

Chapter 3

z-Transform

清大電機系林嘉文

cwlin@ee.nthu.edu.tw

03-5731152

The Direct *z*-Transform

- A discrete-time version of Laplace Transform
- For a given sequence $x(n)$, its (direct) *z*-transform $X(z)$ is defined as:

$$X(z) \equiv \sum_{n=-\infty}^{\infty} x(n)z^{-n}$$

where $z = \text{Re}(z) + j \text{Im}(z)$ is a complex variable

- For convenience, the *z*-transform of a signal $x(n)$ is denoted by

$$X(z) \equiv Z\{x(n)\}$$

- Whereas the relationship between $x(n)$ and $X(z)$ is indicated by

$$x(n) \xleftarrow{z} X(z)$$

- The **region of convergence (ROC)** of $X(z)$ is the set of all values of z of which $X(z)$ attains a finite value

ROC of the z-Transform

- Express the complex variable z in polar form as

$$z = re^{j\theta}$$

Where $r = |z|$ and $\theta = \angle z$, then $X(z)$ can be expressed as

$$X(z)|_{z=re^{j\theta}} = \sum_{n=-\infty}^{\infty} x(n)r^{-n}e^{-j\theta n}$$

- In the ROC of $X(z)$, $|X(z)| < \infty$. But

$$\begin{aligned} |X(z)| &= \left| \sum_{n=-\infty}^{\infty} x(n)r^{-n}e^{-j\theta n} \right| \\ &\leq \sum_{n=-\infty}^{\infty} |x(n)r^{-n}e^{-j\theta n}| = \sum_{n=-\infty}^{\infty} |x(n)r^{-n}| \end{aligned}$$

- Hence $|X(z)|$ is finite if $x(n)r^{-n}$ is absolutely summable
- The problem of finding the ROC for $X(z)$ is equivalent to determining the range of r for which $x(n)r^{-n}$ is absolutely summable

2010/4/7

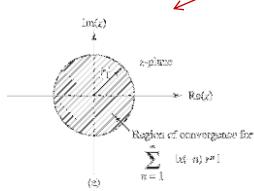
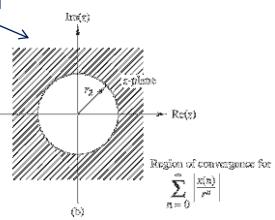
Introduction to Digital Signal Processing

3

ROC of the z-Transform

$$|X(z)| \leq \sum_{n=-\infty}^{-1} |x(n)r^{-n}| + \sum_{n=0}^{\infty} |x(n)r^{-n}|$$

$$\leq \sum_{n=1}^{\infty} |x(-n)r^n| + \sum_{n=0}^{\infty} \left| \frac{x(n)}{r^n} \right|$$



2010/4/7

4

The Direct z-Transform

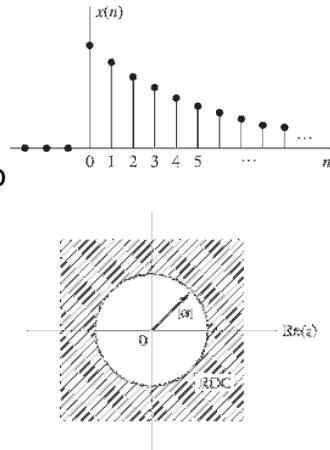
- **Example** – Determine the z-Transform $X(z)$ of the causal sequence $x[n] = \alpha^n u(n)$ and its ROC

$$X(z) = \sum_{n=-\infty}^{\infty} \alpha^n u(n) z^{-n} = \sum_{n=0}^{\infty} \alpha^n z^{-n}$$

- The above power series converges to

$$X(z) = \frac{1}{1 - \alpha z^{-1}}, \quad \text{for } |\alpha z^{-1}| < 1$$

- ROC is the annular region $|z| > |\alpha|$



2010/4/7

Introduction to Digital Signal Processing

5

The Direct z-Transform

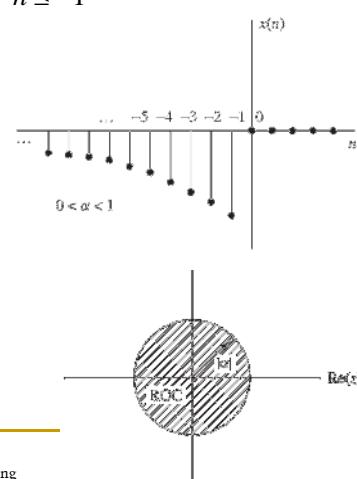
- **Example** – Consider the anti-causal sequence

$$x(n) = -\alpha^n u(-n-1) = \begin{cases} 0, & n \geq 0 \\ -\alpha^n, & n \leq -1 \end{cases}$$

- Its z-transform is given by

$$\begin{aligned} X(z) &= \sum_{n=-\infty}^{-1} -\alpha^n z^{-n} = -\sum_{l=1}^{\infty} \alpha^{-l} z^l \\ &= -\alpha^{-1} z \sum_{l=0}^{\infty} \alpha^{-l} z^l = -\frac{\alpha^{-1} z}{1 - \alpha^{-1} z} \\ &= \frac{1}{1 - \alpha z^{-1}}, \quad \text{for } |\alpha z^{-1}| < 1 \end{aligned}$$

- ROC is the annular region $|z| < |\alpha|$



2010/4/7

Introduction to Digital Signal Processing

z-Transform

- **Note:** the z-Transforms of two sequences $\alpha^n u(n)$ and $-\alpha^n u(-n-1)$ are identical even though the two parent sequences are different
- Only way a unique sequence can be associated with a z-transform is by specifying its ROC

z-Transform

- **Example** – the finite energy sequence

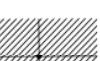
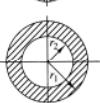
$$h_{LP}(n) = \frac{\sin \omega_c n}{\pi n}, \quad -\infty < n < \infty$$
 has a DTFT given by

$$H_{LP}(e^{j\omega}) = \begin{cases} 1, & 0 \leq |\omega| \leq \omega_c \\ 0, & \omega_c < |\omega| \leq \pi \end{cases}$$

which converges in the mean-square sense

- However, $h_{LP}[n]$ does not have a z-transform as it is not absolutely summable for any value of r

Characteristic Families of Signals with Their Corresponding ROCs

Signal	ROC
Finite-Duration Signals	
Causal	
Anticausal	
Two-sided	
Infinite-Duration Signals	
Causal	
Anticausal	
Two-sided	

2010/4/7

9

The Inverse z-Transform

- The z -transform $X(z)$ is given by
$$X(z) = \sum_{k=-\infty}^{\infty} x(k)z^{-k}$$
- Multiply both side by z^{n-1} and integrate both sides over a closed contour within the ROC of $X(z)$

$$\oint_C X(z)z^{n-1}dz = \oint_C \sum_{k=-\infty}^{\infty} x(k)z^{n-k-1}dz$$

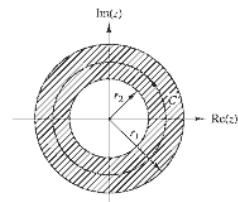
- Interchange the order of integration and summation:

$$\oint_C X(z)z^{n-1}dz = \sum_{k=-\infty}^{\infty} x(k) \oint_C z^{n-k-1}dz$$

- According to the **Cauchy integral theorem**

$$\frac{1}{2\pi j} \oint_C z^{n-k-1}dz = \begin{cases} 1, & k = n \\ 0, & k \neq n \end{cases}$$

$$x(n) = \frac{1}{2\pi j} \oint_C X(z)z^{n-1}dz$$



2010/4/7

Introduction to Digital Signal Processing

10

The Inverse z-Transform (from IDTFT)

- **General Expression:** Recall that, for $z = re^{j\omega}$, the z-transform $X(z)$ given by

$$X(z) = \sum_{n=-\infty}^{\infty} x(n)z^{-n} = \sum_{n=-\infty}^{\infty} x(n)r^{-n}e^{-j\omega n}$$

is merely the DTFT of the modified sequence $x(n)r^{-n}$

- Accordingly, the inverse DTFT is thus given by

$$x(n)r^{-n} = \frac{1}{2\pi} \int_{-\pi}^{\pi} X(re^{j\omega}) e^{j\omega n} d\omega$$

- By making a change of variable $z = re^{j\omega}$, the previous equation can be converted into a contour integral given by

$$x(n) = \frac{1}{2\pi j} \oint_{C'} X(z) z^{n-1} dz$$

where C' is a counterclockwise contour of integration defined by $|z| = r$

Properties of the z-Transform

- **Linearity** - If

$$x_1(n) \xrightarrow{z} X_1(z)$$

and

$$x_2(n) \xrightarrow{z} X_2(z)$$

then $x(n) = a_1 x_1(n) + a_2 x_2(n) \xrightarrow{z} X(z) = a_1 X_1(z) + a_2 X_2(z)$

- **Example** – Determine the z-Transform and the ROC of

$$x(n) = [3(2^n) - 4(3^n)]u(n)$$

Ans:

$$x_1(n) = 2^n u(n) \xrightarrow{z} X_1(z) = \frac{1}{1-2z^{-1}}, \quad \text{ROC: } |z| > 2$$

$$x_2(n) = 3^n u(n) \xrightarrow{z} X_2(z) = \frac{1}{1-3z^{-1}}, \quad \text{ROC: } |z| > 3$$

$$X(z) = \frac{3}{1-2z^{-1}} - \frac{4}{1-3z^{-1}}, \quad \text{ROC: } |z| > 3$$

Properties of the z-Transform

- **Example** - Consider the two-sided sequence

$$x[n] = \alpha^n u[n] - b^n u[-n-1]$$

- Let $x[n] = \alpha^n u[n]$ and $y[n] = -b^n u[-n-1]$ with $X_1(z)$ and $X_2(z)$ denoting, respectively, their z-transforms

- Now $X_1(z) = \frac{1}{1-\alpha z^{-1}}$, $|z| > |\alpha|$

and

$$X_2(z) = \frac{1}{1-bz^{-1}}, \quad |z| < |b|$$

- Using the linearity property we arrive at

$$X(z) = X_1(z) + X_2(z) = \frac{1}{1-\alpha z^{-1}} + \frac{1}{1-bz^{-1}}$$

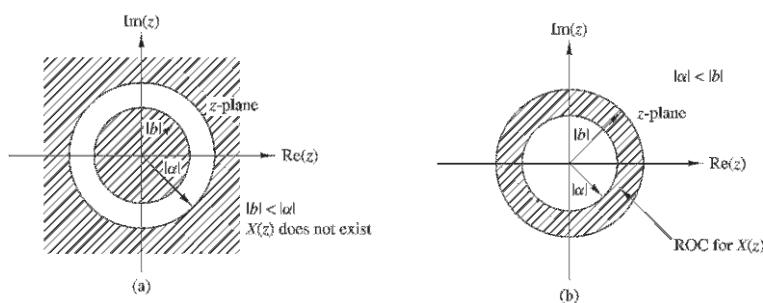
- The ROC of $X(z)$ is given by the overlap regions of $|z| > |\alpha|$ and $|z| < |b|$

2010/4/7

Introduction to Digital Signal Processing

13

Properties of the z-Transform



2010/4/7

Introduction to Digital Signal Processing

14

Properties of the z-Transform

- **Example** - Determine the z-transform and its ROC of the causal sequence

$$x[n] = (\cos \omega_0 n) u(n)$$

- We can express $x[n] = v[n] + v^*[n]$ where

$$v[n] = \frac{1}{2} e^{j\omega_0 n} u[n] = \frac{1}{2} \alpha^n u[n]$$

- The z-transform of $v[n]$ is given by

$$V(z) = \frac{1}{2} \cdot \frac{1}{1 - \alpha z^{-1}} = \frac{1}{2} \cdot \frac{1}{1 - e^{j\omega_0} z^{-1}}, \quad |z| > |\alpha| = 1$$

- Using the conjugation property we obtain the z-transform of $v^*[n]$ as

$$V^*(z^*) = \frac{1}{2} \cdot \frac{1}{1 - \alpha^* z^{-1}} = \frac{1}{2} \cdot \frac{1}{1 - e^{-j\omega_0} z^{-1}}, \quad |z| > |\alpha| = 1$$

2010/4/7

Introduction to Digital Signal Processing

15

Properties of the z-Transform

- Using the linearity property we get

$$X(z) = V(z) + V^*(z^*) = \frac{1}{2} \left(\frac{1}{1 - e^{j\omega_0} z^{-1}} + \frac{1}{1 - e^{-j\omega_0} z^{-1}} \right)$$

or,

$$X(z) = \frac{1 - (\cos \omega_0) z^{-1}}{1 - (2 \cos \omega_0) z^{-1} + z^{-2}}, \quad |z| > 1$$

- Therefore, we obtain

$$x(n) = (\cos \omega_0 n) u(n) \xleftarrow{z} X(z) = \frac{1 - (\cos \omega_0) z^{-1}}{1 - 2(\cos \omega_0) z^{-1} + z^{-2}}, \quad \text{ROC: } |z| > 1$$

Similarly

$$x(n) = (\sin \omega_0 n) u(n) \xleftarrow{z} X(z) = \frac{(\sin \omega_0) z^{-1}}{1 - 2(\cos \omega_0) z^{-1} + z^{-2}}, \quad \text{ROC: } |z| > 1$$

2010/4/7

Introduction to Digital Signal Processing

16

Properties of the z-Transform

- **Time Shifting** - If

$$x(n) \xrightarrow{z} X(z)$$

then

$$x(n-k) \xrightarrow{z} z^{-k} X(z)$$

And the ROC remains unchanged except for $z = 0$ if $k > 0$ and $z = \infty$ if $k < 0$

- **Example** – Determine the z-Transform of the signal

$$x(n) = \begin{cases} 1, & 0 \leq n \leq N-1 \\ 0, & \text{elsewhere} \end{cases}$$

Ans:

$$x(n) = u(n) - u(n-N)$$

$$X(z) = Z\{u(n)\} - Z\{u(n-N)\} = (1 - z^{-N}) \frac{1}{1 - z^{-1}}, \quad \text{ROC: } |z| > 1$$

2010/4/7

Introduction to Digital Signal Processing

17

Properties of the z-Transform

- **Scaling in the z-domain** -

If

$$x(n) \xrightarrow{z} X(z), \quad \text{ROC: } r_1 < |z| < r_2$$

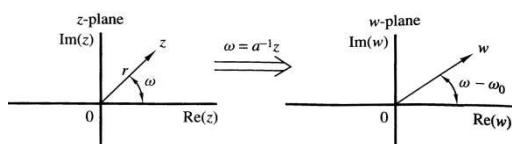
then

$$a^n x(n) \xrightarrow{z} X(a^{-1}z), \quad \text{ROC: } |a|r_1 < |z| < |a|r_2$$

For any constant a

- **Proof**

$$\begin{aligned} Z\{a^n x(n)\} &= \sum_{n=-\infty}^{\infty} a^n x(n) z^{-n} \\ &= \sum_{n=-\infty}^{\infty} x(n) (a^{-1}z)^{-n} \\ &= X(a^{-1}z) \end{aligned}$$



$$\text{ROC: } r_1 < |a^{-1}z| < r_2 \quad \text{or} \quad \text{ROC: } |a|r_1 < |z| < |a|r_2$$

2010/4/7

Introduction to Digital Signal Processing

18

Properties of the z-Transform

- **Example** - Determine the z-transform and its ROC of the causal sequence

$$x(n) = r^n (\cos \omega_0 n) u(n)$$

and

$$x(n) = r^n (\sin \omega_0 n) u(n)$$

- Ans:

By applying the scaling property

$$x(n) = r^n (\cos \omega_0 n) u(n) \xrightarrow{z} X(z) = \frac{1 - r(\cos \omega_0) z^{-1}}{1 - 2r(\cos \omega_0) z^{-1} + r^2 z^{-2}}, \quad \text{ROC: } |z| > r$$

and similarly

$$x(n) = r^n (\sin \omega_0 n) u(n) \xrightarrow{z} X(z) = \frac{r(\sin \omega_0) z^{-1}}{1 - 2r(\cos \omega_0) z^{-1} + r^2 z^{-2}}, \quad \text{ROC: } |z| > r$$

Properties of the z-Transform

- **Time Reversal** -

If

$$x(n) \xrightarrow{z} X(z), \quad \text{ROC: } r_1 < |z| < r_2$$

then

$$x(-n) \xrightarrow{z} X(z^{-1}), \quad \text{ROC: } \frac{1}{r_2} < |z| < \frac{1}{r_1}$$

- **Proof**

$$Z\{x(-n)\} = \sum_{n=-\infty}^{\infty} x(-n) z^{-n} = \sum_{l=-\infty}^{\infty} x(l) (z^{-1})^{-l} = X(z^{-1})$$

$$\text{ROC: } r_1 < |z^{-1}| < r_2 \quad \text{or} \quad \text{ROC: } \frac{1}{r_2} < |z| < \frac{1}{r_1}$$

- **Example** -

$$x(n) = u(-n)$$

$$u(n) \xrightarrow{z} \frac{1}{1 - z^{-1}}, \quad \text{ROC: } |z| > 1 \quad u(-n) \xrightarrow{z} \frac{1}{1 - z}, \quad \text{ROC: } |z| < 1$$

Properties of the z-Transform

■ Differentiation in the z-Domain -

If

$$x(n) \xleftarrow{z} X(z)$$

then

$$nx(n) \xleftarrow{z} -z \frac{dX(z)}{dz}$$

ROC remains unchanged

■ Example – Find the z-Transform of

$$x(n) = na^n u(n)$$

■ Example – Find the inverse z-transform of

$$X(z) = \log(1 + az^{-1}), \quad \text{ROC: } |z| > |a|$$

Properties of the z-Transform

■ Convolution of Two Sequences -

If

$$x_1(n) \xleftarrow{z} X_1(z) \quad \text{and} \quad x_2(n) \xleftarrow{z} X_2(z)$$

then

$$x(n) = x_1(n) * x_2(n) \xleftarrow{z} X(z) = X_1(z)X_2(z)$$

The ROC is the intersection of that for $X_1(z)$ and $X_2(z)$

■ Proof

$$x(n) = \sum_{k=-\infty}^{\infty} x_1(k)x_2(n-k)$$

$$X(z) = \sum_{n=-\infty}^{\infty} x(n)z^{-n} = \sum_{n=-\infty}^{\infty} \left[\sum_{k=-\infty}^{\infty} x_1(k)x_2(n-k) \right] z^{-n}$$

Intercahnge the order of the summations and apply the time shifting property

$$X(z) = \sum_{k=-\infty}^{\infty} x_1(k) \left[\sum_{n=-\infty}^{\infty} x_2(n-k)z^{-n} \right] = \left[\sum_{k=-\infty}^{\infty} x_1(k)z^{-k} \right] X_2(z) = X_1(z)X_2(z)$$

Properties of the z-Transform

■ Correlation of Two Sequences -

If

$$x_1(n) \xrightarrow{z} X_1(z) \quad \text{and} \quad x_2(n) \xrightarrow{z} X_2(z)$$

then

$$r_{x_1 x_2}(l) = \sum_{n=-\infty}^{\infty} x_1(n)x_2(n-l) \xrightarrow{z} R_{x_1 x_2}(z) = X_1(z)X_2(z^{-1})$$

The ROC is at least the intersection of that for $X_1(z)$ and $X_2(z^{-1})$

■ Proof

$$r_{x_1 x_2}(l) = x_1(l) * x_2(-l)$$

$$X(z) = Z\{x_1(l)\} Z\{x_2(-l)\} = X_1(z)X_2(z^{-1})$$

■ Example -

$$x(n) = a^n u(n)$$

$$R_{x_1 x_2}(z) = \frac{1}{1 - az^{-1}} \frac{1}{1 - az} = \frac{1}{1 - a(z + z^{-1}) + a^2}, \quad \text{ROC: } |a| < |z| < \frac{1}{|a|}$$

2010/4/7

Introduction to Digital Signal Processing

23

Properties of the z-Transform

■ Multiplication of Two Sequences -

If

$$x_1(n) \xrightarrow{z} X_1(z) \quad \text{and} \quad x_2(n) \xrightarrow{z} X_2(z)$$

then

$$x(n) = x_1(n)x_2(n) \xrightarrow{z} X(z) = \frac{1}{2\pi j} \oint_C X_1(v)X_2\left(\frac{z}{v}\right)v^{-1}dv$$

where C is the closed contour that encloses the origin and lies within the ROC common to both $X_1(v)$ and $X_2(v^{-1})$

■ Proof

$$X(z) = \sum_{n=-\infty}^{\infty} x_1(n)x_2(n)z^{-n}$$

Since

$$x_1(n) = \frac{1}{2\pi j} \oint_C X_1(v)v^{n-1}dv$$

$$X(z) = \frac{1}{2\pi j} \oint_C X_1(v) \left[\sum_{n=-\infty}^{\infty} x_2(n) \left(\frac{z}{v} \right)^{-n} \right] v^{-1}dv$$

$$X_2\left(\frac{z}{v}\right)$$

2010/4/7

Introduction to Digital Signal Processing

24

Properties of the z-Transform

■ Parseval's relation -

If

$$x_1(n) \xrightarrow{z} X_1(z) \quad \text{and} \quad x_2(n) \xrightarrow{z} X_2(z)$$

then

$$\sum_{n=-\infty}^{\infty} x_1(n)x_2^*(n) = \frac{1}{2\pi j} \oint_C X_1(v)X_2^*\left(\frac{1}{v^*}\right) v^{-1} dv$$

■ The Initial Value Theorem -

■ If $x(n)$ is causal, then

$$x(0) = \lim_{z \rightarrow \infty} X(z)$$

■ Proof -

$$x(z) = \sum_{n=0}^{\infty} x(n)z^{-n} = x(0) + x(1)z^{-1} + x(2)z^{-2} + \dots$$

2010/4/7

Introduction to Digital Signal Processing

25

Properties of the z-Transform

Property	Time Domain	z-Domain	ROC
Notation	$x(n)$	$X(z)$	$\text{ROC: } r_2 < z < r_1$
	$x_1(n)$	$X_1(z)$	ROC_1
	$x_2(n)$	$X_2(z)$	ROC_2
Linearity	$a_1x_1(n) + a_2x_2(n)$	$a_1X_1(z) + a_2X_2(z)$	At least the intersection of ROC_1 and ROC_2
Time shifting	$x(n - k)$	$z^{-k} X(z)$	That of $X(z)$, except $z = 0$ if $k > 0$ and $z = \infty$ if $k < 0$
Scaling in the z-domain	$a^n x(n)$	$X(a^{-1}z)$	$ a r_2 < z < a r_1$
Time reversal	$x(-n)$	$X(z^{-1})$	$\frac{1}{r_1} < z < \frac{1}{r_2}$
Conjugation	$x^*(n)$	$X^*(z^*)$	ROC
Real part	$\text{Re}\{x(n)\}$	$\frac{1}{2}[X(z) + X^*(z^*)]$	Includes ROC
Imaginary part	$\text{Im}\{x(n)\}$	$\frac{1}{2}j[X(z) - X^*(z^*)]$	Includes ROC
Differentiation in the z-domain	$nx(n)$	$-z \frac{dX(z)}{dz}$	$r_2 < z < r_1$
Convolution	$x_1(n) * x_2(n)$	$X_1(z)X_2(z)$	At least, the intersection of ROC_1 and ROC_2
Correlation	$r_{x_1 x_2}(l) = x_1(l) * x_2(-l)$	$R_{x_1 x_2}(z) = X_1(z)X_2(z^{-1})$	At least, the intersection of ROC of $X_1(z)$ and $X_2(z^{-1})$
Initial value theorem	If $x(n)$ causal	$x(0) = \lim_{z \rightarrow \infty} X(z)$	
Multiplication	$x_1(n)x_2(n)$	$\frac{1}{2\pi j} \oint_C X_1(v)X_2\left(\frac{1}{v}\right) v^{-1} dv$	At least, $r_{1l}r_{2l} < z < r_{1u}r_{2u}$
Parseval's relation	$\sum_{n=-\infty}^{\infty} x_1(n)x_2^*(n) = \frac{1}{2\pi j} \oint_C X_1(v)X_2^*\left(\frac{1}{v^*}\right) v^{-1} dv$		

2010/4/7

26

Common z-Transform Pairs

	Signal, $x(n)$	z -Transform, $X(z)$	ROC
1	$\delta(n)$	1	All z
2	$u(n)$	$\frac{1}{1 - z^{-1}}$	$ z > 1$
3	$a^n u(n)$	$\frac{1}{1 - az^{-1}}$	$ z > a $
4	$na^n u(n)$	$\frac{az^{-1}}{(1 - az^{-1})^2}$	$ z > a $
5	$-a^n u(-n - 1)$	$\frac{1}{1 - az^{-1}}$	$ z < a $
6	$-na^n u(-n - 1)$	$\frac{az^{-1}}{(1 - az^{-1})^2}$	$ z < a $
7	$(\cos \omega_0 n)u(n)$	$\frac{1 - z^{-1} \cos \omega_0}{1 - 2z^{-1} \cos \omega_0 + z^{-2}}$	$ z > 1$
8	$(\sin \omega_0 n)u(n)$	$\frac{z^{-1} \sin \omega_0}{1 - 2z^{-1} \cos \omega_0 + z^{-2}}$	$ z > 1$
9	$(a^n \cos \omega_0 n)u(n)$	$\frac{1 - az^{-1} \cos \omega_0}{1 - 2az^{-1} \cos \omega_0 + a^2 z^{-2}}$	$ z > a $
10	$(a^n \sin \omega_0 n)u(n)$	$\frac{az^{-1} \sin \omega_0}{1 - 2az^{-1} \cos \omega_0 + a^2 z^{-2}}$	$ z > a $

Rational z-Transforms

- In the case of LTI discrete-time systems we are concerned with in this course, all pertinent z-transforms are rational functions of z^{-1}
- That is, they are ratios of two polynomials in z^{-1}

$$X(z) = \frac{B(z)}{A(z)} = \frac{b_0 + b_1 z^{-1} + \dots + b_M z^{-M}}{a_0 + a_1 z^{-1} + \dots + a_N z^{-N}} = \frac{\sum_{k=0}^M b_k z^{-k}}{\sum_{k=0}^N a_k z^{-k}}$$

- The degree of the numerator polynomial $B(z)$ is M and the degree of the denominator polynomial $A(z)$ is N
- An alternate representation of a rational z-transform is as a ratio of two polynomials in z :

$$X(z) = \frac{b_0 z^{-M}}{a_0 z^{-N}} \frac{z^M + (b_1 / b_0) z^{M-1} + \dots + b_M / b_0}{z^N + (a_1 / a_0) z^{N-1} + \dots + a_N / a_0}$$

Rational z-Transform

- A rational z -transform can be alternately written in factored form as

$$X(z) = \frac{b_0}{a_0} z^{-M+N} \frac{(z - z_1)(z - z_2) \cdots (z - z_M)}{(z - p_1)(z - p_2) \cdots (z - p_N)}$$
$$= G z^{-M+N} \frac{\prod_{k=1}^M (z - z_k)}{\prod_{k=1}^N (z - p_k)} \quad G = \frac{b_0}{a_0}$$

- At a root $z = z_k$ of the numerator polynomial $X(z_k) = 0$. These values of z are known as the **zeros** of $G(z)$
- At a root $z = p_k$ of the denominator polynomial $X(p_k) \rightarrow \infty$. These values of z are known as the **poles** of $G(z)$
- There are $|N - M|$ zeros (if $N > M$) or poles (if $N < M$) at $z = 0$

2010/4/7

Introduction to Digital Signal Processing

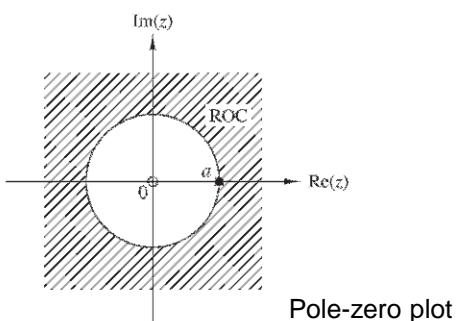
29

Rational z-Transform

- **Example** – the z -transform

$$X(z) = \frac{1}{1 - az^{-1}} = \frac{z}{z - a}, \quad \text{ROC: } |z| > a$$

has a zero at $z_1 = 0$ and a pole at $p_1 = a$



2010/4/7

Introduction to Digital Signal Processing

30

Rational z-Transform

- **Example** – Determine the pole-zero plot for the signal

$$x(n) = \begin{cases} a^n, & 0 \leq n \leq M-1 \\ 0, & \text{elsewhere} \end{cases} \quad a > 0$$

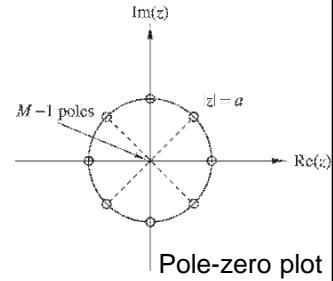
$$X(z) = \sum_{n=0}^{M-1} (az^{-1})^n = \frac{1 - (az^{-1})^M}{1 - az^{-1}} = \frac{z^M - a^M}{z^{M-1}(z - a)}$$

Since $a > 0$ $z^M = a^M$ has M roots at

$$z_k = ae^{j2\pi k/M} \quad k = 0, 1, \dots, M-1$$

The zero $z_0 = a$ cancels the pole at $z = a$. Thus

$$X(z) = \frac{(z - z_1)(z - z_2) \cdots (z - z_{M-1})}{z^{M-1}}$$



Rational z-Transform

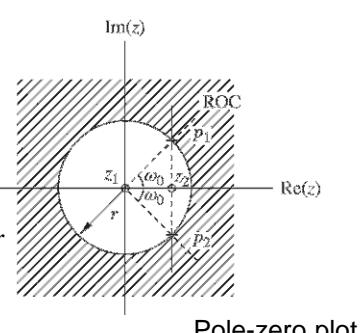
- **Example** – Determine the z-transform and the signal corresponds to the pole-zero plot
- There are 2 zeros ($M = 2$) at $z_1 = 0$ and $z_2 = r\cos\omega_0$ and 2 poles ($N = 2$) at $p_1 = re^{j\omega_0}$ and $p_2 = re^{-j\omega_0}$

$$X(z) = G \frac{(z - z_1)(z - z_2)}{(z - p_1)(z - p_2)}$$

$$= G \frac{z(z - \cos\omega_0)}{(z - re^{j\omega_0})(z - re^{-j\omega_0})}, \quad \text{ROC: } |z| > r$$

$$X(z) = G \frac{1 - rz^{-1} \cos\omega_0}{1 - 2rz^{-1} \cos\omega_0 + r^2 z^{-2}}, \quad \text{ROC: } |z| > r$$

$$x(n) = G(r^n \cos\omega_0 n)u(n)$$

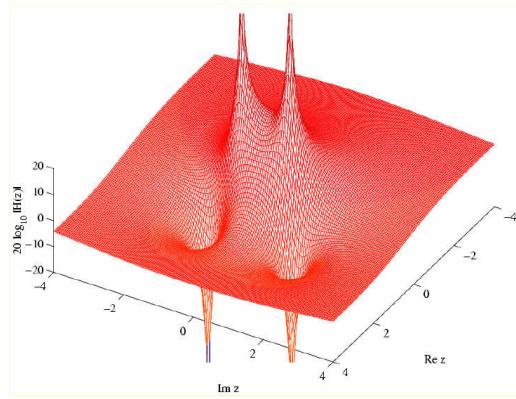


Rational z-Transform

- A physical interpretation of the concepts of poles and zeros can be given by plotting the log-magnitude $20\log_{10}|X(z)|$ for

$$X(z) = \frac{1-2.4z^{-1}+2.88z^{-2}}{1-0.8z^{-1}+0.64z^{-2}}$$

- The magnitude plot exhibits very large peaks around the poles of $X(z)$ ($z = 0.4 \pm j 0.6928$)
- It also exhibits very narrow and deep wells around the location of the zeros ($z = 1.2 \pm j 1.2$)



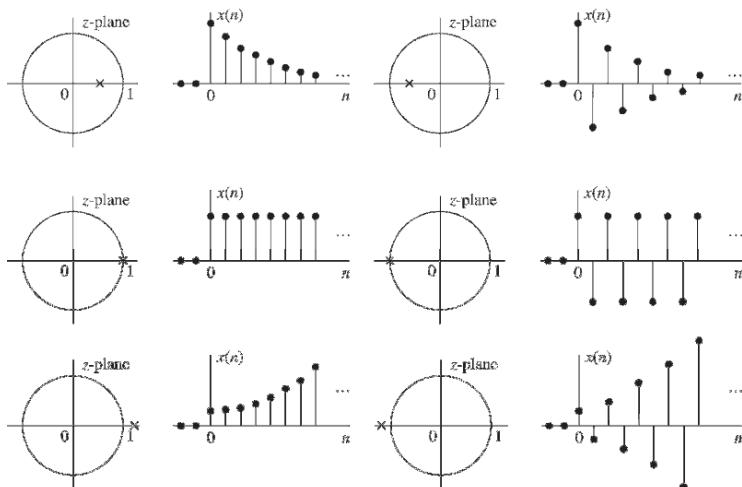
2010/4/7

Introduction to Digital Signal Processing

33

Behavior of a Single Real-Pole Causal Signal

$$x(n) = a^n u(n) \xrightarrow{z} X(z) = \frac{1}{1 - az^{-1}}, \quad \text{ROC: } |z| > |a|$$



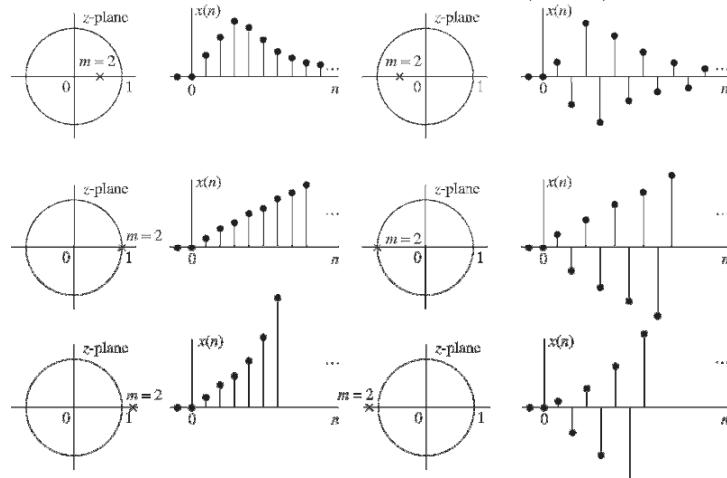
2010/4/7

Introduction to Digital Signal Processing

34

Behavior of a Double Real-Pole Causal Signal

$$x(n) = na^n u(n) \xleftarrow{z} X(z) = \frac{1}{(1-az^{-1})^2}, \quad \text{ROC: } |z| > |a|$$

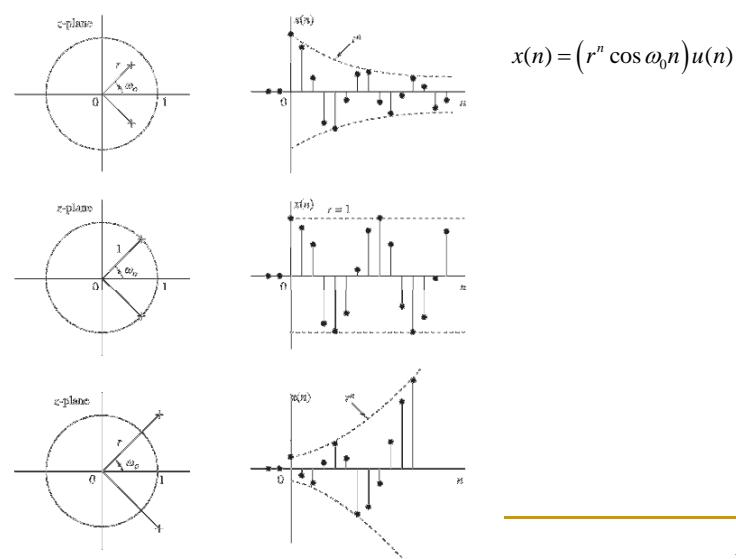


2010/4/7

Introduction to Digital Signal Processing

35

Behavior of a Causal Signal with a Pair of Complex-Conjugate Poles

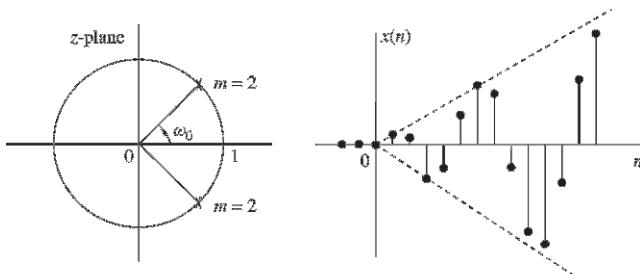


2010/4/7

36

Behavior of a Causal Signal with a Double Pair of Complex-Conjugate Poles

$$x(n) = (n \cos \omega_0 n) u(n)$$



2010/4/7

Introduction to Digital Signal Processing

37

The System Function of an LTI System

- According to the convolution property, the I/O-relationship can be expressed as

$$Y(z) = H(z)X(z)$$

- The system function (impulse/unit-sample response) $H(z)$ is

$$H(z) = \frac{Y(z)}{X(z)}$$

- If an LTI system is described by the following constant-coefficient difference equation

$$y(n) = -\sum_{k=1}^N a_k y(n-k) + \sum_{k=0}^M b_k x(n-k)$$

- Taking the z-Transform at both sides

$$Y(z) = -\sum_{k=1}^N a_k Y(z) z^{-k} + \sum_{k=0}^M b_k X(z) z^{-k}$$

2010/4/7

Introduction to Digital Signal Processing

38

The System Function of an LTI System

$$Y(z) \left(1 + \sum_{k=1}^N a_k z^{-k} \right) = X(z) \left(\sum_{k=0}^M b_k z^{-k} \right)$$

$$H(z) = \frac{Y(z)}{X(z)} = \frac{\sum_{k=0}^M b_k z^{-k}}{1 + \sum_{k=1}^N a_k z^{-k}} \quad (\text{pole-zero systems})$$

- Therefore an LTI system described by a constant-coefficient difference equation has a rational system function
- Two important special forms of pole-zero systems:
 - If $a_k = 0$ for $1 \leq k \leq N$ $H(z) = \sum_{k=0}^M b_k z^{-k} = \frac{1}{z^M} \sum_{k=0}^M b_k z^{M-k}$ (**all-zero system**)
 - If $b_k = 0$ for $1 \leq k \leq M$ $H(z) = \frac{1}{1 + \sum_{k=1}^N a_k z^{-k}} = \frac{b_0 z^N}{\sum_{k=0}^N a_k z^{N-k}}$ (**all-pole system**)

2010/4/7

Introduction to Digital Signal Processing

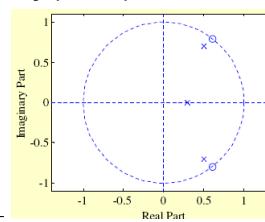
39

The System Function of an LTI System

- Example** – A causal LTI IIR filter is described by a constant coefficient difference equation given by
- $y(n) = x(n-1) - 1.2 x(n-2) + x(n-3) + 1.3 y(n-1) - 1.04 y(n-2) + 0.222 y(n-3)$
- Its transfer function is therefore given by

$$H(z) = \frac{z^{-1} - 1.2z^{-2} + z^{-3}}{1 - 1.3z^{-1} + 1.04z^{-2} - 0.222z^{-3}}$$

- Alternate forms: $H(z) = \frac{z^2 - 1.2z + 1}{z^3 - 1.3z^2 + 1.04z - 0.222}$
$$= \frac{(z - 0.6 + j0.8)(z - 0.6 - j0.8)}{(z - 0.3)(z - 0.5 + j0.7)(z - 0.5 - j0.7)}$$
- Note: Poles farthest from $z = 0$ have a magnitude $\sqrt{0.74}$
- ROC: $|z| > \sqrt{0.74}$



2010/4/7

Introduction to Digital Signal Processing

40

MATLAB Functions for Rational z-Transform

- In general, if the rational z-transform has N poles with R distinct magnitudes, then it has $R + 1$ ROCs, and $R + 1$ distinct sequences having the same z-transform
- Hence, a rational z-transform with a specified ROC has a unique sequence as its inverse z-transform
- MATLAB **[z,p,k] = tf2zp(num,den)** determines the zeros, poles, and the gain constant of a rational z-transform with the numerator coefficients specified by **num** and the denominator coefficients specified by **den**
- **[num,den] = zp2tf(z,p,k)** implements the reverse process
- The factored form of the z-transform can be obtained using **sos = zp2sos(z,p,k)**

2010/4/7

Introduction to Digital Signal Processing

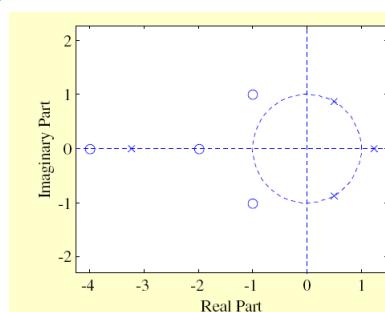
41

MATLAB Functions for Rational z-Transform

- The pole-zero plot is determined using the function **zplane**
- The z-transform can be either described in terms of its zeros and poles: **zplane(zeros,poles)** or, in terms of its numerator and denominator coefficients **zplane(num,den)**
- **Example** – The pole-zero plot of

$$X(z) = \frac{2z^4 + 16z^3 + 44z^2 + 56z + 32}{3z^4 + 3z^3 - 15z^2 + 18z - 12}$$

obtained using MATLAB



2010/4/7

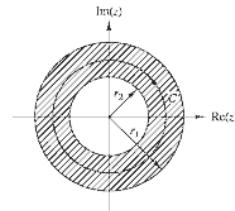
Introduction to Digital Signal Processing

42

Inversion of the z-Transform

- The inverse z-transform of $X(z)$ is given by

$$x(n) = \frac{1}{2\pi j} \oint_C X(z) z^{n-1} dz$$



- There are three methods for the evaluation of the inverse z-transform in practice:
 1. Direct evaluation by the contour integration
 2. Power series expansion
 3. Partial-fraction expansion and table lookup

2010/4/7

Introduction to Digital Signal Processing

43

Inverse z-Transform by Contour Integration

- Cauchy's integral theorem.** Let $f(z)$ be a function of the complex variable z and C be a closed path in the z -plane. If the derivative $df(z)/dz$ exists on and inside the contour C and if $f(z)$ has no poles at $z = z_0$, then

$$\frac{1}{2\pi j} \oint_C \frac{f(z)}{z - z_0} dz = \begin{cases} f(z_0), & \text{if } z_0 \text{ is inside } C \\ 0, & \text{if } z_0 \text{ is outside } C \end{cases}$$

- More generally, if the $(k+1)$ -order derivative of $f(z)$ exist and $f(z)$ has no poles at $z = z_0$, then

$$\frac{1}{2\pi j} \oint_C \frac{f(z)}{(z - z_0)^k} dz = \begin{cases} \frac{1}{(k-1)!} \left. \frac{d^{k-1} f(z)}{dz^{k-1}} \right|_{z=z_0}, & \text{if } z_0 \text{ is inside } C \\ 0, & \text{if } z_0 \text{ is outside } C \end{cases}$$

2010/4/7

Introduction to Digital Signal Processing

44

Inverse z-Transform by Contour Integration

- Suppose the integrand of the contour integral is a proper fraction $f(z)/g(z)$, where $f(z)$ has no poles inside the contour C and $g(z)$ is a polynomial with distinct roots inside C . Then

$$\begin{aligned}\frac{1}{2\pi j} \oint_C \frac{f(z)}{g(z)} dz &= \frac{1}{2\pi j} \oint_C \left[\sum_{i=1}^n \frac{A_i}{z - z_i} \right] dz \\ &= \sum_{i=1}^n \frac{1}{2\pi j} \oint_C \frac{A_i}{z - z_i} dz = \sum_{i=1}^n A_i \quad A_i = (z - z_i) \frac{f(z)}{g(z)} \Big|_{z=z_i}\end{aligned}$$

- In the case of the inverse z-transform, we have

$$\begin{aligned}x(n) &= \frac{1}{2\pi j} \oint_C X(z) z^{n-1} dz \\ &= \sum_{\text{all poles } \{z_i\} \text{ inside } C} \left[\text{residue of } X(z) z^{n-1} \text{ at } z = z_i \right] \\ &= \sum_i (z - z_i) X(z) z^{n-1} \Big|_{z=z_i}\end{aligned}$$

2010/4/7

Introduction to Digital Signal Processing

45

Inverse z-Transform by Contour Integration

- Example** – Evaluate the inverse z-transform of

$$X(z) = \frac{1}{1 - az^{-1}}, \quad |z| > |a|$$

Using the complex inversion integral

- Sol: $x(n) = \frac{1}{2\pi j} \oint_C \frac{z^{n-1}}{1 - az^{-1}} dz = \frac{1}{2\pi j} \oint_C \frac{z^n}{z - a} dz$

(1) If $n \geq 0$, $f(z)$ has only zeros and hence no poles inside C . The only pole inside C is $z = a$. Hence $x(n) = f(z_0) = a^n, n \geq 0$

(2) If $n < 0$, $f(z)$ has an nth-order poles at $z = 0$ which is also inside C . If $n = 1$, we have

$$x(-1) = \frac{1}{2\pi j} \oint_C \frac{1}{z(z-a)} dz = \frac{1}{z-a} \Big|_{z=0} + \frac{1}{z} \Big|_{z=a} = 0$$

If $n = 2$, we have

$$x(-2) = \frac{1}{2\pi j} \oint_C \frac{1}{z^2(z-a)} dz = \frac{d}{dz} \left(\frac{1}{z-a} \right) \Big|_{z=0} + \frac{1}{z^2} \Big|_{z=a} = 0 \quad x(n) = 0 \text{ for } n < 0$$

2010/4/7

Introduction to Digital Signal Processing

$x(n) = a^n u(n)$

46

Inverse z-Transform by Power Series Expansion

- Expand $X(z)$ into a power series as

$$X(z) = \sum_{n=-\infty}^{\infty} c_n z^{-n}$$

which converges in the given ROC. Then, by the uniqueness of the z-transform, $x(n) = c_n$ for all n .

- **Example:** Determine the inverse z-transform of

$$X(z) = \frac{1}{1 - 1.5z^{-1} + 0.5z^{-2}}$$

If (a) ROC: $|z| > 1$, (b) ROC: $|z| < 0.5$

$$\text{Sol: (a)} \quad X(z) = \frac{1}{1 - \frac{3}{2}z^{-1} + \frac{1}{2}z^{-2}} = 1 + \frac{3}{2}z^{-1} + \frac{7}{4}z^{-2} + \frac{15}{8}z^{-3} + \frac{31}{16}z^{-4} + \dots$$

$$X(n) = \left\{ 1, \frac{3}{2}, \frac{7}{4}, \frac{15}{8}, \frac{31}{16}, \dots \right\}$$

Inverse z-Transform by Partial-Fraction Expansion

- A rational $X(z)$ can be expressed as

$$X(z) = \frac{B(z)}{B(z)} = \frac{\sum_{i=0}^M b_i z^{-i}}{\sum_{i=0}^N a_i z^{-i}} = \frac{b_0 + b_1 z^{-1} + \dots + b_M z^{-M}}{1 + a_1 z^{-1} + \dots + a_N z^{-N}}$$

- $X(z)$ is called improper if $M \geq N$. It can be re-expressed as

$$X(z) = \sum_{\ell=0}^{M-N} c_{\ell} z^{-\ell} + \frac{B_1(z)}{A(z)} = c_0 + c_1 z^{-1} + \dots + c_{M-N} z^{M-N} + \frac{B_1(z)}{A(z)}$$

where the degree of $B_1(z)$ is less than N

- The rational function $B_1(z)/A(z)$ is called a **proper fraction**
- **Example – Consider**

$$X(z) = \frac{2 + 0.8z^{-1} + 0.5z^{-2} + 0.3z^{-3}}{1 + 0.8z^{-1} + 0.2z^{-2}}$$

By long division we arrive at

$$X(z) = 3.5 + 1.5z^{-1} + \frac{5.5 + 2.1z^{-1}}{1 + 0.8z^{-1} + 0.2z^{-2}}$$

Inverse z-Transform by Partial-Fraction Expansion

- **Simple Poles:** In most practical cases, the rational z-transform of interest $X(z)$ is a proper fraction with simple poles
- Let the poles of $X(z)$ be at $z = p_k$ $1 \leq k \leq N$
- A partial-fraction expansion of $X(z)$ is then of the form

$$X(z) = \sum_{\ell=1}^N \left(\frac{A_\ell}{1-p_\ell z^{-1}} \right) = \frac{A_1}{1-p_1 z^{-1}} + \frac{A_2}{1-p_2 z^{-1}} + \cdots + \frac{A_N}{1-p_N z^{-1}}$$

- The constants in the partial-fraction expansion are called the **residues** and are given by

$$A_\ell = (1 - p_\ell z^{-1}) X(z) \Big|_{z=p_\ell}$$

Inverse z-Transform by Partial-Fraction Expansion

- $x(n) = Z^{-1}\{X(z)\}$ can be obtained by inverting each term as:

$$Z^{-1} \left\{ \frac{1}{1-p_k z^{-1}} \right\} = \begin{cases} (p_k)^n u(n), & \text{if ROC: } |z| > |p_k| \\ & \text{(causal sequence)} \\ -(p_k)^n u(-n-1) & \text{if ROC: } |z| < |p_k| \\ & \text{(anticausal sequence)} \end{cases}$$

- If $x(n)$ is causal, the ROC is $|z| > p_{\max}$ where $p_{\max} = \max\{|p_1|, |p_2|, \dots, |p_N|\}$, and $x(n)$ becomes

$$x(n) = (A_1 p_1^n + A_2 p_2^n + \cdots + A_N p_N^n) u(n)$$

- The above approach with a slight modification can also be used to determine the inverse of a rational z-transform of a non-causal sequence

Inverse z-Transform by Partial-Fraction Expansion

- **Example** – Determine the inverse z-transform of

$$X(z) = \frac{1}{1 - 1.5z^{-1} + 0.5z^{-2}} = \frac{1}{(1 - z^{-1})(1 - 0.5z^{-1})}$$

If (a) ROC: $|z| > 1$, (b) ROC: $|z| < 0.5$, and (c) $0.5 < |z| < 1$

- Ans:

$$X(z) = \frac{A_1}{1 - z^{-1}} + \frac{A_2}{1 - 0.5z^{-1}}$$

$$A_1 = (1 - z^{-1})H(z)|_{z=1} = 2, \quad A_2 = (1 - 0.5z^{-1})H(z)|_{z=0.5} = -1$$

$$(a) \text{ ROC: } |z| > 1 \quad x(n) = (2 - 0.5^n)u(n)$$

$$(b) \text{ ROC: } |z| < 0.5 \quad x(n) = (-2 + 0.5^n)u(-n-1)$$

$$(b) \text{ ROC: } 0.5 < |z| < 1 \quad x(n) = -2u(-n-1) - (0.5)^n u(n)$$

Inverse z-Transform by Partial-Fraction Expansion

- **Multiple Poles**: If $X(z)$ has multiple poles, the partial-fraction expansion is of slightly different form
- Let the pole at $z = v$ be of multiplicity L and the remaining $N - L$ poles be simple and at $z = \lambda$, $1 \leq l \leq N - L$
- Then the partial-fraction expansion of $G(z)$ is of the form

$$G(z) = \sum_{\ell=0}^{M-N} \eta_{\ell} z^{-\ell} + \sum_{\ell=1}^{N-L} \frac{\rho_{\ell}}{1 - \lambda_{\ell} z^{-1}} + \sum_{i=1}^L \frac{\gamma_i}{(1 - v z^{-1})^i}$$

where the constants are computed using

$$\gamma_i = \frac{1}{(L-i)!(-v)^{L-i}} \frac{d^{L-i}}{d(z^{-1})^{L-i}} \left[(1 - v z^{-1})^L G(z) \right]_{z=v}, \quad 1 \leq i \leq L$$

- The residues ρ_i are calculated as before

Decomposition of Rational z-Transforms

- Suppose we have a rational z-transform $X(z)$ expressed as

$$X(z) = \frac{\sum_{k=0}^M b_k z^{-k}}{1 + \sum_{k=1}^N a_k z^{-k}} = b_0 \frac{\prod_{k=1}^M (1 - z_k z^{-1})}{\prod_{k=1}^N (1 - p_k z^{-1})}$$

- If $M \geq N$ (i.e., $X(z)$ is improper), we convert $X(z)$ to a sum of a polynomial and a proper function

$$X(z) = \sum_{k=0}^{M-N} c_k z^{-k} + X_{\text{pr}}(z)$$

- If the roots are distinct, it can be expanded in partial fractions as

$$X(z) = A_1 \frac{1}{(1 - p_1 z^{-1})} + A_2 \frac{1}{(1 - p_2 z^{-1})} + \dots + A_N \frac{1}{(1 - p_N z^{-1})}$$

2010/4/7

Introduction to Digital Signal Processing

53

Decomposition of Rational z-Transforms

- If there are some complex conjugate pairs of poles, we can group and combine the pairs as

$$\frac{A}{1 - p z^{-1}} + \frac{A^*}{1 - p^* z^{-1}} = \frac{(A + A^*) + (-A p^* - A^* p) z^{-1}}{1 + (-p - p^*) z^{-1} + (p p^*) z^{-2}} = \frac{b_0 + b_1 z^{-1}}{1 + a_1 z^{-1} + a_2 z^{-2}}$$

- The partial fraction expansion becomes

$$X(z) = \sum_{k=0}^{M-N} c_k z^{-k} + \sum_{k=1}^{K_1} \frac{b_k}{1 + a_k z^{-1}} + \sum_{k=1}^{K_2} \frac{b_{0k} + b_{1k} z^{-1}}{1 + a_{1k} z^{-1} + a_{2k} z^{-2}}$$

where $N = K_1 + 2K_2$

2010/4/7

Introduction to Digital Signal Processing

54

Decomposition of Rational z-Transforms

- An alternative form is obtained by expressing $X(z)$ as a product of simple terms. To avoid complex coefficients in the decomposition, the complex-conjugate poles and zeros should be combined as

$$\frac{(1 - z_k z^{-1})(1 - z_k^* z^{-1})}{(1 - p_k z^{-1})(1 - p_k^* z^{-1})} = \frac{1 + b_{1k} z^{-1} + b_{2k} z^{-2}}{1 + a_{1k} z^{-1} + a_{2k} z^{-2}}$$

- Assuming for simplicity that $M = N$, $X(z)$ can be expressed as

$$X(z) = b_0 \cdot \prod_{k=1}^{K_1} \frac{1 + b_k z^{-1}}{1 + a_k z^{-1}} \cdot \prod_{k=1}^{K_2} \frac{1 + b_{1k} z^{-1} + b_{2k} z^{-2}}{1 + a_{1k} z^{-1} + a_{2k} z^{-2}}$$

where $N = K_1 + 2K_2$

LTI Discrete-Time Systems in the Transform Domain

- An LTI discrete-time system is completely characterized in the time-domain by its impulse response sequence $\{h(n)\}$
- Thus, the transform-domain representation of a discrete-time signal can also be equally applied to the transform-domain representation of an LTI discrete-time system
- Besides providing additional insight into the behavior of LTI systems, it is easier to design and implement these systems in the transform-domain for certain applications
- We consider now the use of the DTFT and the z-transform in developing the transform-domain representations of an LTI system

LTI Discrete-Time Systems in the Transform Domain

- Consider LTI discrete-time systems characterized by linear constant coefficient difference equations of the form

$$\sum_{k=0}^N a_k y(n-k) = \sum_{k=0}^M b_k x(n-k)$$

- Applying the z-transform to both sides of the difference equation and making use of the linearity and the time-invariance properties we arrive at

$$\sum_{k=0}^N a_k z^{-k} Y(z) = \sum_{k=0}^M b_k z^{-k} X(z)$$

- A more convenient form of the z-domain representation of the difference equation is given by

$$\left(\sum_{k=0}^N a_k z^{-k} \right) Y(z) = \left(\sum_{k=0}^M b_k z^{-k} \right) X(z)$$

2010/4/7

Introduction to Digital Signal Processing

57

Frequency Response from Transfer Function

- If the ROC of the transfer function $H(z)$ includes the unit circle, then the frequency response $H(e^{j\omega})$ of the LTI digital filter can be obtained simply as follows:

$$H(e^{j\omega}) = H(z) \Big|_{z=e^{j\omega}}$$

- For a real coefficient transfer function $H(z)$ it can be shown that $|H(e^{j\omega})|^2 = H(e^{j\omega})H^*(e^{j\omega}) = H(e^{j\omega})H(e^{-j\omega}) = H(z)H(z^{-1}) \Big|_{z=e^{j\omega}}$
- For a stable rational transfer function in the form

$$H(z) = \frac{b_0}{a_0} z^{N-M} \frac{\prod_{k=1}^M (z - z_k)}{\prod_{k=1}^N (z - p_k)}$$

- the factored form of the frequency response is given

$$H(e^{j\omega}) = \frac{b_0}{a_0} e^{j\omega(N-M)} \frac{\prod_{k=1}^M (e^{j\omega} - z_k)}{\prod_{k=1}^N (e^{j\omega} - p_k)}$$

2010/4/7

Introduction to Digital Signal Processing

58

Geometric Interpretation of Frequency Response Computation

- It is convenient to visualize the contributions of the **zero factor** ($z - z_k$) and the **pole factor** ($z - p_k$) from the factored form of the frequency response
- The magnitude function is given by

$$|H(e^{j\omega})| = \left| \frac{b_0}{a_0} \right| \left| e^{j\omega(N-M)} \right| \frac{\prod_{k=1}^M |e^{j\omega} - z_k|}{\prod_{k=1}^N |e^{j\omega} - p_k|}$$

which reduces to

$$|H(e^{j\omega})| = \left| \frac{b_0}{a_0} \right| \frac{\prod_{k=1}^M |e^{j\omega} - z_k|}{\prod_{k=1}^N |e^{j\omega} - p_k|}$$

- The phase response for a rational transfer function is of the form

$$\arg H(e^{j\omega}) = \arg(b_0 / a_0) + \omega(N - M) + \sum_{k=1}^M \arg(e^{j\omega} - z_k) - \sum_{k=1}^N \arg(e^{j\omega} - p_k)$$

2010/4/7

Introduction to Digital Signal Processing

59

Geometric Interpretation of Frequency Response Computation

- The magnitude-squared function of a real-coefficient transfer function can be computed using

$$|H(e^{j\omega})|^2 = \left| \frac{b_0}{a_0} \right|^2 \frac{\prod_{k=1}^M (e^{j\omega} - z_k)(e^{-j\omega} - z_k^*)}{\prod_{k=1}^N (e^{j\omega} - p_k)(e^{-j\omega} - p_k^*)}$$

- The factored form of the frequency response

$$H(e^{j\omega}) = \frac{b_0}{a_0} e^{j\omega(N-M)} \frac{\prod_{k=1}^M (e^{j\omega} - z_k)}{\prod_{k=1}^N (e^{j\omega} - p_k)}$$

is convenient to develop a geometric interpretation of the frequency response computation from the pole-zero plot as ω varies from 0 to 2π on the unit circle

- The geometric interpretation can be used to obtain a sketch of the response as a function of the frequency

2010/4/7

Introduction to Digital Signal Processing

60

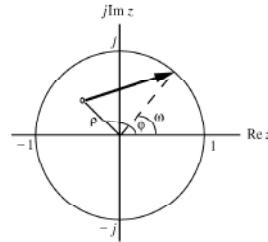
Geometric Interpretation of Frequency Response Computation

- A typical factor in the factored form of the frequency response is given by

$$(e^{j\omega} - \rho e^{j\phi})$$

where $\rho e^{j\phi}$ is a zero (pole) if it is zero (pole) factor

- As shown below in the z -plane the factor $(e^{j\omega} - \rho e^{j\phi})$ represents a vector starting at the point $z = \rho e^{j\phi}$ and ending on the unit circle at $z = e^{j\omega}$
- As ω is varied from 0 to 2π , the tip of the vector moves counter-clockwise from the point $z = 1$ tracing the unit circle and back to the point $z = 1$



2010/4/7

Introduction to Digital Signal Processing

61

Geometric Interpretation of Frequency Response Computation

- As indicated by

$$|H(e^{j\omega})| = \left| \frac{b_0}{a_0} \frac{\prod_{k=1}^M |e^{j\omega} - z_k|}{\prod_{k=1}^N |e^{j\omega} - p_k|} \right|$$

the magnitude response $|H(e^{j\omega})|$ at a specific value of ω is given by the product of the magnitudes of all zero vectors divided by the product of the magnitudes of all pole vectors

- Likewise, from

$$\arg H(e^{j\omega}) = \arg(b_0/a_0) + \omega(N - M) + \sum_{k=1}^M \arg(e^{j\omega} - z_k) - \sum_{k=1}^N \arg(e^{j\omega} - p_k)$$

we observe that the phase response at a specific value of ω is obtained by adding the phase of the term b_0/a_0 and the linear-phase term $\omega(N - M)$ to the sum of the angles of the zero vectors minus the angles of the pole vectors

2010/4/7

Introduction to Digital Signal Processing

62

3-D View of Transfer Function & Frequency Response

EVALUATE $H(z)$
EVERWHERE

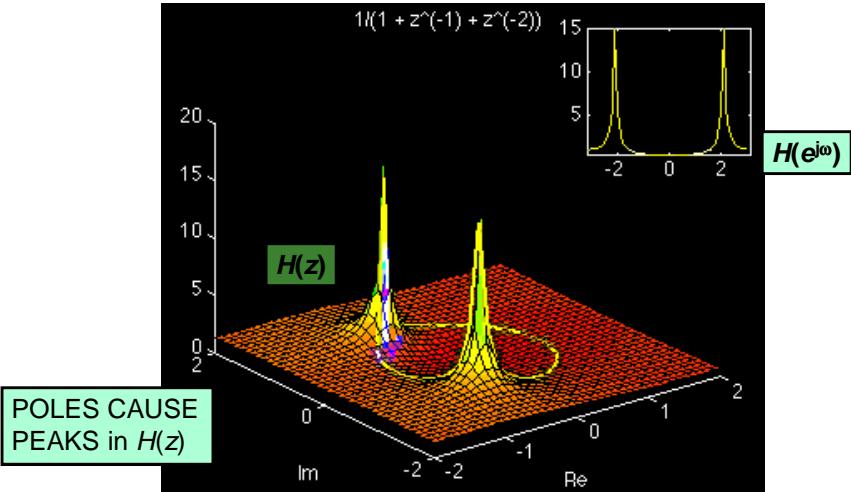
$$\frac{1 - z^{-2}}{1 + 0.7225z^{-2}}$$

UNIT
CIRCLE

The poles are at $z = 0.85e^{\pm j\pi/2}$ and the zeros at $z = \pm 1$.

63

Flying Thru z-Plane



Response of Systems with Rational System function

- Assume that the input signal $x(n)$ has a rational z -transform

$$X(z) = \frac{N(z)}{Q(z)}$$

- For a initially relaxed system, the output becomes

$$Y(z) = H(z)X(z) = \frac{B(z)N(z)}{A(z)Q(z)}$$

$$= \sum_{k=1}^N \frac{A_k}{1 - p_k z^{-1}} + \sum_{k=1}^L \frac{Q_k}{1 - q_k z^{-1}}$$

- The output $y(n)$ can be subdivided into two parts. The first part is a function of $\{p_k\}$, called the **natural response** of the system. The second is a function of $\{q_k\}$, called the **forced response**

$$y(n) = \underbrace{\sum_{k=1}^N A_k (p_k)^n u(n)}_{\text{the natural response } y_{\text{nr}}(n)} + \underbrace{\sum_{k=1}^L Q_k (q_k)^n u(n)}_{\text{the forced response } y_{\text{fr}}(n)}$$

2010/4/7

Introduction to Digital Signal Processing

65

Transient & Steady-State Responses

- The zero-state response of a system to a given input can be separate into two components: the **natural response** and the **forced response**

$$y_{\text{nr}}(n) = \sum_{k=1}^N A_k (p_k)^n u(n)$$

where $\{p_k\}$, $k = 1, 2, \dots, N$ are the poles of the system.

- If $|p_k| < 1$ for all k , then $y_{\text{nr}}(n)$ decays to zero as n approaches infinity. In such a case, we refer to the natural response of the system as the **transient response**

- The forced response of the system has the form

$$y_{\text{fr}}(n) = \sum_{k=1}^L Q_k (q_k)^n u(n)$$

- where $\{q_k\}$, $k = 1, 2, \dots, L$ are the poles in the forcing function

2010/4/7

Introduction to Digital Signal Processing

66

Transient & Steady-State Responses

- When the causal input signal is a sinusoid, the forced response is also a sinusoid. In such case the forced output is called **steady-state response** of the system
- Example – Determine the transient and steady-state response of the following system (assuming initially rest)

$$y(n) = 0.5y(n-1) + x(n)$$

where the input is $x(n) = 10\cos(\pi n/4)u(n)$

Sol

$$H(z) = \frac{1}{1-0.5z^{-1}} \quad X(z) = \frac{10(1-(1/\sqrt{2})z^{-1})}{1-\sqrt{2}z^{-1}+z^{-2}}$$

$$Y(z) = \frac{10(1-(1/\sqrt{2})z^{-1})}{(1-0.5z^{-1})(1-e^{j\pi/4}z^{-1})(1-e^{-j\pi/4}z^{-1})} = \frac{6.3}{(1-0.5z^{-1})} + \frac{6.78e^{-j28.7^\circ}}{(1-e^{j\pi/4}z^{-1})} + \frac{6.78e^{j28.7^\circ}}{(1-e^{-j\pi/4}z^{-1})}$$

$$y_{\text{nr}}(n) = 6.3(0.5)^n u(n) \quad y_{\text{fr}}(n) = 13.56\cos(\pi n/4 - 28.7^\circ)u(n)$$

2010/4/7

Introduction to Digital Signal Processing

67

Causality and Stability

- As defined previously, a causal LTI system is one whose unit sample response $h(n)$ satisfies the condition
$$h(n) = 0, \quad n < 0$$
- The ROC of a causal sequence is the exterior of a circle
- A linear LTI system is causal **if and only if** the ROC of the system function is the **exterior of a circle** of radius $r < \infty$, including the point $z = \infty$
- Recall that a necessary and sufficient condition for a LTI system to be BIBO stable is

$$S = \sum_{n=-\infty}^{\infty} |h(n)| < \infty$$

- In turn, this condition implies that $H(z)$ must contain the **unit circle** within its ROC

2010/4/7

Introduction to Digital Signal Processing

68

Causality and Stability

- Since

$$|H(z)| = \left| \sum_{n=-\infty}^{\infty} h(n)z^{-n} \right| \leq \sum_{n=-\infty}^{\infty} |h(n)z^{-n}| = \sum_{n=-\infty}^{\infty} |h(n)| |z^{-n}|$$

- When evaluated on the unit circle (i.e., $|z| = 1$)

$$|H(z)| \leq \sum_{n=-\infty}^{\infty} |h(n)|$$

- Hence, if the system is BIBO stable, the unit circle is contained in the ROC of $H(z)$, vice versa
- Therefore, a LTI system is BIBO stable **if and only if** the ROC of the system function includes the unit circle
- Note that causality and stability are different and that one does not imply the other
- A causal LTI system is BIBO stable if and only if all the poles of $H(z)$ are **inside the unit circle** (why?)

2010/4/7

Introduction to Digital Signal Processing

69

Causality and Stability

- Example** – A linear LTI system is characterized by the system function

$$H(z) = \frac{3-4z^{-1}}{1-3.5z^{-1}+1.5z^{-2}} = \frac{1}{1-0.5z^{-1}} + \frac{2}{1-3z^{-1}}$$

Specify the ROC of $H(z)$ and determine $h(n)$ for the following conditions:

- The system is stable.
- The system is causal.
- The system is anticausal.

2010/4/7

Introduction to Digital Signal Processing

70

Pole-Zero Cancelation

- Pole-zero cancelation: When a z -transform has pole that is the same location as a zero, the pole is canceled by the zero and, consequently, the term containing that pole in the inverse z -transform vanishes
- Pole-zero cancelations can occur either in the system function $H(z)$ itself (a **reduced-order** system) or in the product of $H(z)X(z)$
- Properly selecting the position of the zeros of the input signal is possible to suppress one or more modes of the system function, or vice versa
- When the zero is located very near the pole but not exactly at the same location, the term in the response has very small amplitude. The nonexact pole-zero cancellation can occur in practice due to insufficient numerical precision

2010/4/7

Introduction to Digital Signal Processing

71

Pole-Zero Cancelation

- **Example** – Determine the response of the system

$$y(n) = \frac{1}{2}y(n-1) + x(n) - 3x(n-1)$$

to the input signal $x(n) = \delta(n) - \frac{1}{3}\delta(n-1)$

Sol:

The system function is

$$H(z) = \frac{1}{1 - \frac{5}{6}z^{-1} + \frac{1}{6}z^{-2}} = \frac{1}{\left(1 - \frac{1}{2}z^{-1}\right)\left(1 - \frac{1}{3}z^{-1}\right)}$$

- And the z -transform of the input is

$$X(z) = 1 - \frac{1}{3}z^{-1}$$

$$Y(z) = H(z)X(z) = \frac{1}{1 - \frac{1}{2}z^{-1}} \quad y(n) = \left(\frac{1}{2}\right)^n u(n)$$

2010/4/7

Introduction to Digital Signal Processing

72

Stability Condition in Terms of the Pole Locations

- In addition, for a stable and causal digital filter for which $h[n]$ is a right-sided sequence, the ROC will include the unit circle and entire z -plane including the point $z = \infty$
- An FIR digital filter with bounded impulse response is always stable
- On the other hand, an IIR filter may be unstable if not designed properly
- In addition, an originally stable IIR filter characterized by infinite precision coefficients may become unstable when coefficients get quantized due to implementation

2010/4/7

Introduction to Digital Signal Processing

73

Stability of Second-Order Systems

- Consider a causal two-pole system described by the second-order difference equation,
$$y(n) = -a_1 y(n-1) - a_2 y(n-2) + b_0 x(n)$$
- The system function is
$$H(z) = \frac{Y(z)}{X(z)} = \frac{b_0}{1 + a_1 z^{-1} + a_2 z^{-2}} = \frac{b_0 z^2}{z^2 + a_1 z^{-1} + a_2}$$
- This system has two zeros at the origin and poles at
$$p_1, p_2 = -\frac{a_1}{2} \pm \sqrt{\frac{a_1^2 - 4a_2}{4}}$$
- The system is BIBO stable if the poles lie inside the unit circle, that is, if $|p_1| < 1$ and $|p_2| < 1$
- Thus, if the ROC includes the unit circle $|z| = 1$, then the system is stable, and vice versa

2010/4/7

Introduction to Digital Signal Processing

74

Stability of Second-Order Systems

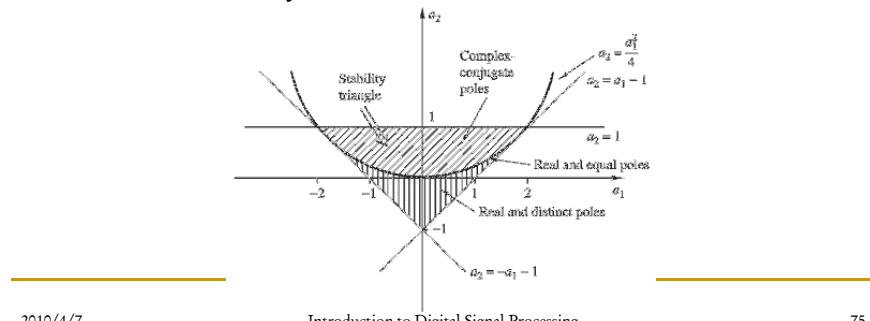
- The coefficients are related to the roots by

$$a_1 = -(p_1 + p_2), \quad a_2 = p_1 p_2$$

- For stability, the following conditions must be satisfied

$$|a_2| = |p_1 p_2| < 1, \quad |a_1| < 1 + a_2$$

- Therefore a two-pole system is stable if and only if the two coefficients satisfy the two conditions.



2010/4/7

Introduction to Digital Signal Processing

75

Stability of Second-Order Systems

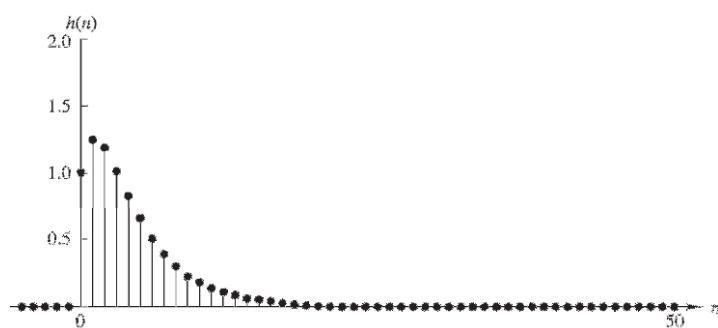


Figure 3.5.2 Plot of $h(n)$ given by (3.5.16) with $p_1 = 0.5$, $p_2 = 0.75$:

$$h(n) = [1/(p_1 - p_2)](p_1^{n+1} - p_2^{n+1})u(n).$$

2010/4/7

Introduction to Digital Signal Processing

76

Stability of Second-Order Systems

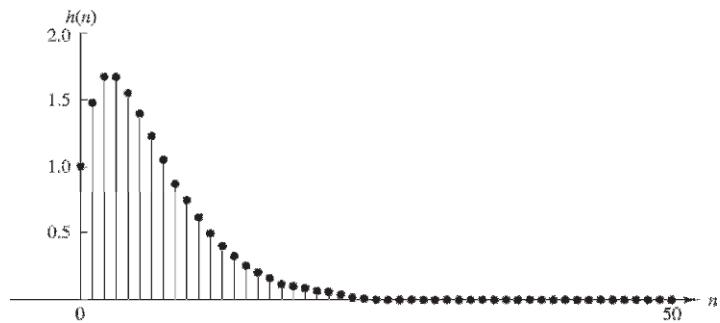


Figure 3.5.3 Plot of $h(n)$ given by (3.5.18) with $p = \frac{3}{4}$; $h(n) = (n+1)p^n u(n)$.

Stability of Second-Order Systems

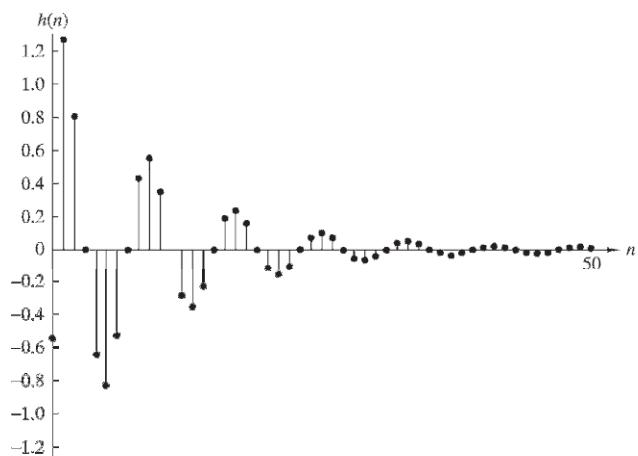


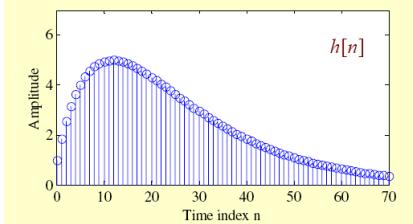
Figure 3.5.4 Plot of $h(n)$ given by (3.5.22) with $b_0 = 1$, $\omega_0 = \pi/4$, $r = 0.9$; $h(n) = [b_0 r^n / (\sin \omega_0)] \sin((n+1)\omega_0) u(n)$.

Stability of Second-Order Systems

- **Example** – Consider the causal LTI IIR transfer function:

$$H(z) = \frac{1}{1 - 1.845z^{-1} + 0.850586z^{-2}}$$

- The plot of the impulse response is shown below



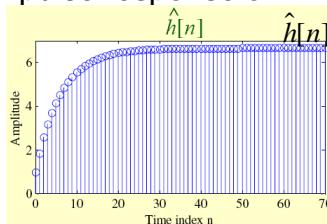
- As can be seen from the above plot, the impulse response coefficient $h(n)$ decays rapidly to zero value as n increases
- The absolute summability condition of $h(n)$ is satisfied,
 $\Rightarrow H(z)$ is a stable transfer function

Stability of Second-Order Systems

- Now, consider the case when the transfer function coef. are rounded to values with 2 digits after the decimal point:

$$\hat{H}(z) = \frac{1}{1 - 1.85z^{-1} + 0.85z^{-2}}$$

- A plot of the impulse response of $\hat{h}[n]$ is shown below



- In this case, the impulse response coefficient $\hat{h}(n)$ increases rapidly to a constant value as n increases
- Hence, $\hat{h}(n)$ is an unstable transfer function

Stability Condition in Terms of the Pole Locations

- **Example:** The factored form of

$$H(z) = \frac{1}{1 - 0.845z^{-1} + 0.850586z^{-2}}$$

is

$$H(z) = \frac{1}{(1 - 0.902z^{-1})(1 - 0.943z^{-1})}$$

which has a real pole at $z = 0.902$ and a pole at $z = 0.943$

- Since both poles are inside the unit circle $H(z)$ is BIBO stable

- **Example:** The factored form of

$$\hat{H}(z) = \frac{1}{1 - 1.85z^{-1} + 0.85z^{-2}}$$

is

$$\hat{H}(z) = \frac{1}{(1 - z^{-1})(1 - 0.85z^{-1})}$$

which has a pole at $z = 1$ and the other inside the unit circle

- Since one pole is not inside the unit circle, $H(z)$ is not BIBO stable