domain, it 
explore its use as a computational tool for linear system 
analysis and, especially, for linear filtering.

� We have already established that a system with 
frequency response           , when excited with an input 
signal that has a spectrum           , possesses an output 
spectrum                              .

� The output sequence          is determined from its 
spectrum via the inverse Fourier transform.
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Linear Filtering Methods based on the 
DFT

( )H ω
( )X ω

( ) ( ) ( )Y X Hω ω ω=

( )y n

� Suppose that we have a finite-duration sequence         of 
length L which excites an FIR filter of length M. Without 
loss of generality, let

where          is the impulse response of the FIR filter. 

� The output sequence
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Use of the DFT in Linear Filtering
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� The frequency-domain equivalent to the above is 

� If

then

where                                are the N-point DFTs of the 
corresponding sequences                      .  

2010/6/12 Introduction to Digital Signal Processing 85

Use of the DFT in Linear Filtering
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� In practical applications involving linear filtering of 
signals, the input sequence          is often a very long 
sequence. This is especially true in some real-time 
signal processing applications concerned with signal 
monitoring and analysis. 

� Since linear filtering performed via the DFT involves 
operations on a block of data, which by necessity must 
be limited in size due to limited memory of a digital 
computer, a long input signal sequence must be 
segmented to fixed-size blocks prior to processing.
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Filtering of Long Data Sequences

( )x n
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Overlap-Add Method
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Overlap-Add Method

� We first segment x(n), assumed to be a causal sequence 
here without any loss of generality, into a set of contiguous 
finite-length subsequences of length L each:

where

� Thus we can write

where

� Since h(n) is of length M and xm(n) is of length L, ym(n) is of 
length L + M −1
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Overlap-Add Method

� The desired linear convolution y(n) = h(n) ＊ x(n) is broken 
up into a sum of infinite number of short-length linear 
convolutions of length L + M −1 each: ym(n) = h(n) ＊ xm(n)

� Consider implementing the following convolutions using the 
DFT-based method, where now the DFTs (and the IDFT) 
are computed on the basis of (L + M −1) points

� The first convolution in the above sum, y0(n) = h(n) ＊ x0(n), 
is of length L + M −1 and is defined for 0 ≤ n ≤ L + M − 2

� The second short convolution y1[n] = h(n) ＊x1(n), is also of 
length L + M −1 but is defined for L ≤ n ≤ 3L + M − 2

� There is an overlap of samples between these two short 
linear convolutions
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Overlap-Add Method

� In general, there will be an overlap of M −1 samples 
between the samples of the short convolutions h(n) ＊ xr-1(n) 
and h(n) ＊ xm(n) for (r −1)L ≤ n ≤ rL + M − 2
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Overlap-Add Method

� Therefore, y(n) obtained by a linear convolution of x(n) and 
h(n) is given by

2010/6/12 91Introduction to Digital Signal Processing

0

1 1

1
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y n y n n
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�

Overlap-Add Method

� The above procedure is called the overlap-add method 
since the results of the short linear convolutions overlap and 
the overlapped portions are added to get the correct final 
result

� The MATLAB function fftfilt can be used to implement the 
above method

� The following illustrates an example of filtering of a noise-
corrupted signal using a length-3 moving average filter:
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Overlap-Save Method
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Overlap-Save Method

� In implementing the overlap-add method using the DFT, we 
need to compute two (L + M −1)-point DFTs and one (L + M
−1)-point IDFT for each short linear convolution

� It is possible to implement the overall linear convolution by 
performing instead circular convolution of length shorter than 
(L + M −1)

� To this end, it is necessary to segment x(n) into 
overlapping blocks xm(n), keep the terms of the circular 
convolution of h(n) with that corresponds to the terms 
obtained by a linear convolution of h(n) and xm(n), and throw 
away the other parts of the circular convolution
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Overlap-Save Method

� To understand the correspondence between the linear and 
circular convolutions, consider a length-4 sequence x(n) and 
a length-3 sequence h(n)

� Let yL(n) denote the result of a linear convolution of x(n) with 
h(n)

� The six samples of yL(n) are given by
yL(0) = h(0)x(0)
yL(1) = h(0)x(1) + h(1)x(0)
yL(2) = h(0)x(2) + h(1)x(1) + h(2)x(0)
yL(3) = h(0)x(3) + h(1)x(2) + h(2)x(1)
yL(0) = h(1)x(3) + h(2)x(2)
yL(5) = h(2)x(3)
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Overlap-Save Method

� If we append h(n) with a single zero-valued sample and 
convert it into a length-4 sequence he(n), the 4-point circular 
convolution Yc(n) of he(n) and x(n) is given by

yC(0) = h(0)x(0) + h(1)x(3) + h(2)x(2)
yC(1) = h(0)x(1) + h(1)x(0) + h(2)x(3)
yC(2) = h(0)x(2) + h(1)x(1) + h(2)x(0)
yC(3) = h(0)x(3) + h(1)x(2) + h(2)x(1)

� If we compare the expressions for the samples yL(n) of with 
those of yC(n), we observe that the first 2 terms of yC(n) do 
not correspond to the first 2 terms of yL(n), whereas the last 
2 terms of yC(n) are precisely the same as the 3rd and 4th 
terms of yL(n), i.e.

yL(0) ≠ yC(0), yL(1) ≠ yC(1), yL(2) = yC(2), yL(3) = yC(3) 
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Overlap-Save Method

� General case : N-point circular convolution of a length-M 
sequence h(n) with a length-L sequence x(n) with N > M

� First M − 1 samples of the circular convolution are incorrect 
and are rejected

� Remaining L − M + 1 samples correspond to the correct 
samples of the linear convolution of h(n) with x(n) 

� Now, consider an infinitely long or very long sequence x(n)
� Break it up as a collection of smaller length (length-4) 

overlapping sequences xm(n) as xm(n) = x(n + 2m), 0 ≤ n ≤ 3, 
0 ≤ m ≤ ∞

� Next, form
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( ) ( ) ( )m mw n h n x n= 4

Overlap-Save Method

� Or, equivalently, 
wm(0) = h(0)xm(0) + h(1)xm(3) + h(2)xm(2)
wm(1) = h(0)xm(1) + h(1)xm(0) + h(2)xm(3)
wm(2) = h(0)xm(2) + h(1)xm(1) + h(2)xm(0)
wm(3) = h(0)xm(3) + h(1)xm(2) + h(2)xm(1)

� Computing the above for m = 0, 1, 2, 3, . . . , and substituting 
the values of xm[n] we arrive at

w0(0) = h(0)x(0) + h(1)x(3) + h(2)x(2) � Reject
w0(1) = h(0)x(1) + h(1)x(0) + h(2)x(3) � Reject
w0(2) = h(0)x(2) + h(1)x(1) + h(2)x(0) = y[2] � Save
w0(3) = h(0)x(3) + h(1)x(2) + h(2)x(1) = y[3] � Save
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Overlap-Save Method

w1(0) = h(0)x(2) + h(1)x(5) + h(2)x(4) � Reject
w1(1) = h(0)x(3) + h(1)x(2) + h(2)x(5) � Reject
w1(2) = h(0)x(4) + h(1)x(3) + h(2)x(2) = y(4) � Save
w1(3) = h(0)x(5) + h(1)x(4) + h(2)x(3) = y(5) � Save

w2(0) = h(0)x(4) + h(1)x(7) + h(2)x(6) � Reject
w2(1) = h(0)x(5) + h(1)x(4) + h(2)x(7) � Reject
w2(2) = h(0)x(6) + h(1)x(5) + h(2)x(4) = y(6) � Save
w2(3) = h(0)x(7) + h(1)x(6) + h(2)x(5) = y(7) � Save

� It should be noted that to determine y(0) and y(1), we need 
to form x−1(n): x−1(0) = 0, x−1(1) = 0, x−1(2) = x(0) , x−1(3) = 
x(1) and compute w−1(n) = h(n) 4 x−1(n) for 0 ≤ n ≤ 3, reject 
w−1(0) and w−1(1), and save w−1(2) = y(0), and w−1(3) = y(1)
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Overlap-Save Method

� General Case : Let h(n) be a length-L sequence
� Let xm(n) denote the m-th section of an infinitely long 

sequence x[n] of length L and defined by
xm(n) = x(n + m(L − m + 1)), 0 ≤ n ≤ L − 1 with M < L

� Let wm(n) = h(n)    xm(n)
� Then, we reject the first M − 1 samples of wm(n) and “abut” 

the remaining L − M + 1 samples of wm(n) to form yL(n), the 
linear convolution of h(n) and x(n)

� If ym[n] denotes the saved portion of wm(n), i.e.,

� Then yL(n + m(L − M + 1)) = ym(n), M − 1 ≤ n ≤ l − 1 

2010/6/12 100Introduction to Digital Signal Processing

0,           0 2
( )

( ),    -1 2m

n M
y n

w n M n L

≤ ≤ −
= 

≤ ≤ −



51

Overlap-Save Method

� The approach is called overlap-save method since the 
input is segmented into overlapping sections and parts of the 
results of the circular convolutions are saved and abutted to 
determine the linear convolution result
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Overlap-Save Method
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� Let            denote the sequence to be analyzed. Limiting 
the duration of the sequence to L samples, in the interval 

, is equivalent to multiplying           by a 
rectangular window           of length L. That is

where  
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Frequency Analysis of Signals Using the 
DFT

{ ( )}x n

0 1n L≤ ≤ − { ( )}x n
( )w n

ˆ( ) ( ) ( )x n x n w n=

1, 0 1
( )

0, otherwise

n L
w n

≤ ≤ −
= 



� Suppose that the sequence          consists of a signal 
sinusoid, that is

� Then the Fourier transform of the finite-duration 
sequence          can be expresses as

where            is the Fourier transform of the window 
sequence, which is   
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Frequency Analysis of Signals Using the 
DFT

( )x n

0( ) cosx n nω=

( )x n

0 0
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X W Wω ω ω ω ω= − + +
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� Magnitude spectrum for L=25 and N=2048, illustrating the 
occurrence of leakage.   
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Frequency Analysis of Signals Using the 
DFT

�
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Frequency Analysis of Signals Using the 
DFT

0 1 2( ) cos cos cosx n n n nω ω ω= + +
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Signal Transform

• Motivation: 
– Represent a vector (e.g. a block of image samples) as 

the superposition of some typical vectors (block 
patterns)

+
t1 t2 t3 t4
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Transform Coding of a Image
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1-D 16-Pont DFT Basis Vectors
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Disadvantages of DFT in Signal Coding

• Fourier Transform of a real function results in
complex numbers

• May result in artifacts due to discontinuity
at the block boundary

Discontinuities (high freq. components)

2010/6/12 110Introduction to Digital Signal Processing



56

From DFT to DCT

• DFT of any real and symmetric sequence contains only 
real coefficients corresponding to the cosine terms of 
the series

• Construct a new symmetric sequence y(n) of length  2N 
out of x(n) of length N

• Y(n) is symmetrical about n = N - (1/2)

= ≤ ≤ −

= − − ≤ ≤ −

( ) ( ),0 1,

( ) (2 1 ), 2 1.

y n x n n N

y n x N n N n N
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From DFT to DCT

• DCT has a higher compression ration than DFT
• DCT avoids the generation of spurious spectral 

components

No discontinuities
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From DFT to DCT
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1-D N-Point DCT
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where

• The constants are often defined differently
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1-D N-Point DCT

( )cos (2 1)0 /16n π+

( )cos (2 1)1 /16n π+

( )cos (2 1)2 /16n π+

( )cos (2 1)3 /16n π+

( )cos (2 1)4 /16n π+

( )cos (2 1)5 /16n π+

( )cos (2 1)6 /16n π+

( )cos (2 1)7 /16n π+
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Example of 1-D DCT
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Illustration of Image Coding Using 2-D 
DCT
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DCT-Based Image Coding with 
Different Quantization Levels

• DCT coding with increasingly coarse quantization, block size 8x8

quantizer step-size 
for AC coefficient: 
25

quantizer step-size 
for AC coefficient: 
100

quantizer step-size 
for AC coefficient: 
200

2010/6/12 118Introduction to Digital Signal Processing



60

Image Coding with Different Numbers 
of DCT Coefficients

original

with 8/64 
coefficients

with 4/64 
coefficients

with 16/64 
coefficients
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DCT-Based Coding: JPEG

8x8 blocks

Entropy
encoder

Compressed
image data

Q
DPCM

Zigzag
scan

Quantization
table

Table
specification

Entropy
decoder

Compressed
image data

IQ
DPCM

Zigzag
scan

Quantization
table

Table
specification

Source
image data

Reconstructed
image data

DCT
AC

DC

8x8 blocks

IDCT

DC

AC
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