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Chapter 4

� The Fourier transform is a mathematical tool that is 
useful in the analysis and design of LTI systems

� These signal representations basically involve the 
decomposition of the signals in terms of sinusoidal (or 
complex exponential) components

� With such a decomposition, a signal is said to be 
represented in the frequency domain

� Most signals of practical interest can be decomposed 
into a sum of sinusoidal signal components
� For the class of periodic signals, such a decomposition is called a 

Fourier series
� For the class of finite energy signals, the decomposition is called 

the Fourier transform
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Frequency Analysis of Signals
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The Father of Fourier Transform
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� A prism can be used to break up white light (sunlight) 
into the colors of the rainbow.

Analysis

Synthesis

Frequency Analysis of Continuous-Time 
Signals
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� Frequency analysis of a signal involves the resolution of 
the signal into its frequency (sinusoidal) components

� Signal waveforms are basically functions of time
� The role of the prism is played by the Fourier analysis 

tools that we will develop: the Fourier series and the 
Fourier transform

� Examples of periodic signals encountered in practice are 
square waves, rectangular waves, triangular waves, 
sinusoids and complex exponentials

Frequency Analysis of Continuous-Time 
Signals

The Fourier Series for Continuous – Time 
Periodic Signals
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� The basic mathematical representation of periodic 
signals is the Fourier series , which is a linear weighted 
sum of harmonically related sinusoids or complex 
exponentials

� Fundamental period:

� determines the fundamental period of         and the 
coefficients         specify the shape of the waveform
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The Fourier Series for Continuous – Time 
Periodic Signals
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� Suppose that we are given a periodic signal        with 
period Tp. We can represent the periodic signal, called a 
Fourier series

� The fundamental frequency F0 is selected to be the 
reciprocal of the given period Tp

� To determine the expression for the coefficients {ck}, we 
first multiply both sides of

by the complex exponential
where l is an integer
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The Fourier Series for Continuous – Time 
Periodic Signals
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� Signal period, from             . Where      is an arbitrary but 
mathematically convenient starting value. Thus we obtain

� We interchange the order of the summation and 
integration and combine the two exponentials. Hence
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The Fourier Series for Continuous – Time 
Periodic Signals
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� We can get

� Therefore

� The integral for the Fourier series coefficients will be 
written as 

� That is, the signal x(t) and its Fourier series representation

are equal at every value of t
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The Fourier Series for Continuous – Time 
Periodic Signals
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� Dirichlet conditions:
� The signal            has a finite number of discontinuities in any 

period

� The signal            contains a finite number of maxima and minima 
during any period

� The signal            is absolutely integrable in any period, that is

� All periodic signals of practical interest satisfy these conditions  
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The Fourier Series for Continuous – Time 
Periodic Signals
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� The weaker condition: signal has finite energy in one 
period,

guarantees that the energy in the difference signal

is zero, although x(t) and its Fourier series may not be 
equal for all value of t

� Frequency Analysis of Continuous-Time Periodic Signals
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Synthesis equation

Analysis equation
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The Fourier Series for Continuous – Time 
Periodic Signals
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� In general, the Fourier coefficients ck are complex 
valued.

� If the periodic signal is real, ck and c−k are complex 
conjugates. 

� As a result, if 

� Consequently, the Fourier series may also be 
represented in the form

where c0 is real valued when x(t) is real
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The Fourier Series for Continuous – Time 
Periodic Signals
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� Finally, we should indicate that yet another form for the 
Fourier series can be obtained by expanding the cosine 
function above page as

� Then, we can obtain

� where  
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Power Density Spectrum of Periodic 
Signals
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� A periodic signal has infinite energy and a finite average 
power, which is given as

� If we take the complex conjugate and substitute for        , 
we obtain
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Power Density Spectrum of Periodic 
Signals
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� Therefore, we have established the relation

which is called Parseval’s relation for power signals.

� Suppose that  x(t) consists of a single complex 
exponential

� In this case, all the Fourier series coefficients except ck
are zero

� The average power in the signal is
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Power Density Spectrum of Periodic 
Signals
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� |ck|2 represents the power in the k-th harmonic 
component of the signal

� Hence the total average power in the periodic signal is 
simply the sum of the average powers in all the 
harmonics.

� Power density spectrum of a continuous-time periodic 
signal
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Power Density Spectrum of Periodic 
Signals
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� The Fourier series coefficients {ck} are complex valued, 
that is, they can be represented as 

where

� If the periodic signal is real valued, the Fourier series 
coefficients {ck} satisfy the condition

� Consequently
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Power Density Spectrum of Periodic 
Signals
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� The total average power can be expressed as

� Example : Determine the Fourier series and the power 
density spectrum of the rectangular pulse train signal.
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Power Density Spectrum of Periodic 
Signals
� Solution : The signal is periodic with fundamental period 

Tp and, clearly, satisfies the Dirichlet conditions. So the 
signal can be represented in the Fourier series

� As x(t) is an even signal (i.e.,  x(t) = x(−t)), it is convenient 
to select the integration interval from −Tp/2  to Tp/2

� The term c0 represents the average value (DC component) 
of the signal  x(t). For k ≠ 0 we have
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Power Density Spectrum of Periodic 
Signals

� The function

� The power density spectrum for the rectangular pulse 
train is

sinφ
φ

2

2

2 2

0

0

, 0

sin
, 1, 2,...

p

k

p

A
k

T
c

kFA
k

T kF

τ

π ττ
π τ

  
 =    = 
   

= ± ±       



11

2010/4/14 Introduction to Digital Signal Processing 21

Power Density Spectrum of Periodic 
Signals

� Consider an aperiodic signal x(t) with finite duration. From 
this aperiodic signal, we can create a periodic signal  xp(t) 
with period Tp, as shown below
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The Fourier Transform for Continuous-
Time Aperiodic Signals
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The Fourier Transform for Continuous-
Time Aperiodic Signals

� Clearly, xp(t) = x(t) in the limit as Tp → ∞, that is

� This interpretation implies that we should be able to 
obtain the spectrum of x(t) from the spectrum of xp(t) 
simply by taking the limit as Tp → ∞

� We begin with the Fourier series representation of xp(t)

� Since xp(t) = x(t) for 
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� Consequently, the limits on the integral above can be 
replaced by         and      . Hence

� Let us now define a function  X(F), called the Fourier 
transform of x(t), as

� X(F) is a function of the continuous variable F
� The Fourier coefficients ck can be expressed in terms of 

X(F)
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The Fourier Transform for Continuous-
Time Aperiodic Signals
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� From above, we can obtain

� We define               , then

� The limit as Tp approaches infinity, xp(t) reduces to x(t)

� This integral relationship yields x(t) when X(F) is known, 
and it is called the inverse Fourier transform
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The Fourier Transform for Continuous-
Time Aperiodic Signals
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� Frequency Analysis of Continuous-Time Aperiodic Signals

� Let                  , since
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The Fourier Transform for Continuous-
Time Aperiodic Signals

Synthesis equation
(inverse transform)

Analysis equation
(direct transform)
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� Dirichlet conditions:
� The signal  x(t) has a finite number of discontinuities.

� The signal x(t) has a finite number of maxima and minima.

� The signal x(t) is absolutely integrable, that is

The Fourier Transform for Continuous-
Time Aperiodic Signals

( )x t dt
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� The third condition follows easily from the definition of 
the Fourier transform

� Hence                 

� A weaker condition for the existence of the Fourier 
transform is that x(t) has finite energy; that is, 
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The Fourier Transform for Continuous-
Time Aperiodic Signals
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� Note that if a signal         is absolutely integrable, it will 
also have finite energy. That is, if

then                   

� For example, the signal                          is a square 
integrable but is not absolutely integrable. This signal 
has the Fourier transform 
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The Fourier Transform for Continuous-
Time Aperiodic Signals
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� Let x(t) be any finite energy signal with Fourier transform  
X(F). Its energy is

� To express X(F) as follow 
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Energy Density Spectrum of Aperiodic
Signals
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� Therefore, we conclude that

� Polar form
� Magnitude |X(F)|, phase spectrum
� Energy density spectrum 

� Finally, as in the case of Fourier series, it is easily 
shown that if the signal x(t) is real, then

� We obtain
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Energy Density Spectrum of Aperiodic
Signals
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� A periodic sequence x(n) with period N, that is, 

� The Fourier series representation for x(n) consists of N
harmonically related exponential functions

� And is expressed as

� The {ck} are the coefficients in the series representation. 
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The Fourier Series for Discrete-Time 
Periodic Signals
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� To derive the expression for the Fourier coefficients, we 
use the following formula:

� The geometric summation formula 
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The Fourier Series for Discrete-Time 
Periodic Signals
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� The expression for the Fourier coefficients ck can be 
obtained by multiplying both sides of 

by the exponential              and summing the product 
from n=0 to n = N – 1. Thus 
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The Fourier Series for Discrete-Time 
Periodic Signals
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� If we perform the summation over n first, we obtain

� Hence

� Frequency Analysis of Discrete-Time Periodic Signals
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The Fourier Series for Discrete-Time 
Periodic Signals
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Synthesis equation

Analysis equation
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Discrete-time Fourier 
Series (DTFS)

� The average power of a discrete-time periodic signal with 
period N was defined as

� We shall now derive an expression for Px in terms of the 
Fourier coefficient  {cx}. We have

� Then

� If we are interested in the energy of the sequence  x(n)        
over a single period, it implies that
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Power Density Spectrum of Periodic 
Signals
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� If the signal x(n) is real, then, we can easily show that

� Or equivalently

� We obtain

� More specifically, we have
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Power Density Spectrum of Periodic 
Signals
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if N is even
if N is odd

� The Fourier series can also be expressed in the 
alternative forms

� Where            ,                         ,
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Power Density Spectrum of Periodic 
Signals
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� The Fourier transform of a finite-
energy discrete-time signal x(n) 
is defined as 

� X(ω) represents the frequency 
content of the signal  x(n)

� X(ω) is a decomposition of x(n) 
into its frequency components.
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The Fourier Transform of Discrete-Time 
Aperiodic Signals
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� X(ω) is periodic with period 2π, that is

� Hence X(ω) is periodic with period 2π
� Let us evaluate the sequence x(n) from X(ω). Thus we 

have

� This interchange can be made if the series

� converges uniformly to X(ω) as N → ∞
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The Fourier Transform of Discrete-Time 
Aperiodic Signals
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� We can interchange the order of summation and integration

� Consequently,

� The desired result that 
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The Fourier Transform of Discrete-Time 
Aperiodic Signals
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(inverse transform)

Analysis equation
(direct transform)
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j nx n X e dω
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ω ω
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( ) ( ) j n
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X x n e ωω
∞

−

=−∞

= ∑

� We assume that the series
converges uniformly to. By uniform convergence we 
mean that for each ω

� Uniform convergence is guaranteed if x(n) is absolutely 
summable. If 

then  

� Some sequences are not absolutely summable, but they 
are square summable. That is, they have finite energy
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Convergence of the Fourier Transform
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� This leads to a mean-square convergence condition:

the energy in the error X(ω) − XN(ω) tends toward zero

� Example - Suppose that

� X(ω) is periodic with period 2π
� The inverse transform of X(ω) results in the sequence
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Convergence of the Fourier Transform
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� For n = 0, we have

� Hence

� The sequence {x(n)} is expressed as
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Convergence of the Fourier Transform
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� Note, the above he sequence {x(n)} 
is not absolutely summable. Hence 
the infinite series 

does not converge uniformly for all ω
� To elaborate on this point, let us 

consider the finite sum

� Right figures shows the function 
XN(ω) for several values of N.

2010/4/14 Introduction to Digital Signal Processing 45

Convergence of the Fourier Transform
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∞ ∞
− −

=−∞ =−∞

=∑ ∑

� The energy of a discrete-time signal x(n) is defined as

� The energy Ex in terms of the spectral characteristic X(ω), 
first we have

� Then        
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Energy Density Spectrum of Aperiodic
Signals
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� The energy relation between x(n)  and X(ω) is

this is Parseval’s relation for discrete-time aperiodic
signals with finite energy.

� The spectrum X(ω) is, in general, a complex-valued 
function of frequency. It may be expressed as      

2010/4/14 Introduction to Digital Signal Processing 47

Energy Density Spectrum of Aperiodic
Signals

2 21
( ) ( )

2x
n

E x n X d
π

π
ω ω

π

∞

−
=−∞

= =∑ ∫

( )( ) ( ) jX X e ωω ω Θ=

where phase spectrum( ) ( )Xω ωΘ =�

� As in the case of continuous-time signals, the quantity

represents the distribution of energy as a function of 
frequency, namely the energy density spectrum of x(n)

� Clearly, Sxx(ω) does not contain any phase information
� If x(n) is real, then it easily follows that

� or equivalently

� It also follows that
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Energy Density Spectrum of Aperiodic
Signals

2
( ) ( )xxS Xω ω=

*( ) ( )X Xω ω= −
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X X
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ω ω

ω ω

− =

− = −� �

even symmetry
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( ) ( )xx xxS Sω ω− = even symmetry
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� Example - Determine and sketch the energy density 
spectrum            of the signal

� Solution : 
� Since            , the sequence            is absolutely summable, as 

can be verified by applying the geometric summation formula,

� Hence the Fourier transform of           exists and is obtained. Thus
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Energy Density Spectrum of Aperiodic
Signals

( )xxS ω

( ) ( ), 1 1nx n a u n a= − < <

0

1
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1
n

n n

x n a
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∞ ∞
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0 0

( ) ( )n j n j n

n n

x a e aeω ωω
∞ ∞

− −

= =

= =∑ ∑

1a < ( )x n

( )x n

� Since                       , use of the geometric summation 
formula again yields

� The energy density spectrum is given by

� Equivalently

� Note that                          
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Energy Density Spectrum of Aperiodic
Signals
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Energy Density Spectrum of Aperiodic
Signals

� The z-transform of a sequence x(n) is defined as

where                  is the region of convergence of X(z)

� Let us express the complex variable z in polar form as

where              and               . 
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Relationship of the Fourier Transform to 
the z-Transform

2 1( ) ( ) , :n

n

X z x n z ROC r z r
∞
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= < <∑

jz re ω=

2 1r z r< <

r z= zω =�
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� Then, within the region of convergence of X(z), we can 
substitute                in above

� If X(z) converges for  |z| = 1 , then
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Relationship of the Fourier Transform to 
the z-Transform
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Relationship of the Fourier Transform to 
the z-Transform

( ) n

n

x n r
∞

−

=−∞

< ∞∑

� The existence of the 
z-transform requires 
that the sequence     

be absolutely 
summable for some 
value of r, that is             

{ }( ) nx n r−
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� There are sequences, however, that do not satisfy the 
requirement in above equation, for example, the 
sequence

� This sequence does not have a z-transform. Since it has 
a finite energy, its Fourier transform converges in the 
mean-square sense to the discontinuous function X(ω), 
defined as
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Relationship of the Fourier Transform to 
the z-Transform

sin
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c

X
ω ω
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ω ω π
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< ≤

� There are some aperiodic sequences that are neither 
absolutely summable nor square summable. Hence their 
Fourier transforms do not exist. One such sequence is 
the unit step sequence, which has the z-transform 

� Another such sequence is the causal sinusodial signal 
sequence                                   . This sequence has the 
z-transform
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The Fourier Transform of Signals with 
Poles on the Unit Circle
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Frequency-Domain Classification of 
Signals: The concept of Bandwidth

Low-frequency

High-frequency

Medium-frequency
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� Some examples of bandlimited signals

Frequency-Domain Classification of 
Signals: The concept of Bandwidth
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The Frequency Ranges of Some Natural 
Signals

� Frequency ranges of some biological signals
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The Frequency Ranges of Some Natural 
Signals

� Frequency ranges of some seismic signals
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� Frequency ranges of electromagnetic signals

The Frequency Ranges of Some Natural 
Signals
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Frequency-Domain and Time-Domain 
Signal Properties

� To summarize, the following frequency analysis tools 
have been introduced:

� The Fourier series for continuous-time periodic signals.

� The Fourier transform for continuous-time aperiodic signals.

� The Fourier series for discrete-time periodic signals.

� The Fourier transform for discrete-time aperiodic signals.
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Frequency-Domain and Time-Domain 
Signal Properties

� Let us briefly summarize the results of the previous 
sections.

� Continuous-time signals have aperiodic spectra.

� Discrete-time signals have periodic spectra.

� Periodic signals have discrete spectra.

� Aperiodic finite energy signals have continuous spectra.
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Frequency-Domain and Time-Domain 
Signal Properties
� Summary of analysis and synthesis formulas
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Frequency-Domain and Time-Domain 
Signal Properties

� We observe that there are dualities between the 
following analysis and synthesis equations:
� The analysis and synthesis equations of the continuous-time 

Fourier transform.

� The analysis and synthesis equations of the discrete-time 
Fourier series.

� The analysis equation of the continuous-time Fourier series and 
the synthesis equation of the discrete-time Fourier transform.

� The analysis equation of the discrete-time Fourier transform and 
the synthesis equation of the continuous-time Fourier series.
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Properties of the Fourier Transform for 
Discrete-Time Signals

� The Fourier transform for aperiodic finite-energy 
discrete-time signals described in the preceding section 
possesses a number of properties that are very useful in 
reducing the complexity of frequency analysis problems 
in many practical applications.

� We develop the important properties of the Fourier 
transform. Similar properties hold for the Fourier 
transform of aperiodic finite-energy continuous-time 
signals.
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� For convenience, we adopt the notation

� For the direct transform (analysis equation) and

� For the inverse transform (synthesis equation). We also 
refer to x(n) and  X(ω) as a Fourier transform pair and 
denote this relationship with the notation  
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Properties of the Fourier Transform for 
Discrete-Time Signals
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2
j nx n F X X e dω

π
ω ω ω

π
−≡ = ∫

( ) ( )Fx n X ω←→

� Suppose that both the signal x(n) and its transform X(ω)
are complex-valued functions. Then they can be 
expressed in rectangular form as

� By substituting above and                                 and
separating the real and imaginary parts, we obtain
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Symmetry Properties of the Fourier 
Transform
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� In a similar manner, by substituting above and

we obtain
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Symmetry Properties of the Fourier 
Transform
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∫

cos sinje jω ω ω= +

� Real signals
� If           is real, then                          and                    . Then

� Since                                  and                                  , it follows 
from above 
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Symmetry Properties of the Fourier 
Transform
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� If we combine above into a single equation, we have

� In this case we say that the spectrum of a real signal has 
Hermitian symmetry.

� We observe that the magnitude and phase spectra for 
real signals are
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Symmetry Properties of the Fourier 
Transform

*( ) ( )X Xω ω= −

2 2

1

( ) ( ) ( )

( )
tan

( )

R I

I

R

X X X

X
X

X

ω ω ω

ω
ω

ω
−

= +

=�

� The magnitude and phase spectra also possess the 
symmetry properties

2010/4/14 Introduction to Digital Signal Processing 72

Symmetry Properties of the Fourier 
Transform

( ) ( )

( ) ( )

X X

X X

ω ω

ω ω

= −

− = −� �

(even)

(odd)



37

� In the case of the inverse transform of a real-valued 
signal [i.e.,                      ], which implies that

� Since both products                         and                        
are even functions of     , we have
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Symmetry Properties of the Fourier 
Transform

[ ]
2

1
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π
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( ) ( )Rx n x n=

( ) cosRX nω ω ( )sinIX nω ω
ω

� Real and even signals
� If         is real and even [i.e.,                      ], then           

is even and                    is odd. Hence

� Thus real and even signals possess real-valued spectra, which, 
in addition, are even functions of the frequency variable      . 
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Symmetry Properties of the Fourier 
Transform
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Symmetry Properties of the Fourier 
Transform

� Real and odd signals
� If         is real and odd [i.e.,                       ], then           

is odd and                    is even. Hence

� Thus real-valued odd signals possess purely imaginary-valued 
spectra characteristics, which, in addition, are odd functions of 
the frequency variable      . 
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Symmetry Properties of the Fourier 
Transform

� Purely imaginary signals
� In this case                 and                      . Then
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Symmetry Properties of the Fourier 
Transform

� Purely imaginary signals
� If            is odd [i.e.,                          ], then 
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Symmetry Properties of the Fourier 
Transform

� Purely imaginary signals
� Similarly, If           is even [i.e.,                         ], then

� An arbitrary, possibly complex-valued signal          can 
be decomposed as 
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Symmetry Properties of the Fourier 
Transform

� Purely imaginary signals
� By definition

� The superscripts e and o denote the even and odd 
signal components, respectively. We note that             

and                        . 

*

*

1
( ) ( ) ( ) ( ) ( )

2
1
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2

e e
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( ) ( )e ex n x n= − ( ) ( )o ox n x n− = −
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Symmetry Properties of the Fourier 
Transform

� Purely imaginary signals
� From above and the Fourier transform properties 

established, we obtain the following relationships:

( ) ( ) ( ) ( ) ( ) ( ) ( )e e o o
R I R I e ox n x n jx n x n jx n x n x n   = + + + = +   

( ) ( ) ( ) ( ) ( ) ( ) ( )e e o o
R I R I e oX X jX X jX X Xω ω ω ω ω ω ω   = + + − = +   
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Symmetry Properties of the Fourier 
Transform
� Symmetry properties of the discrete-time Fourier transform
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Symmetry Properties of the Fourier 
Transform

� Summary of symmetry properties of the Fourier 
transform
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Fourier Transform Theorems and 
Properties

� Linearity

1 1

2 2
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then
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Fourier Transform Theorems and 
Properties

� Example : Determine the Fourier transform of the signal

� Solution : First, we observe that          can be expressed 
as 

( ) , 1 1nx n a a= − < <

( )x n

1 2( ) ( ) ( )x n x n x n= +
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� Beginning with the definition of the Fourier transform, we 
have

� The summation is a geometric series that converges to

� Provided that
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Fourier Transform Theorems and 
Properties

1 1
0 0
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1
( )

1 j
X

ae ωω
−

=
−

1j jae a e aω ω− −= ⋅ = <

� Which is a condition that is satisfied in this problem. 
Similarly, the Fourier transform of            is

� By combining these two transforms, we obtain the 
Fourier transform of           in the form
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Fourier Transform Theorems and 
Properties
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Fourier Transform Theorems and 
Properties

� The figure illustrates          and           for the case in 
which             . 

( )x n ( )X ω
0.8a =

� Time shifting

� The proof of this property follows immediately from the 
Fourier transform of                by making a change in the 
summation index. Thus
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Fourier Transform Theorems and 
Properties
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� Time reversal

� This property can be established by performing the 
Fourier transformation of              by making a simple 
change in the summation index. Thus
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Fourier Transform Theorems and 
Properties
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� If           is real, then we obtain
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Fourier Transform Theorems and 
Properties
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( )x n
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� Convolution theorem

� To prove above, we recall the convolution formula
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1 1

2 2

( ) ( )

( ) ( )

F

F

x n X

x n X

ω

ω

←→

←→

1 2 1 2( ) ( ) ( ) ( ) ( ) ( )Fx n x n x n X X Xω ω ω= ∗ ←→ =

1 2 1 2( ) ( ) ( ) ( ) ( )
k

x n x n x n x k x n k
∞

=−∞

= ∗ = −∑

If

and

then

� By multiplying both side of this equation by the 
exponential           and summing over all n, we obtain
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1 2( ) ( ) ( ) ( )j n j n

n n k

X x n e x n x n k eω ωω
∞ ∞ ∞

− −

=−∞ =−∞ =−∞

 
= = − 

 
∑ ∑ ∑

j ne ω−
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� The correlation theorem

� In this case, we have
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1 1

2 2

( ) ( )

( ) ( )

F

F

x n X

x n X

ω

ω

←→

←→

1 2 1 2 1 2( ) ( ) ( ) ( )F
x x x xr m S X Xω ω ω←→ = −

1 2 1 2( ) ( ) ( )x x
k

r n x k x k n
∞

=−∞

= −∑

If

and

then

� By multiplying both sides of this equation by the 
exponential           and summing over all n, we obtain

� The function               is called the cross-energy density 
spectrum of the signals           and          .
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1 2 1 2 1 2( ) ( ) ( ) ( )j n j n
x x x x

n n k

S r n e x k x k n eω ωω
∞ ∞ ∞

− −

=−∞ =−∞ =−∞

 
= = − 

 
∑ ∑ ∑

j ne ω−

1 2
( )x xS ω

1( )x n 2 ( )x n
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� The Wiener-Khintchine theorem
� Let           be a real signal. Then

� That is, the energy spectral density of an energy 
signal is the Fourier transform of its autocorrelation 
sequence. 
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( )x n

( ) ( )F
xx xxr l S ω←→

� Frequency shifting

� Illustration of the frequency-shifting property of the 
Fourier transform                      .
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( ) ( )Fx n X ω←→
0

0( ) ( )j n Fe x n Xω ω ω←→ −

If

then

0 2 mω π ω≤ −
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� The modulation theorem
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( ) ( )Fx n X ω←→

[ ]0 0 0

1
( )cos ( ) ( )

2
Fx n n X Xω ω ω ω ω←→ + + −

If

then

� Parseval’s theorem
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1 1

2 2

( ) ( )

( ) ( )

F

F

x n X

x n X

ω

ω

←→

←→

* *
1 2 1 2

1
( ) ( ) ( ) ( )

2n

x n x n X X d
π

π
ω ω ω

π

∞

−
=−∞

=∑ ∫

If

and

then
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� To prove this theorem, we eliminate             on the right-
hand side of above. Thus we have
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*
1 22

*
1 22

*
1 2

1
( ) ( )

2

1
( ) ( )

2

( ) ( )

j n

n

j n

n

n

x n e X d

x n X e d

x n x n

ω

π

ω

π

ω ω
π

ω ω
π

∞
−

=−∞

∞
−

=−∞

∞

=−∞

 
 
 

=

=

∑∫

∑ ∫

∑

1( )X ω

� In the special case where                                  , 
Parseval’s relation reduces to

� Therefore, we conclude that
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2 2

2

1
( ) ( )

2n

x n X d
π

ω ω
π

∞

=−∞

=∑ ∫

2 2

2

1 1
(0) ( ) ( ) ( )

2 2x xx xx
n

E r x n X d S d
π

π π
ω ω ω ω

π π

∞

−
=−∞

= = = =∑ ∫ ∫

2 1( ) ( ) ( )x n x n x n= =
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� Multiplication of two sequences (Windows theorem)
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1 1

2 2

( ) ( )

( ) ( )

F

F

x n X

x n X

ω

ω

←→

←→

3 1 2 3

1 2

( ) ( ) ( ) ( )

1
( ) ( )

2

Fx n x n x n X

X X d
π

π

ω

λ ω λ λ
π −

≡ ←→

= −∫

If

and

then

� We begin with the Fourier transform of                             
and use the formula for the inverse transform, namely,

� Thus, we have 
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1 1

1
( ) ( )

2
j nx n X e d

π λ

π
λ λ

π −
= ∫

3 3 1 2

( )
1 2 1 2

1 2

( ) ( ) ( ) ( )

1 1
( ) ( ) ( ) ( )

2 2

1
( ) ( )

2

j n j n

n n

j n j n j n

n n

X x n e x n x n e

X e d x n e X d x n e

X X d

ω ω

π πλ ω ω λ

π π

π

π

ω

λ λ λ λ
π π

λ ω λ λ
π

∞ ∞
− −

=−∞ =−∞

∞ ∞
− − −

− −
=−∞ =−∞

−

= =

  = =      

= −

∑ ∑

∑ ∑∫ ∫

∫

3 1 2( ) ( ) ( )x n x n x n=
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� Differentiation in the frequency domain

� To prove this property, we use the definition of the 
Fourier transform and differentiae the series term by 
term with respect to     . Thus we obtain 
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( ) ( )Fx n X ω←→
( )

( ) F dX
nx n j

d

ω
ω

←→

( )
( ) ( ) ( )j n j n j n

n n n

dX d d
x n e x n e j nx n e

d d d
ω ω ωω

ω ω ω

∞ ∞ ∞
− − −

=−∞ =−∞ =−∞

 
= = = − 

 
∑ ∑ ∑

If

then

ω
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� Properties of the Fourier transform for discrete-time 
signals
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� Some useful Fourier transform pairs for discrete-time 
aperiodic signals


