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Frequency Analysis of Signals

The Fourier transform is a mathematical tool that is
useful in the analysis and design of LTI systems

These signal representations basically involve the
decomposition of the signals in terms of sinusoidal (or
complex exponential) components

With such a decomposition, a signal is said to be
represented in the frequency domain

Most signals of practical interest can be decomposed
into a sum of sinusoidal signal components

o For the class of periodic signals, such a decomposition is called a
Fourier series

o For the class of finite energy signals, the decomposition is called
the Fourier transform

2010/4/14 Introduction to Digital Signal Processing 2




The Father of Fourier Transform

Joseph Fourier
lived from 1768 to 1830

Fourier studied the mathematical theory of heat
conduction. He established the partial differential equation
governing heat diffusion and solved it by using infinite
series of trigonometric functions.

Find cuf more af
htfp e history. mes st-andrews ac ukthistoryiMathematicians! Fourier. hirml
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Frequency Analysis of Continuous-Time
Signals

= A prism can be used to break up white light (sunlight)

into the colors of the rainbow.

Glass prism
Violet
Blue

Yellow

Orange
Red

Beam of
sunlight

Spectrum

(a)

Glass prism

White light

Beam of
sunlight

(by

(a) Analysis and (b) synthesis of the white light (sunlight) using glass prisms.
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Frequency Analysis of Continuous-Time
Signals

Frequency analysis of a signal involves the resolution of
the signal into its frequency (sinusoidal) components

Signal waveforms are basically functions of time

The role of the prism is played by the Fourier analysis
tools that we will develop: the Fourier series and the
Fourier transform

Examples of periodic signals encountered in practice are
square waves, rectangular waves, triangular waves,
sinusoids and complex exponentials
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The Fourier Series for Continuous — Time
Periodic Signals

The basic mathematical representation of periodic
signals is the Fourier series , which is a linear weighted
sum of harmonically related sinusoids or complex
exponentials

x(t)= Y ge* A periodic signal
k=—00

o Fundamental period: Tp=|:i
0

F, determines the fundamental period of X(t) and the
coefficients {c, } specify the shape of the waveform
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The Fourier Series for Continuous — Time
Periodic Signals

Suppose that we are given a periodic signal x(t) with
period T,. We can represent the periodic signal, called a
Fourier series

The fundamental frequency F, is selected to be the
reciprocal of the given period T,

To determine the expression for the coefficients {c,}, we
first multiply both sides of

X(t) — i Ckej27rkF0l

k=—o0
by the complex exponential g J27Folt
where | is an integer
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The Fourier Series for Continuous — Time
Periodic Signals

Signal period, from t +T, . Where {; is an arbitrary but
mathematically convenient starting value. Thus we obtain

o+T, _j27IFyt bo+Tp o j2ARt j 2kt
LO x(t)e dt = IO [z ce jdt

We interchange the order of the summation and
integration and combine the two exponentials. Hence

0T _j2rF, (k1) g2tk o
o gl2rRok gy —
>l Z%[,znp(k .)}

= z cT,o(k—1)=cT,
k=-o0
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The Fourier Series for Continuous — Time
Periodic Signals

We can get '[:”" x(t)e " Hdt =T,

1 to+Tp 24,
Therefore G :T_'Lo x(t)e i27IFt G

P

The integral for the Fourier series coefficients will be
written as c = T_lp Lp X(t)e 127 it
That is, the signal x(t) and its Fourier series representation
X(t) _ i Ckej27rkF0l
k=-o0
are equal at every value of t
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The Fourier Series for Continuous — Time
Periodic Signals

Dirichlet conditions:

o The signal X('[) has a finite number of discontinuities in any
period

o Thesignal X(t) contains a finite number of maxima and minima
during any period

o The signal X('[) is absolutely integrable in any period, that is
ij|x(t)|dt <o
o All periodic signals of practical interest satisfy these conditions
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The Fourier Series for Continuous — Time

Periodic Signals
The weaker condition: signal has finite energy in one

period, [ [xofdt<oo
guarantees that the energy in the difference signal
et) = x(t) - Y ¢

k=-o0

is zero, although x(t) and its Fourier series may not be
equal for all value of t

Frequency Analysis of Continuous-Time Periodic Signals

_ X j 27kt
Synthesis equation X1 = k,zw 8
1

Analysis equation C== .L x(t)e 127 it
p P

2010/4/14 Introduction to Digital Signal Processing 11

The Fourier Series for Continuous — Time
Periodic Signals

In general, the Fourier coefficients ¢, are complex
valued.

If the periodic signal is real, ¢, and c_, are complex
conjugates.

As a result, if ¢, =|c,|e™
then c, =lc|e’™

Consequently, the Fourier series may also be
represented in the form

X(t) = 6, + 23 o, cos(2kFot +6,)
k=1

where ¢, is real valued when x(t) is real
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The Fourier Series for Continuous — Time
Periodic Signals

Finally, we should indicate that yet another form for the
Fourier series can be obtained by expanding the cosine
function above page as

cos(2zkF.t + 6,) = cos(2zkF,t) cos(8,) —sin(2zkFt) sin(6, )
Then, we can obtain

X(t) = 3, + 3 (8, coS(27kFt) — b, Sin(27kF )

o where

a=C, a =2g|cosd,, b =2|c|sing,
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Power Density Spectrum of Periodic
Signals

A periodic signal has infinite energy and a finite average
power, which is given as

1 2
P, T Lp|x(t)| dt

If we take the complex conjugate and substitute for X (t),
we obtain

0

1 x *_j2nkFy _ ks * 1 — j 27k _ 2
P, :T_pij () X o "Hdt=3 g {T—pr X(t)e kF‘dt}— 2 led

k=—o0 k=-o0
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Power Density Spectrum of Periodic
Signals

Therefore, we have established the relation

1 2 = 2
P =T—prIX(t)I dt= 23 lo

which is called Parseval’s relation for power signals.

Suppose that x(t) consists of a single complex
exponential  x(t) = e/

In this case, all the Fourier series coefficients except c,
are zero

The average power in the signal is

P.=laf
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Power Density Spectrum of Periodic
Signals
lc, /2 represents the power in the k-th harmonic
component of the signal

Hence the total average power in the periodic signal is
simply the sum of the average powers in all the
harmonics.

Power density spectrum of a continuous-time periodic
Signal Power density spectrum | Ie;|2

—4Fy =3Fy =2F, -Fy, 0 Fy, 2F, 3F, 4F, Frequency, F
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Power Density Spectrum of Periodic
Signals

The Fourier series coefficients {c,} are complex valued,
that is, they can be represented as

G =[c|e™
where 6, = £¢,

If the periodic signal is real valued, the Fourier series
coefficients {c,} satisfy the condition

C =G

Consequently [c[* =|c;[
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Power Density Spectrum of Periodic
Signals

The total average power can be expressed as

o0 1 o0
P =c’+2> |a/ =a; +2 2@+
k=1 k=1

Example : Determine the Fourier series and the power
density spectrum of the rectangular pulse train signal.

L -
—F *on 7, f

Lantnutastine iz tiin of ot pulses,
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Power Density Spectrum of Periodic

Signals

Solution : The signal is periodic with fundamental period
T, and, clearly, satisfies the Dirichlet conditions. So the
signal can be represented in the Fourier series

As x(t) is an even signal (i.e., x(t) = x(-t)), it is convenient
to select the integration interval from —T/2 to T /2

12 12 Ar
Co==[% x(t)dt==[2 Adt=—
T '[2 T '[75 T
The term ¢, represents the average value (DC component)
of the signal x(t). For k=0 we have

Ar sinzkFr
T, kR

p 2 p

=
Il
I+
H
I+
N

Ck :Tij‘_% Ae—jZiszotdt —
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Power Density Spectrum of Periodic
Signals

g
. &
S|n¢ ,f"\':
The function 4 A
‘»"‘"‘QH,T‘-‘”"\_W’--"'M"{\W,’I h’_ {“m«'{ﬁ‘“%w’ﬂ"‘“ e
~iF <hx oy <y IR IR - T MR AR 4w ST & Wm @
o

Thee funzion {ain &3 /.

The power density spectrum for the rectangular pulse

train is
2
Ar
[_] , k ) O
2 Tp
|Ck| - 2, 2
A [S'n”—kFOTJ . k=+142,...
T, 7kF,z
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‘ Power Density Spectrum of Periodic
Signals

‘ % =0, 'T' Q.". .
T ['L'm’“l. | r’zj i B R S P

©i v=4.0T, LA

] I P J)' 1 e )
17 |"| I ” . i T Pt P | [ ’V LS S A
L S ll,l.lll-"’dfm e T gl m.F AL L =
5 . RN = f

N.nrw-diﬂumuﬂuﬂ- L is ] — il 1| AT TS

3 ¥ A
Fenrier pocfiiionts of the watangudar pulss toain when 7, isTeed Fowrfer epaffident ofa roczaagular i vy flseeed pukss
ael e Tadse width v warles. skehh v sand versing ‘;?:‘n:lﬁl'rs
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The Fourier Transform for Continuous-
Time Aperiodic Signals
= Consider an aperiodic signal x(t) with finite duration. From

this aperiodic signal, we can create a periodic signal x(t)
with period T,, as shown below

Aﬁo\

-T2 0 7,2 '
(a)
(1)

-, -T2 0 7,12 7,2 '
(b)

(a) Aperiodic signal x(r) and (b) periodic signal x,,() constructed
by repeating x(r) with a period 7},.
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The Fourier Transform for Continuous-
Time Aperiodic Signals

Clearly, x,(t) = x(t) in the limit as T, — oo, that is
X(t) = lim x,(t)
This interpretation implies that we should be able to
obtain the spectrum of x(t) from the spectrum of x(t)
simply by taking the limit as T, — o
We begin with the Fourier series representation of X(t)
TD
X, (t)= Z Ckej27rkFol [y :Tij'?p X, (t)efiZHKFotdt
k=—o0 p 2

2

Since x,(t) = x(t) for ~Tp/2<t=<T,/2

1 e .
Ck :_J' -2|—p X(t)e—JZHkFotdt
Tp 2
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The Fourier Transform for Continuous-
Time Aperiodic Signals

Consequently, the limits on the integral above can be
replaced by _,, and o . Hence
_ 1= — j 27kt
C, __I_—LO x(t)e dt

Let us now define a function X(F), called the Fourier
transform of x(t), as

X(F) =" x(t)e > dt
X(F) is a function of the continuous variable F

The Fourier coefficients c, can be expressed in terms of

X(F) 1 _ .
Go=1 X(kF,) orequivalently T, =X(kR)=X -

p p
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The Fourier Transform for Continuous-
Time Aperiodic Signals

From above, we can obtain

ST

p k=—o0

. 1 © o
We define AF :T— , then Xp(t) — k;g X (kAF )eJZ KAt A

p

The limit as T, approaches infinity, Xp(t) reduces to x(t)
Iim X, (1) = X(t) = lim z X (KAF ) 1 #4HAF

This mtegral relationship yields X(t) when X(F) is known,
and it is called the inverse Fourier transform

xt)=[" X (F)e’**drF

2010/4/14 Introduction to Digital Signal Processing 25

The Fourier Transform for Continuous-
Time Aperiodic Signals

Frequency Analysis of Continuous-Time Aperiodic Signals

Synthesis equation w S
i t)y=| X(F)“"dF
(inverse transform) X Lo (Fle

Analysis equation X (F) :r Xt el
(direct transform) —o

Let Q=27F | since dF =dQ/2x
X(t) :i jw X (Q)ed0

X(Q) = j (et
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The Fourier Transform for Continuous-
Time Aperiodic Signals

= Dirichlet conditions:
o The signal x(t) has a finite number of discontinuities.

o The signal x(t) has a finite number of maxima and minima.

o The signal x(t) is absolutely integrable, that is

f;|x(t)|dt <o
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The Fourier Transform for Continuous-
Time Aperiodic Signals

= The third condition follows easily from the definition of
the Fourier transform

X[ x(t)e et

< ["]x(v)]t
= Hence |X(F)[<=»
= A weaker condition for the existence of the Fourier

transform is that x(t) has finite energy; that is,
» 2
[ [x(t)] dt <
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The Fourier Transform for Continuous-
Time Aperiodic Signals

Note that if a signal x(t) is absolutely integrable, it will
also have finite energy. That s, if

J:|x(t)|dt <o

" 2
then E>< =I7w|X(t)| dt <

)= sin2zFt
For example, the signal x(t)= 7t Is a square
integrable but is not absolutely integrable. This signal

has the Fourier transform

1 |F|<F,
X(F)=
0, |F|>F,
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Energy Density Spectrum of Aperiodic
Signals

Let x(t) be any finite energy signal with Fourier transform
X(F). Its energy is

E, = [ x(t)et
To express X(F) as follow
£ = x()X (tae=[ x| [ X' (F)e =oF
= J:Z X (F)dF [J.:)O X(t)e*jZHFtdt:|

=J:|X(F)|2dF

Parseval’s relation for aperiodic signal
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Energy Density Spectrum of Aperiodic
Signals
Therefore, we conclude that
E=[ [x(t)fdt=["|x(F) oF
Polar form X (F)=|X(F)e®*®
Magnitude |X(F)|, phase spectrum ©(F) = £X(F)
Energy density spectrum
So(F) =X (F)’
Finally, as in the case of Fourier series, it is easily
shown that if the signal x(t) is real, then
|X(=F)|=|X(F)|, £X(-F)=-4X(F)

We obtain S, (-F)=S.(F)
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The Fourier Series for Discrete-Time
Periodic Signals

A periodic sequence x(n) with period N, that is,
x(n)=x(n+N), Vvn
The Fourier series representation for x(n) consists of N

harmonically related exponential functions
. 2zkn

e N, k=01..N-1

N-1 i2zkn
And is expressed as x(n)=) ce "
k=0

The {c,} are the coefficients in the series representation.
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The Fourier Series for Discrete-Time
Periodic Signals

= To derive the expression for the Fourier coefficients, we
use the following formula:

Elej%_ N, k=0,£N,+2N,...
o otherwise

n=

= The geometric summation formula

. N, a=1
Ya'=11_g"

>

azxl
1-a

2010/4/14 Introduction to Digital Signal Processing
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The Fourier Series for Discrete-Time
Periodic Signals

= The expression for the Fourier coefficients c, can be
obtained by multiplying both sides of

N-1 j27zkn

x(n) = che N

27in

by the exponential ¢~ and summing the product
fromn=0ton=N-1. Thus

N-1 . 27in N-1N-1 2z(k=1)n
N N
x(n)e = ce
n=0 n=0 k=0
2010/4/14 Introduction to Digital Signal Processing 34
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The Fourier Series for Discrete-Time
Periodic Signals

If we perform the summation over n first, we obtain

SN _{N, k—-1=0,=N,+2N,...

pard 0} otherwise
1y -jZn
Hence ¢ =ﬁ2x(n)e N, 1=04..,N-1
n=0

Frequency Analysis of Discrete-Time Periodic Signals

-1 . 2zkn . . .
. . Discrete-time Fourier
N
Synthesis equation x(n) = kZ;Cke Series (DTFS)
1 N-1 27rkn
: . =— x(n)e N
Analysis equation N &=
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Power Density Spectrum of Periodic
Signals

The average power of a discrete-time periodic signal with
period N was defined as

1 N-1
- X
N n=0
We shall now derive an expression for P, in terms of the
Fourier coefficient {c,}. We have

F;:%Zx(n)x*(n): ;ZX(”)(Z% ’LJ

N-1 . 27kn

=1 - — 2 = 2
then P2 £S5k |- e -2

If we are interested in the energy of the sequence x(n)
. . .. . N-1 N-1
over a single period, it implies that E, =Z|X(n)|2 _ NZ|Ck|2
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Power Density Spectrum of Periodic

Signals
If the signal x(n) is real, then, we can easily show that
Ck* =Cy
Or equivalently .| =|c] Even symmetry
~4£C«=4C  Odd symmetry
We obtain |ck| :|Cka|
£C =—£Cy

More specifically, we have
ool =lew], £0=-4cy =0
ol=leva), <o =-<c,
|CN/2| = |CN/2|’ £Cy ,= 0,

if N is even
|C(N—1>/2| = |C(N+1)/2 + KC gy ==X C if N is odd
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Power Density Spectrum of Periodic
Signals

The Fourier series can also be expressed in the
alternative forms

- 2z
x(n) = ¢, + 22|ck|cos(ﬁkn+9kJ
k=1

L
a0+2(akmsz—”kn—q9n2—”knj
k1 N N
Where &, =GC,, & =2|¢,|cosé, , b, =2|c|sing,
:{ N/2 If N is even
(N-1)/2 If N is odd
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The Fourier Transform of Discrete-Time
Aperiodic Signals

= The Fourier transform of a finite-
energy discrete-time signal x(n) :
is defined as 5 ‘ ‘ : ‘ ‘ | ‘ ‘

X(w) = ix(n)e’j“’“ T [ | l

5 0 5
n=—o Frequency (Cycles/Sampling interval)

= X(w) represents the frequency
content of the signal x(n)
= X(w) is a decomposition of x(n) Lo
into its frequency components. .

w e

2
1.5 1 0.5 05 1 15
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The Fourier Transform of Discrete-Time
Aperiodic Signals
= X(w) is periodic with period 2, that is
X(w+27k)= ) x(n)e 20 = %" x(n)e g iz
= i x(n)e " = X(w)

= Hence X(w) is periodic with period 2
= Let us evaluate the sequence x(n) from X(w). Thus we

have

0

jf” X (w)e"dew = j{ > x(n)ej“’“}e"“’mda)

= This interchange can be made if the series
N
Xy(@)= Y x(ne '

n=-N

= converges uniformly to X(w) as N — o
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The Fourier Transform of Discrete-Time
Aperiodic Signals

We can interchange the order of summation and integration

J’” ej(U(Wn)dw — 27[’ m=n
- 0, m=n
Consequently,

> x| e Vdo =

N=—w

The desired result that 1
x(n) = — j " X(w)e"dw
R

2zx(m), m=n
0, m=n

Synthesis equation 1 on
(inverse transform) X(n) ZELH X(w)e™dao
Analysis equation X (@) = i x(n)e i
(direct transform) e

2010/4/14 Introduction to Digital Signal Processing
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Convergence of the Fourier Transform

N .
We assume that the series X, (@)= > x(n)e’'"
converges uniformly to. By uniform cc"fﬁ@ergence we
mean that for each @

Limo{wpw|X(w)— Xy (@)} =0
Uniform convergence is guaranteed if x(n) is absolutely
summable. If > |x(n)] <0

N=-o0
)

D x(ne "

N=—o0

then
X()] =

<X x| <eo

Some sequences are not absolutely summable, but they

are square summable. That is, they have finite energy

0

E.=D Ix(n)[ <o

N=—c0

2010/4/14 Introduction to Digital Signal Processing
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Convergence of the Fourier Transform

= This leads to a mean-square convergence condition:
E,= ) |x(n)|2 <o
the energy in the error X(w) — Xy(@) tends toward zero
Li_rl]cfﬁ|X(w)— Xy (@) do =0
= Example - Suppose that
X(w) ={

» X(w) is periodic with period 27
= The inverse transform of X(w) results in the sequence

1, |a)| <o,

0, a)CS|a)|£7r

1 - 1 ro sino.n
x(n):-j X(a))ej“’”da):—j e"do="-", n=z0
21" 27 2~ zn
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Convergence of the Fourier Transform

B

= Forn =0, we have

“
R
"

1 ra 1)
x(0) = —I —odo=—"
27 a (12 +11 l I e (113
T+ 1 l_i ) El 1 T+
= Hence Wi B
,
—£ , n= 0 Eix
T
x(n) = .
@, SN 0
T N .
= The sequence {x(n)} is expressed as
Sihw.n
x(n) = -, —o<N<®
zn
2010/4/14 Introduction to Digital Signal Processing 44
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Convergence of the Fourier Transform

Note, the above he sequence {x(n)}
is not absolutely summable. Hence

the infinite series
S - = sinon
x(ne "=y ——=—g " s/
n;o n;,; n
does not converge uniformly foralle = xe
To elaborate on this point, let us

consider the finite sum
L SNoN o,

XN (C()) = z —e Kso(w) Xrow)

=N 7N

Right figures shows the function
Xy(w) for several values of N.

llustration of convergence of the Fourier transform and the Gibbs
phenomenon at the point of discontinuity.

2010/4/14 Introduction to Digital Signal Processing 45

Energy Density Spectrum of Aperiodic
Signals

The energy of a discrete-time signal x(n) is defined as

0

E.= 2 [x(n)f°
The energy E, in terms of the spectral characteristic X(w),
first we have

0 0

E, = z X (nN)x(n) = z x(n) [%J‘ﬂﬂ X*(a))e"'”'”dw}

N=-o00 N=—

Then

0

1 cr . Con 1 ¢ 2
EX:EL[X (a))[z x(n)e }dw:ZJJX(wM do

N=—
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Energy Density Spectrum of Aperiodic
Signals

The energy relation between x(n) and X(w) is

0

E.=> x| =ijf’;|X(w)|2 dw

N=—00

this is Parseval’s relation for discrete-time aperiodic
signals with finite energy.

The spectrum X(w) is, in general, a complex-valued
function of frequency. It may be expressed as

X (@) =|X ()| e

where 0(w)=£X(w) phase spectrum

2010/4/14 Introduction to Digital Signal Processing

Energy Density Spectrum of Aperiodic
Signals
As in the case of continuous-time signals, the quantity
Su(@) =|X (@)
represents the distribution of energy as a function of
frequency, namely the energy density spectrum  of x(n)
Clearly, S,,(®) does not contain any phase information
If x(n) is real, then it easily follows that

X" (w) = X (-w)
or equivalently |X ()| =|X ()| even symmetry
AX (~0) = —£X (o) odd symmetry
It also follows that
S, (-®) =S, (@) even symmetry

2010/4/14 Introduction to Digital Signal Processing

24



Energy Density Spectrum of Aperiodic
Signals

Example - Determine and sketch the energy density
spectrum S, (®) of the signal

x(n)=a"u(n), -1<a<1
Solution :

o Since |a| <1, the sequence X(N) is absolutely summable, as
can be verified by applying the geometric summation formula,

0

S N
ST =

o Hence the Fourier transform of x(n) exists and is obtained. Thus

X(w) =Y ae " =" (ae”)"
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Energy Density Spectrum of Aperiodic
Signals

Since |ae°|=|al<1  use of the geometric summation

formula again yields
X(@) =
l-ae’

The energy density spectrum is given by

Sx(@) =|X (@) = X (o) X(0) =

1
1-2acosw+a®

1
(1-ae ') (1-ae!)

Equivalently S, (w)=

Note that S, (-®) =S, (®)

2010/4/14 Introduction to Digital Signal Processing 50
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‘ Energy Density Spectrum of Aperiodic
Signals

x(n)
a=0.5 b
3
2
1
0 5 10 15 20 n - _ 0 ks T
2 2
S (@)
x(n)

(a) Sequence x(n) = (})"u(n) and x(n) = (—3)"u(n); (b) their
energy density spectra.
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Relationship of the Fourier Transform to
the z-Transform

= The z-transform of a sequence x(n) is defined as
X(2) = i x(nz", ROC: r,<|Zg<r

N=—

where T, <|z| <1, is the region of convergence of X(z)

= Let us express the complex variable z in polar form as
z=re”

where T=|4 and @=«2
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Relationship of the Fourier Transform to
the z-Transform

= Then, within the region of convergence of X(z), we can
substitute Z=re'” in above

0

X2, po= 2 [ X(M)r " e

N=—o0

= If X(z) converges for |z| =1, then

0

7—el® = X(a)) = z X(n)efj(un

N=—c0

X(29)|
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Relationship of the Fourier Transform to
the z-Transform

= The existence of the
z-transform requires
that the sequence

{x(n)r’“}

be absolutely

summable for some
value of r, that is

o0

D x(myr "

N=—o0

<0

relationship between X (z) and X(zu) for the sequence in
Example 4.2.4, with A=1and L =10
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Relationship of the Fourier Transform to
the z-Transform

There are sequences, however, that do not satisfy the
requirement in above equation, for example, the
sequence _
sinwn
n

x(n) =

—0o<N<o

This sequence does not have a z-transform. Since it has
a finite energy, its Fourier transform converges in the
mean-square sense to the discontinuous function X(w),
defined as

X(w) ={

1, |a)| <,

0, a)c<|a)|S7z'
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The Fourier Transform of Signals with
Poles on the Unit Circle

There are some aperiodic sequences that are neither
absolutely summable nor square summable. Hence their
Fourier transforms do not exist. One such sequence is
the unit step sequence, which has the z-transform

1
X(2)=
(2) 1-z*°

Another such sequence is the causal sinusodial signal

sequence x(n) = (cosw,n)u(n) - This sequence has the
z-transform

1-z"cosm,
1-2z"cosw, + Z*

X(2)=
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Frequency-Domain Classification of
Signals: The concept of Bandwidth

Low-frequency A m

High-frequency \ /

Medium-frequency / \ / \ H [\
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Frequency-Domain Classification of
Signals: The concept of Bandwidth

= Some examples of bandlimited signals

Aperiodic signals Periodic signals
X(F) Ck
%
2
£ &
<
) F| -= JII Illll---kF
-B 0 B ~MF, 0 MF, Y
X(w) Cr

Discrete
time
g
B

- -y 0 wy T - M2 0 M2 b4
N N
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The Frequency Ranges of Some Natural
Signals

= Frequency ranges of some biological signals

Type of Signal Frequency Range (Hz)
Electroretinogram® 0-20
Electronystagmogram® 0-20
Pneumogram® 0-40
Electrocardiogram (ECG) 0-100
Electroencephalogram (EEG) 0-100
Electromyogram! 10-200
Sphygmomanogram® 0-200
Speech 100-4000

@ A graphic recording of retina characteristics.

b A graphic recording of involuntary movement of the eyes.

¢ A graphic recording of respiratory activity.

4 A graphic recording of muscular action, such as muscular contraction.
¢ A recording of blood pressure.
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The Frequency Ranges of Some Natural
Signals

= Frequency ranges of some seismic signals

Type of Signal Frequency Range (Hz)
Wind noise 100-1000
Seismic exploration signals 10-100
Earthquake and nuclear explosion signals 0.01-10
Seismic noise 0.1-1
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The Frequency Ranges of Some Natural

Signals

= Frequency ranges of electromagnetic signals

Type of Signal Wavelength (m) Frequency Range (Hz)
Radio broadcast 104-107 3 x 10*-3 x 10°
Shortwave radio signals 102-10-2 3% 10°-3 x 1010

Radar, satellite communications,

space communications,

common-carrier microwave 1-102 3 x 108-3 % 1010
Infrared 10-3-10-¢ 3 x 1013 x 10"
Visible light 39%x1077-8.1 x 1077 3.7 x 10477 5 10"
Ultraviolet 10-7-10-% 3x 103 x 10'®
Gamma rays and X rays 1077-10-1 3% 107-3 x 108
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Frequency-Domain and Time-Domain

Signal Properties

= To summarize, the following frequency analysis tools

have been introduced:

= The Fourier series for continuous-time periodic signals.

= The Fourier transform for continuous-time aperiodic signals.

= The Fourier series for discrete-time periodic signals.

= The Fourier transform for discrete-time aperiodic signals.
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Frequency-Domain and Time-Domain
Signal Properties

= Let us briefly summarize the results of the previous
sections.

Continuous-time signals have aperiodic spectra.

| |
= Discrete-time signals have periodic spectra.
= Periodic signals have discrete spectra.
= Aperiodic finite energy signals have continuous spectra.
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Frequency-Domain and Time-Domain
Signal Properties
= Summary of analysis and synthesis formulas

Continuous-time signals

Diserete-time signals

Time-domain

Frequency-domain

Time-domain

Frequency-domain

(0

w(n)

n

.\Jy/\J)/\T’ -,

.
wkFo dp > Fo=gr

o= JL iyt
B

‘ '

< = S cpeitmkion
(=9

“NwTylefvrTw L]

N
e L'E‘um» 2N
= 3 I

N =0

".'JVT'TIT.T‘IT."'A

N=1 -
)= Y, cpelCniikn
o

Continuous and periodic

Discrete and aperiodic

Discrete and periodic

Discrete and periodic

(0

XF)

0

XFy=]" e dg

X0 :J‘f X, (Fel2mit dp

=

)

fTTT’ITTTT~ .

Xtew)

=3-2-1012

X(w)

= i et

-2r -7 o Ed 2w

=

[ —

) = ﬁ _I‘H Xioeio du

Continuous and ape:

riodic ‘ Continuous and aperiodic

Discrete and aperiodic

Continuous and periodic

2010/4/14

Introduction to Digital Signal Processing

64

32



Frequency-Domain and Time-Domain
Signal Properties

We observe that there are dualities between the
following analysis and synthesis equations:

The analysis and synthesis equations of the continuous-time
Fourier transform.

The analysis and synthesis equations of the discrete-time
Fourier series.

The analysis equation of the continuous-time Fourier series and
the synthesis equation of the discrete-time Fourier transform.

The analysis equation of the discrete-time Fourier transform and
the synthesis equation of the continuous-time Fourier series.
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Properties of the Fourier Transform for
Discrete-Time Signals

The Fourier transform for aperiodic finite-energy
discrete-time signals described in the preceding section
possesses a number of properties that are very useful in
reducing the complexity of frequency analysis problems
in many practical applications.

We develop the important properties of the Fourier
transform. Similar properties hold for the Fourier
transform of aperiodic finite-energy continuous-time
signals.
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Properties of the Fourier Transform for
Discrete-Time Signals

For convenience, we adopt the notation

0

X(w)=F{x(n)} = > x(n)e "

N=—0

For the direct transform (analysis equation) and
_ -1 _ 1 jon
x(n)=F {X(w)}—EL”X(w)e’ do

For the inverse transform (synthesis equation). We also
refer to x(n) and X(w) as a Fourier transform pair and
denote this relationship with the notation

x(n) «—— X (@)
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Symmetry Properties of the Fourier
Transform

Suppose that both the signal x(n) and its transform X(w)
are complex-valued functions. Then they can be
expressed in rectangular form as

X(n) = X5 (n) + jx (n)

X(w) = Xg(@)+ jX, (@)

By substituting above and e =cosw- jsine and
separating the real and imaginary parts, we obtain

Xg(w) = Zw: [%z(n) coswn+ x, (n)sinwn]
X, ()=~ i [X:(n)sinwn—x, (n)coswn]

N=—
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Symmetry Properties of the Fourier
Transform

= In a similar manner, by substituting above and
el =cosw+ jSnw
we obtain

X (1) =2—J;TI2”[XR(w) coswn - X, (w)sinon]de

X, (N) =$Lﬂ[xR(w)sinwn+ X, () coswn]da
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Symmetry Properties of the Fourier
Transform

= Real signals
o 1fX(N) is real, then X, (n) = X(N) and X, (N) =0. Then
Xg(@) = i x(n) coswn

X, (@) =- x(n)sinwn

N=-o00

o Since cos(-wn)=coswn and sin(-wn) =-sinwn , it follows

from above
Xo(@)=Xq(@)  (even)
X, (-o) ==X, (@) (Odd)
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Symmetry Properties of the Fourier
Transform

= If we combine above into a single equation, we have
X (@) = X (~)

= In this case we say that the spectrum of a real signal has
Hermitian symmetry.

= We observe that the magnitude and phase spectra for
real signals are

X (@)] = X (@) + X, 2 ()

1 X (@)

AX|ow| =tan
| | XR(a))
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Symmetry Properties of the Fourier
Transform

= The magnitude and phase spectra also possess the
symmetry properties

|X(0)|=|X (-o)| (even)
AX(~w) = —4X(w) (odd)

Dimag iy mais
i

. \
. - L
X ] *--";-'y---——- =g, Ao
_‘{}gf‘l t
~
o / :
N :
— ":L" ESIL)] - e D2 gt
ﬁ! Ayt
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Symmetry Properties of the Fourier
Transform

In the case of the inverse transform of a real-valued
signal [i.e., x(n) = x5 (n) ], which implies that

x(n) =%J‘2”[XR(w) coswn— X, (w)sinon]|de

Since both products Xz (®)coson and X, (@)Sinon
are even functions of @ , we have

x(n) =%JZ[XR(w) coson - X, (w)sinon]de
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Symmetry Properties of the Fourier
Transform

Real and even signals
o If X(n) is real and even [i.e., x(-n) = x(n) ], then
X(n)coswn is even and x(n)sinwn is odd. Hence

Xq() = X(0)+23 x(n)cosen  (even)

X, (@)=0

x(n) = lj': Xg (@) cosondw
T

o Thus real and even signals possess real-valued spectra, which,
in addition, are even functions of the frequency variable @ .
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Symmetry Properties of the Fourier
Transform

Real and odd signals
o If X(n) is real and odd [i.e.,x(—n) = —x(n) ], then
x(n) coswn is odd and x(n)sinwn is even. Hence
Xg(@)=0

X, (@) =23 x(n)sinwn (odd)

n=1

x(n) =—1j0”x| (w)sinonde

o Thus real-valued odd signals possess purely imaginary-valued
spectra characteristics, which, in addition, are odd functions of
the frequency variable @ .
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Symmetry Properties of the Fourier
Transform

Purely imaginary signals
o Inthis case x,(n)=0and x(n) = jx (n). Then

Xa(@)= 3 % (Msinon (odd)
X, (@) = i X, (n) coswn (even)

N=-0

X, () =%j:[xR(w)sina)n+ X, () coson] deo
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Symmetry Properties of the Fourier
Transform

Purely imaginary signals
o If % (n) is odd [i.e., X (—N) ==X ()], then

Xn(@) =23 % (n)sinen (odd)

X, (w)=0

X (n)=%EXR(a))sina)nda)
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Symmetry Properties of the Fourier
Transform

Purely imaginary signals
o Similarly, If X (N) is even [i.e., X (-=n) =X (N) ], then

Xq(@)=0

X, (@) =x (0)+ Zi X, (n) coswn (even)

n=1
X, (n) = 1 jo X, (@) cosondw
T

o An arbitrary, possibly complex-valued signal x(n) can
be decomposed as

X(N) = X (M) + 1, () = X5 (M) + PR + [ X7 (M) +X7 () = X,(n) +%,()
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Symmetry Properties of the Fourier
Transform

Purely imaginary signals
o By definition

M) = Xe(M) + JXE() = [ X()+ X ()]
(M) =XE() + X () =2 [ X)X (-1 ]

o The superscripts e and o denote the even and odd
signal components, respectively. We note that

X,(N) = %,(—=n) and x,(-=n) =-x,(n).
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Symmetry Properties of the Fourier
Transform

Purely imaginary signals

o From above and the Fourier transform properties
established, we obtain the following relationships:

X(n) = g () + 3 () ]+ X3 (M) + X7 () | = x,(n) + %, (n)

I\X\\

X (@) =[ X§(@)+ [X{ (@) |+] X3(@) = [X{ (@) |= X (@) + X, (@)
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Symmetry Properties of the Fourier
Transform
= Symmetry properties of the discrete-time Fourier transform

Sequence DTFT
x(n) X(w)
x*(n) X*(~w)
x*(—=n) # X (w)
xz(n) X.(0) = 3[X (@) + X*(~)]
Jxi(n) X, (@) = [X (@) — X*(~w))
Xe(n) = 3[x(n) + x*(=n)] Xr(e)
Xo(n) = %[x(n) —x*(—n)] JXi(@)
Real Signals
X(w) = X"(—w)
Any real signal Xr(@) = Xg(-0)
x(n) ' Xi(@) ==X (—w)

| X (@)] = X (—w)]
X () = —XX(-w)

xe(n) = L[x(n) + x(—n)] Xg(w)
(real and even) (real and even)
xo(n) = 4[x(n) — x(~n)] jXi(@)
(real and odd) (imaginary and odd)
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Symmetry Properties of the Fourier
Transform

= Summary of symmetry properties of the Fourier
transform

Time domain ; Frequency domain
Even ! Even
Real ' Real
Odd j Odd

Signal Fourier Transform
Odd . Odd
inary 1 Imaginary
Even . Even
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Fourier Transform Theorems and
Properties

= Linearity

If X, (N) <« X, (o)
%, (N) ¢« X, ()

then  a%(Nn)+a,%(n)«—aX,(»)+a,X,(w)

2010/4/14 Introduction to Digital Signal Processing 83

Fourier Transform Theorems and
Properties

= Example : Determine the Fourier transform of the signal
x(n)=a", -l<a<1l
= Solution : First, we observe that x(n) can be expressed

as
x(n) =%, (N) + %,(n)
h () a’, nx0
wnere =
0, n<O
a", n<0
and (n)=
& { 0, nx0
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Fourier Transform Theorems and
Properties

Beginning with the definition of the Fourier transform, we
have

Xl(a)) = i Xl(n)e‘j“’” = iane—jwn — i(ae—jw)n
n=0 n=0

N=—o0
The summation is a geometric series that converges to

1

X = e

Provided that

‘ae"'“" = |a|-‘e"'”‘ =la|<1

2010/4/14 Introduction to Digital Signal Processing 85

Fourier Transform Theorems and
Properties

Which is a condition that is satisfied in this problem.
Similarly, the Fourier transform of %,(N) is

0 -1 -1 0 jo
' ) ) ) ae
Xy(@)= Y %(ne’=> ame’ =3 (ae)"=> (ae)" = —
n=—ow n=—ow n=—o k=1 1-ae
By combining these two transforms, we obtain the
Fourier transform of X(N) in the form
1-a?
X(w) =X, (@) + X, (@) = 2
1-2acosw+a
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Fourier Transform Theorems and
Properties

= The figure illustrates x(n) and X (w) for the case in
which a=0.8.

x(n)

k J\ ®
-2r - b 27
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Fourier Transform Theorems and

Properties
= Time shifting
If x(n) <« X (o)
then X(N—k)«F—e "X (w)

= The proof of this property follows immediately from the
Fourier transform of x(n-k) by making a change in the
summation index. Thus

F {x(n-K)} = X (@)& 1 =| X ()] &>~
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Fourier Transform Theorems and
Properties

= Time reversal

If X(N) «—— X ()

then X(—N) «—F— X (-o)

= This property can be established by performing the
Fourier transformation of x(—n) by making a simple
change in the summation index. Thus

F{x(-n)}=> x()e = X(-w)

| =—0
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Fourier Transform Theorems and
Properties

= If x(n) is real, then we obtain

F{X(-n)} = X (-0) =|X (-0)| " =X (o)
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Fourier Transform Theorems and
Properties

= Convolution theorem

If %, (n) «— X, ()
and X, ()« X, (@)
then  x(n) = x,(n) * %, (") < X (@) = X, (@) X, (@)

= To prove above, we recall the convolution formula

X(0) = %) ¥ %, (M) = 3 % (K)%(N—K)

k=—o0
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Fourier Transform Theorems and
Properties

= By multiplying both side of this equation by the
exponential g /*" and summing over all n, we obtain

o0 o0

X(@)= D x(ne" =3, {i Xl(n)Xz(n—k)}e"”"

N=—c0 n=-oo | k=—co
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Fourier Transform Theorems and
Properties

The correlation theorem

If % () < X, (@)
and X, (N) < X, (@)
then rxlx2 (m) <—F_) lexz (0)) = Xl(a)) XZ(_a))

In this case, we have

o (=3 %K), (k—n)

k=—o0
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Fourier Transform Theorems and
Properties

By multiplying both sides of this equation by the
exponential g /*" and summing over all n, we obtain

%g@:iu¢m®M=i{iawmwﬁﬂem

N=—o0 n=—o|_k=-w

The function lexz (w) is called the cross-energy density
spectrum of the signals x (n) and x,(n).
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Fourier Transform Theorems and
Properties

= The Wiener-Khintchine theorem
o Let x(n) be areal signal. Then

(1)« S, (o)

o Thatis, the energy spectral density of an energy
signal is the Fourier transform of its autocorrelation
sequence.
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Fourier Transform Theorems and
Properties

= Frequency shifting
If X(n) <« X (o)
then " x(n) <« X (0 - w,)

= lllustration of the frequency-shifting property of the
Fourier transform o, <27 -aw,,.

1
T om0 @m @

| Xiew = g
i |_
0N~ T P gty o

(k)
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Fourier Transform Theorems and

Properties

= The modulation theorem

If
then

x(n) <« X (o)

x(n) COSwOn;)%[X (0+ @)+ X(w— a)o)]

a3
~ ; A
AN A ra
A A /
=S T = -
3
(5]
- - e -
o - “
- = B
e )
/ s
/ #
I A
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Fourier Transform Theorems and

Properties

= Parseval’'s theorem

If
and

then

X (n) < X, (@)
X, () <> X, (o)

20 X ()X, (n) = % [ X(@)X, (@)de
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Fourier Transform Theorems and
Properties

= To prove this theorem, we eliminate X, (@) on the right-
hand side of above. Thus we have

51[2 xl(n)em"}x; (0)do

n

= > x (% (n)

N=—

S kM= [ X, (@) “do
2” 27
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Fourier Transform Theorems and

Properties

= In the special case where X,(n) = X (n) = x(n) ,
Parseval’s relation reduces to

d 2 1 2
n;g|x(n)| =ELI|X(CO)| do

= Therefore, we conclude that

0

E =1,(0)= X [x(n)f =2—1”L”|X(w)|2dco =2—1ﬁ [” s.(@)do

N=—c0
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Fourier Transform Theorems and
Properties

Multiplication of two sequences (Windows theorem)

If ¥, (N) «—— X, ()
and %, (N) < X, (w)
then X3(n) = %, (N) %, (N) «—> X, ()

1 ¢=
== [* X)X, (0-2)dA

101
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Fourier Transform Theorems and
Properties

We begin with the Fourier transform of X;(n) = X, (N)x,(n)
and use the formula for the inverse transform, namely,

1~ jAn
xl(n):z'[_ﬁ X,(1)e*"dA

Thus, we have

Xy(@)= S %™ = 3 x (n)x,(n)e "

N=—c Nn=—c0

s 1 ¢= iin —'wn_l . © o n_
:nziz_ﬁj,,xl(/l)e” dﬂ}xz(n)el —EJ‘”Xl(/l)dlLmez(n)e“ 2

1 ¢ )
= j X, (A)X,(@—A)dA
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Fourier Transform Theorems and
Properties

= Differentiation in the frequency domain

If x(n) <« X ()
then nx(n) «— >jdx(w)
dw

= To prove this property, we use the definition of the
Fourier transform and differentiae the series term by
term with respect to @. Thus we obtain

dX () _ d

i E{ i x(n)ei“’“} = i x(n)dd—we"“’n =—] i nx(n)e "

N=—0 N=—o0 n=—o0
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Fourier Transform Theorems and
Properties

= Properties of the Fourier transform for discrete-time
signals
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Fourier Transform Theorems and
Properties

= Some useful Fourier transform pairs for discrete-time
aperiodic signals

I S

|
e, - .
fo b
Lo sie] :
= 2 —
! iz |
[§0
2010/4/14 Introduction to Digital Signal Processing 105

53



