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Chapter 3

The Direct z-Transform
� A discrete-time version of Laplace Transform
� For a given sequence x(n), its (direct) z-transform X(z) is 

defined as:

where z = Re(z) + j Im(z) is a complex variable
� For convenience, the z-transform of a signal x(n0 is 

denoted by

� Whereas the relationship between x(n) and X(z) is 
indicated by

� The region of convergence (ROC) of X(z) is the set of 
all values of z of which X(z) attains a finite value
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ROC of the z-Transform
� Express the complex variable z in polar form as

Where                          , then X(z) can be expressed as

� In the ROC of X(z), |X(z)| < ∞. But

� Hence |X(z)| is finite if x(n)r−n is absolutely summable
� The problem of finding the ROC for X(z) is equivalent to 

determining the range of r for which x(n)r−n is absolutely 
summable
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ROC of the z-Transform
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The Direct z-Transform

� Example – Determine the z-Transform 
X(z) of the causal sequence x[n] = αn 

u(n) and its ROC

� The above power series converges to

� ROC is the annular region |z| > |α|
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The Direct z-Transform

� Example – Consider the anti-causal sequence

� Its z-transform is given by

� ROC is the annular region |z| < |α|
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z-Transform

� Note: the z-Transforms of two sequences αnu(n) and 
−αnu(−n −1) are identical even though the two parent 
sequences are different

� Only way a unique sequence can be associated with a z-
transform is by specifying its ROC
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z-Transform

� Example – the finite energy sequence

has a DTFT given by

which converges in the mean-square sense
� However, hLP[n] does not have a z-transform as it is not 

absolutely summable for any value of r
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Characteristic Families of Signals with Their 
Corresponding ROCs
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The Inverse z-Transform
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� The z-transform X(z) is given by

� Multiply both side by zn−1 and integrate both sides over a 
closed contour within the ROC of X(z)

� Interchange the order of integration and summation:

� According to the Cauchy integral theorem
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The Inverse z-Transform (from IDTFT)
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� General Expression : Recall that, for z = rejω, the z-
transform X(z) given by

is merely the DTFT of the modified sequence x(n)r−n

� Accordingly, the inverse DTFT is thus given by

� By making a change of variable z = rejω, the previous 
equation can be converted into a contour integral given by

where C′ is a counterclockwise contour of integration 
defined by |z| = r
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Properties of the z-Transform

� Linearity - If 

and 

then

� Example – Determine the z-Transform and the ROC of

Ans:
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Properties of the z-Transform

� Example - Consider the two-sided sequence 
x[n] = αnu[n] − bnu[−n −1] 

� Let x[n] = αnu[n] and y[n] = − bnu[−n −1] with X1(z) and X2(z) 
denoting, respectively, their z-transforms

� Now

and

� Using the linearity property we arrive at

� The ROC of X(z) is given by the overlap regions of |z| > |α| 
and |z| < |b| 
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Properties of the z-Transform
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Properties of the z-Transform

� Example - Determine the z-transform and its ROC of the 
causal sequence

� We can express x[n] = v[n] + v*[n] where

� The z-transform of v[n] is given by

� Using the conjugation property we obtain the z-transform of 
v*[n] as 
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( )0[ ] cos ( )x n n u nω=

Properties of the z-Transform

� Using the linearity property we get

or,

� Therefore, we obtain

Similarly
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Properties of the z-Transform
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� Time Shifting - If 

then 

And the ROC remains unchanged except for z = 0 if k > 0 
and z = ∞ if k < 0

� Example – Determine the z-Transform of the signal

Ans:
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� Scaling in the z-domain -
If

then 

Fro any constant a

� Proof
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Properties of the z-Transform
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� Example - Determine the z-transform and its ROC of the 
causal sequence

and

� Ans:

By applying the scaling property

and similarly
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� Time Reversal -
If

then 

� Proof

� Example -
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Properties of the z-Transform
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� Differentiation in the z-Domain -
If

then 

ROC remains unchanged

� Example – Find the z-Transform of

� Example – Find the inverse z-transform of
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Properties of the z-Transform
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� Convolution of Two Sequences -
If

then 

The ROC is the intersection of that for X1(z) and X2(z)

� Proof
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Properties of the z-Transform
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� Correlation of Two Sequences -
If

then 

The ROC is at least the intersection of that for X1(z) and
X2(z-1)

� Proof

� Example -
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� Multiplication of Two Sequences -
If

then 

where C is the closed contour that encloses the origina and 
lies withing the ROC common to both X1(v) and X2(v-1)

� Proof
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Properties of the z-Transform
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� Parseval’s relation -
If

then 

� The Initial Value Theorem -

� If x(n) is causal, then

� Proof -
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Common z-Transform Paris
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Rational z-Transforms

� In the case of LTI discrete-time systems we are 
concerned with in this course, all pertinent z-transforms 
are rational functions of z−1

� That is, they are ratios of two polynomials in z−1

� The degree of the numerator polynomial B(z) is M and 
the degree of the denominator polynomial A(z) is N

� An alternate representation of a rational z-transform is as 
a ratio of two polynomials in z:
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Rational z-Transform

� A rational z-transform can be alternately written in factored 
form as

� At a root z = zk of the numerator polynomial X(zk) = 0. 
These values of z are known as the zeros of G(z)

� At a root z = pk of the denominator polynomial X(pk) → ∞. 
These values of z are known as the poles of G(z)

� There are |N – M| zeros (if N > M) or poles (if N < M) at z = 
0
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Rational z-Transform

� Example – the z-transform

has a zero at z1 = 0 and a pole at p1 = a
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Pole-zero plot
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Rational z-Transform

� Example – Determine the pole-zero plot for the signal

Since a > 0 zM = aM has M roots at

The zero z0 = a cancels the pole at 
z = a. Thus
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Pole-zero plot
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Rational z-Transform

� Example – Determine the z-transform and the signal 
corresponds to the pole-zero plot

� There are 2 zeros (M = 2) at z1 =0 and z2 = rcosω0 and 
2 poles (N = 2) at               and  
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Pole-zero plot
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Rational z-Transform

� A physical interpretation of the concepts of poles and zeros 
can be given by plotting the log-magnitude 20log10|X(z)| for

• The magnitude plot 
exhibits very large peaks 
around the poles of X(z) 
(z = 0.4 ± j 0.6928)

• It also exhibits very 
narrow and deep wells 
around the location of 
the zeros (z = 1.2 ± j 1.2)
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Behavior of a Single Real-Pole Causal Signal
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Behavior of a Double Real-Pole Causal Signal
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Behavior of a Causal Signal with a Pair of 
Complex-Conjugate Poles
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19

Behavior of a Causal Signal with a Double 
Pair of Complex-Conjugate Poles
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( )0( ) cos ( )x n n n u nω=

The System Function of an LTI System

� According to the convolution property, the I/O-relationship 
can be expressed as

� The system function (impulse/unit-sample response) H(z) is

� If an LTI system is described by the following constant-
coefficient difference equation

� Taking the z-Transform  at both sides
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The System Function of an LTI System

� Therefore an LTI system described by a constant-coefficient 
difference equation has a rational system function

� Two important special forms of pole-zero systems:
� If ak = 0 for 1 ≤ k ≤ N

� If bk = 0 for 1 ≤ k ≤ M
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The System Function of an LTI System

� Example – A causal LTI IIR filter is described by a constant 
coefficient difference equation given by

� y(n) = x(n −1) −1.2 x(n − 2) + x(n − 3) +1.3 y(n −1)               
−1.04 y(n − 2) + 0.222 y(n − 3)

� Its transfer function is therefore given by

� Alternate forms:

� Note: Poles farthest from z = 0 have a magnitude
� ROC:
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MATLAB Functions for Rational z-Transform

� In general, if the rational z-transform has N poles with R 
distinct magnitudes, then it has R + 1 ROCs, and R + 1 
distinct sequences having the same z-transform

� Hence, a rational z-transform with a specified ROC has a 
unique sequence as its inverse z-transform

� MATLAB [z,p,k] = tf2zp(num,den) determines the zeros, 
poles, and the gain constant of a rational z-transform with 
the numerator coefficients specified by num and the 
denominator coefficients specified by den

� [num,den] = zp2tf(z,p,k) implements the reverse process
� The factored form of the z-transform can be obtained using 

sos = zp2sos(z,p,k)
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MATLAB Functions for Rational z-Transform

� The pole-zero plot is determined using the function zplane
� The z-transform can be either described in terms of its 

zeros and poles: zplane(zeros,poles) or, in terms of its 
numerator and denominator coefficients zplane(num,den)

� Example – The pole-zero plot of

obtained using MATLAB

4 3 2

4 3 2

2 16 44 56 32
( )

3 3 15 18 12

z z z z
X z

z z z z

+ + + +
=

+ − + −
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Inversion of the z-Transform

2010/4/7 43Introduction to Digital Signal Processing

� The inverse z-transform of X(z) is given by

� There are three methods for the evaluation of the inverse z-
transform in practice:
1. Direct evaluation by the contour integration
2. Power series expansion
3. Partial-fraction expansion and table lookup
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Inverse z-Transform by Contour Integration
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� Cauchy’s integral theorem . Let f(z) be a function of the 
complex variable z and C be a closed path in the z-plane. If 
the derivative df(z)/dz exists on and inside the contour C 
and if f(z) has no poles at z = z0, then

� More generally, if the (k+1)-order derivative of f(z) exist and 
f(z) has no poles at z = z0, then

0 0

00
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Inverse z-Transform by Contour Integration
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� Suppose the integrand of the contour integral is a proper 
fraction f(z)/g(z), where f(z) has no poles inside the contour 
C and g(z) is a polynomial with distinct roots inside C. Then

� In the case of the inverse z-transform, we have
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Inverse z-Transform by Contour Integration
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� Example – Evaluate the inverse z-transform of

Using the complex inversion integral
� Sol:

(1) If n ≥ 0, f(z) has only zeros and hence no poles inside C. 
The only pole inside C is z = a. Hence

(2) If n < 0, f(z) has an nth-order poles at z = 0 which is also 
inside C. If n = 1, we have

If n = 2, we have

x(n) = 0 for n < 0
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Inverse z-Transform by Power Series Expansion
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� Expand X(z) into a power series as

which converges in the given ROC. Then, by the 
uniqueness of the z-transform, x(n) = cn for all n.

� Example : Determine the inverse z-transform of

If (a) ROC: |z| > 1, (b) ROC: |z| < 0.5
Sol: (a)
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Inverse z-Transform by Partial-Fraction 
Expansion

� A rational X(z) can be expressed as

� X(z) is called improper if M ≥ N. It can be re-expressed as

where the degree of B1(z) is less than N
� The rational function B1(z)/A(z) is called a proper fraction
� Example – Consider

By long division we arrive at
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Inverse z-Transform by Partial-Fraction 
Expansion

� Simple Poles : In most practical cases, the rational z-
transform of interest X(z) is a proper fraction with simple 
poles

� Let the poles of X(z) be at z = pk 1 ≤ k ≤ N
� A partial-fraction expansion of X(z) is then of the form

� The constants in the partial-fraction expansion are called 
the residues and are given by
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Inverse z-Transform by Partial-Fraction 
Expansion

� x(n) = Z-1{X(z)} can be obtained by inverting each term as:

� If x(n) is causal, the ROC is |z| > pmax where pmax = max{|p1|, 
|p2|, …, |pN|}, and x(n) becomes

� The above approach with a slight modification can also be 
used to determine the inverse of a rational z-transform of a 
non-causal sequence
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Inverse z-Transform by Partial-Fraction 
Expansion

� Example – Determine the inverse z-transform of

If (a) ROC: |z| > 1, (b) ROC: |z| < 0.5, and (c) 0.5 < |z| < 1
� Ans:

(a) ROC: |z| > 1

(b) ROC: |z| < 0.5

(b) ROC: 0.5 < |z| < 1
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Inverse z-Transform by Partial-Fraction 
Expansion

� Multiple Poles : If X(z) has multiple poles, the partial-
fraction expansion is of slightly different form

� Let the pole at z = ν be of multiplicity L and the remaining N 
− L poles be simple and at z = λ, 1 ≤ l ≤ N − L

� Then the partial-fraction expansion of G(z) is of the form

where the constants are computed using

� The residues ρl are calculated as before
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Decomposition of Rational z-Transforms

� Suppose we have a rational z-transform X(z) expressed as

� If M ≥ N (i.e., X(z) is improper), we convert X(z) to a sum of 
a polynomial and a proper function

� If the roots are distinct, it can be expanded in partial 
fractions as
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Decomposition of Rational z-Transforms

� If there some complex conjugate pairs of poles, we can 
group and combine the pairs as

� The partial fraction expansion becomes 

where N = K1 + 2K2
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Decomposition of Rational z-Transforms

� An alternative form is obtained by expressing X(z) as a 
product of simple terms. To avoid complex coefficients in 
the decomposition, the complex-conjugate poles and zeros 
should be combined as

� Assuming for simplicity that M = N, X(z) can be expressed 
as

where N = K1 + 2K2
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LTI Discrete-Time Systems in the Transform 
Domain

� An LTI discrete-time system is completely characterized in 
the time-domain by its impulse response sequence {h(n)}

� Thus, the transform-domain representation of a discrete-
time signal can also be equally applied to the transform-
domain representation of an LTI discrete-time system

� Besides providing additional insight into the behavior of LTI 
systems, it is easier to design and implement these 
systems in the transform-domain for certain applications

� We consider now the use of the DTFT and the z-transform 
in developing the transform-domain representations of an 
LTI system
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LTI Discrete-Time Systems in the Transform 
Domain

� Consider LTI discrete-time systems characterized by linear 
constant coefficient difference equations of the form

� Applying the z-transform to both sides of the difference 
equation and making use of the linearity and the time-
invariance properties we arrive at

� A more convenient form of the z-domain representation of 
the difference equation is given by
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Frequency Response from Transfer Function

� If the ROC of the transfer function H(z) includes the unit 
circle, then the frequency response H(ejω) of the LTI digital 
filter can be obtained simply as follows:

� For a real coefficient transfer function H(z) it can be shown 
that

� For a stable rational transfer function in the form

� the factored form of the frequency response is given
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Geometric Interpretation of Frequency 
Response Computation

� It is convenient to visualize the contributions of the zero 
factor (z − zk) and the pole factor (z − pk) from the factored 
form of the frequency response

� The magnitude function is given by

which reduces to

� The phase response for a rational transfer function is of the 
form
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Geometric Interpretation of Frequency 
Response Computation

� The magnitude-squared function of a real-coefficient 
transfer function can be computed using

� The factored form of the frequency response

is convenient to develop a geometric interpretation of the 
frequency response computation from the pole-zero plot as 
ω varies from 0 to 2π on the unit circle

� The geometric interpretation can be used to obtain a sketch 
of the response as a function of the frequency
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Geometric Interpretation of Frequency 
Response Computation

� A typical factor in the factored form of the frequency 
response is given by

(ejω − ρejϕ)
where ρejϕ is a zero (pole) if it is zero (pole) factor

� As shown below in the z-plane the factor (ejω − ρejϕ)
represents a vector starting at the point z = ρejϕ and ending 
on the unit circle at z = ejω

� As ω is varied from 0 to 2π, the 
tip of the vector moves counter-
clockwise from the point z = 1 
tracing the unit circle and back to 
the point z = 1
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Geometric Interpretation of Frequency 
Response Computation

� As indicated by

the magnitude response |H(ejω)|at a specific value of ω is 
given by the product of the magnitudes of all zero vectors 
divided by the product of the magnitudes of all pole vectors

� Likewise, from

we observe that the phase response at a specific value of 
ω is obtained by adding the phase of the term b0/a0 and the 
linear-phase term ω(N − M) to the sum of the angles of the 
zero vectors minus the angles of the pole vectors
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3-D View of Transfer Function & 
Frequency Response
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Response of Systems with Rational System 
function

� Assume that the input signal x(n) has a rational z-transform 

� For a initially relaxed system, the output becomes

� The output y(n) can be subdivided into two parts. The first 
part is a function of {pk}, called the natural response of the 
system. The second is a function of {qk}, called the forced 
response
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Transient & Steady-State Responses

� The zero-state response of a system to a given input can 
be separate into two components: the natural response
and the forced response

where {pk}, k = 1, 2, …, N are the poles of the system.
� If |pk| < 1 for all k, then ynr(n) decays to zero as n

approaches infinity. In such a case, we refer to the natural 
response of the system as the transient response

� The forced response of the system has the form 

� where {pk}, k = 1, 2, …, N are the poles in the forcing 
function
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Transient & Steady-State Responses

� When the causal input signal is a sinusoid, the forced 
response is also a sinusoid. In such case the forced output 
is called  steady-state response of the system

� Example – Determine the transient and steady-state 
response of the following system (assuming initially rest)

where the input is 
� Sol 
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Causality and Stability

� As defined previously, a causal LTI system is one whose 
unit sample response h(n) satisfies the condition

h(n) = 0,   n < 0 
� The ROC of a causal sequence is the exterior of a circle
� A linear LTI system is causal if and only if the ROC of the 

system function is the exterior of a circle of radius r < ∞, 
including the point z = ∞

� Recall that a necessary and sufficient condition for a LTI 
system to be BIBO stable is 

� In turn, this condition implies that H(z) must contain the unit 
circle within its ROC
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Causality and Stability

� Since 

� When evaluated on the unit circle (i.e., |z| = 1)

� Hence, if the system is BIBO stable, the unit circle is 
contained in the ROC of H(z), vice versa

� Therefore, a LTI system is BIBO stable if and only if the 
ROC of the system function includes the unit circle

� Note that causality and stability are different and that one 
does not imply the other

� A causal LTI system is BIBO stable if and only if all the 
poles of H(z) are inside the unit circle (why?)
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Causality and Stability

� Example – A linear LTI system is characterized by the 
system function 

Specify the ROC of H(z) and determine h(n) for the 
following conditions:

(a) The system is stable.

(b) The system is causal.

(c) The system is anticausal.
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Pole-Zero Cancelation

� Pole-zero cancelation: When a z-transform has pole that is 
the same location as a zero, the pole is canceled by the 
zero and, consequently, the term containing that pole in the 
inverse z-transform vanishes

� Pole-zero cancelations can occur either in the system 
function H(z) itself (a reduced-order system) or in the 
product of H(z)X(z) 

� Properly selecting the position of the zeros of the input 
signal is possible to suppress one or more modes of the 
system function, or vice versa

� When the zero is located very near the pole but not exactly 
at the same location, the term in the response has very 
small amplitude. The nonexact pole-zero cancellation can 
occur in practice due to insufficient numerical precision
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Pole-Zero Cancelation

� Example – Determine the response of the system

to the input signal 
Sol: 

The system function is

� And the z-transform of the input is  
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Stability Condition in Terms of the 
Pole Locations

� In addition, for a stable and causal digital filter for which 
h[n] is a right-sided sequence, the ROC will include the unit 
circle and entire z-plane including the point z = ∞

� An FIR digital filter with bounded impulse response is 
always stable

� On the other hand, an IIR filter may be unstable if not 
designed properly

� In addition, an originally stable IIR filter characterized by 
infinite precision coefficients may become unstable when 
coefficients get quantized due to implementation
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Stability of Second-Order Systems

� Consider a causal two-pole system described by the 
second-order difference equation,

� The system function is

� This system has two zeros at the origin and poles at 

� The system is BIBO stable is the poles lie inside the unit 
circle, that is, if |p1| < 1 and |p2| < 1 

� Thus, if the ROC includes the unit circle |z| = 1, then the 
system is stable, and vice versa

1 2 0( ) ( 1) ( 2) ( )y n a y n a y n b x n= − − − − +
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Stability of Second-Order Systems

� The coefficients are related to the roots by

� For stability, the following conditions must be satisfied

� Therefore a two-pole system is stable if and only if the two 
coefficients satisfy the two conditions. 

( )1 1 2 2 1 2,       a p p a p p= − + =
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2 1 2 1 21,      1a p p a a= < < +

Stability of Second-Order Systems
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Stability of Second-Order Systems
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Stability of Second-Order Systems
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Stability of Second-Order Systems

� Example – Consider the causal LTI IIR transfer function:

� The plot of the impulse response is shown below 

� As can be seen from the above plot, the impulse response 
coefficient h(n) decays rapidly to zero value as n increases

� The absolute summability condition of h(n) is satisfied,      
⇒ H(z) is a stable transfer function

21 850586.0845.11

1
)( −− +−
=

zz
zH
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Stability of Second-Order Systems
� Now, consider the case when the transfer function coef. are 

rounded to values with 2 digits after the decimal point:

� A plot of the impulse response of         is shown below

� In this case, the impulse response coefficient        increases 
rapidly to a constant value as n increases

� Hence,       is an unstable transfer function

21 85.085.11

1
)( −−

∧

+−
=

zz
zH
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Stability Condition in Terms of the 
Pole Locations

� Example : The factored form of

is

which has a real pole at z = 0.902 and a pole at z = 0.943
� Since both poles are inside the unit circle H(z) is BIBO stable
� Example : The factored form of

is

which has a pole at z = 1 and the other inside the unit circle
� Since one pole is not inside the unit circle, H(z) is not BIBO 

stable

21 850586.0845.01

1
)(

−− +−
=

zz
zH

( )( )11 943.01902.01

1
)( −− −−
=

zz
zH

( )
21 85.085.11

1
−−

∧

+−
=

zz
zH

( ) ( )( )11 85.011

1
−−

∧

−−
=

zz
zH

2010/4/7 81Introduction to Digital Signal Processing


