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The Direct z-Transform

A discrete-time version of Laplace Transform

For a given sequence x(n), its (direct) z-transform X(z) is
defined as: >

X(2)= ) x(mz"

N=—o

where z = Re(z) +j Im(z) is a complex variable

For convenience, the z-transform of a signal x(n0 is

denoted by
X(2) = Z{x(n)}

Whereas the relationship between x(n) and X(z) is
indicated by

X(n)«=— X(2)
The region of convergence (ROC) of X(z) is the set of
all values of z of which X(z) attains a finite value
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‘ ROC of the z-Transform

= Express the complex variable z in polar form as
z=reV
Where I =|Z| and € =4z then X(z) can be expressed as
XD, =S x()rre™
= In the ROC of X(2), [X(z)| < . But

0

D x(nr et

N=—o0

X(2|=

< i |x(n)r’”e’j9n
= Hence [X(2)| is finiie if x(n)r" is absolutely summable

= The problem of finding the ROC for X(z) is equivalent to

determining the range of r for which x(n)r" is absolutely
hi

= i|x(n)r’”

n=

[alllaalaakal Qo
SUtrtiriaviIc
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‘ ROC of the z-Transform

X@[< 3 [xnr

+i|x(n)r‘n

i x(n)

n=1 n=0 r

T

< i|x(—n)rn
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‘ The Direct z-Transform

= Example — Determine the z-Transform
X(z) of the causal sequence x[n] = a"
u(n) and its ROC

N=—o0

X(@) =3 a"umz" =§“nzn { ‘ I I [1°

= The above power series converges to

X(2) = —, forlazt <1 Y
L P
¢ / ” _{//.
. . % Z - ¥ y 5
= ROC is the annular region |z] > |a] % z f;///,, o
(7 LA
i s
i
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The Direct z-Transform
= Example — Consider the anti-causal sequence
x(n) "u(-n-1) 0 nz0
= - —N— =
- -a", n<-1
= Its z-transform is given by i)
-1 ©
X(Z): Z—a”z’”:-Za"Z' et as il
oo |:1 +re - v L k)
: T
=0 1_ ailz HES |
— <. for|ag<1
l-az

= ROC is the annular region |z| < |a|
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z-Transform

Note: the z-Transforms of two sequences a"u(n) and
—a"u(-n —1) are identical even though the two parent
sequences are different

Only way a unique sequence can be associated with a z-
transform is by specifying its ROC
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z-Transform

Example — the finite energy sequence

sna.n
he(n) = nc' —00 <N< o
has a DTFT given by "
. 1 O£|a)|Sa)C
Jo ) _
HLP(e )_{O, a)c<|a)|S7z

which converges in the mean-square sense

However, h p[n] does not have a z-transform as it is not
absolutely summable for any value of r
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Characteristic Families of Signals with Their

Corresponding ROCs
Signal R()_(.' B
Finite-Duration Signals
o ‘ Ty // 7 Entire z-plane
L [T1e //; exnceptz =0

\

n
Anticausal .
N Entire :-plane
ot excepz ==
n

%

W

\

Entire z-plane

Ttee.

wE
WE
=

R
g2
2
8

Infinite-Duration Signals
Causal

| I 1 Ty ‘ ‘7 K>r
Anticausal
sl @ e
Twosided y 2,
11 T T Tt f//‘%;? sl
\ 7 ,
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The Inverse z-Transform

The z-transform X(2) is given by
X(2)=Y x(K)z*

k=—o0

Multiply both side by z"-! and integrate both sides over a
closed contour within the ROC of X(2)

. X@7 2= 3 x(K)2 'z

Interchange the order of integration and summation:

0

4'} X(2)2 dz = Z x(k)gf, k17 e
¢ k=-0 c ////— .
According to the Cauchy integral theorem Y av

L gl K0
2rjic 0, k=n

x(n)zicﬁ X(2)Z2"'dz
2rjic
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The Inverse z-Transform (from IDTFT)

General Expression : Recall that, for z = rel®, the z-
transform X(z) given by

X(2) = Z:HO x(n)z™" =le x(n)r "e 1"
is merely the DTFT of the modified sequence x(n)r™"
Accordingly, the inverse DTFT is thus given by

x(n)r " = 2—1”'[; X (re")e"de

By making a change of variable z = rel®, the previous
equation can be converted into a contour integral given by
1
x(n)=——¢ X(2)Z"'dz
(=5 $_X(2)

where C'is a counterclockwise contour of integration
defined by |z| =r
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Properties of the z-Transform

Linearity - If ,
% () «—— X (2)

and %, () <2 X,(2)

then () = ax (n) + 8%, (M) <2 X(2) = a,X,(2) + 8,X,(2)

Example — Determine the z-Transform and the ROC of

x(n) = [3(2”) -4(3 )] u(n)
Ans: 1
¥ (n) = 2"u(n) <> X,(2) = Topt

Sy 10 ROC: 17> 2

X, (n) = 3"u(n) <« X,(2) = ROC: |7 >3

1-3z*%
3 4

X(2) = - , ROC: |z21>3
(2 1-2z*% 1-3z*° i
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Properties of the z-Transform

= Example - Consider the two-sided sequence
X[n] = a"u[n] = b"u[-n —1]
= Let x[n] = a"u[n] and y[n] = — b"u[-n —1] with X;(z) and X,(z)
denoting, respectively, their z-transforms
= Now xl(z)zl

17>
and 1

X,(2) =——,

2(2) 1-bz*

= Using the linearity property we arrive at

1 1
X(D)=X(2)+ Xo(D ==+
= The ROC of X(z) is given by the overlap regions of |z| > |q]

and |z| < |b|

|4 <
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Properties of the z-Transform

Lmnz)

Lz}

loel < 1Bl

/ %
z-plane
/ 1] _
/// ' < Relz) 2 Rez)
/// _ 181 < lof %%
% Xzt does not exist

ROC foe X(z)

(b}
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Properties of the z-Transform

Example - Determine the z-transform and its ROC of the
causal sequence

x{n] = (cosaw,n)u(n)
We can express x[n] = v[n] + v*[n] where
vin] =%ej‘“°”u[n] =%a”u[n]
The z-transform of v[n] is given by

1 1 1 1
V(z)==- =—- : , 1Z>lal=1
(2 2 1-az' 2 1-€*z? [2>e
Using the conjugation property we obtain the z-transform of
v*[n] as
1 1 1 1

V*(Z*):E.l—a* zt 2 1-elmzt

14> o =1
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Properties of the z-Transform

Using the linearity property we get

1 1 1
X(2)=V(2)+V*(z*) == . + .
(2=V(2) (z) 2(1—e““°zl 1—e"“‘°zlj

or, 1-(cosw,)z*t
X(2) = ( 0)71 )
1-(2cosw,)z"+2

,|74>1

Therefore, we obtain

1-(cosw, )z

x(n) = (cosayn)u(n) «=—> X(2) = " 2(cosey)2 527" ROC: |7>1
Similarly
x(n) = (sinwph)u(n) «=> X(2) = (sine) 2 ROC: |7>1

1-2(cosw,)zt+Z2%’
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Properties of the z-Transform

= Time Shifting - If
x(n) <%= X(2)

then x(N—K) <2 77X (2)

And the ROC remains unchanged exceptforz=0ifk >0
andz=wifk<0

= Example — Determine the z-Transform of the signal
1, 0<n<N-1
x(n) =
{0, elsewhere
Ans: x(n) =u(n)—u(n-N)

X(2)=Z{u(n)} -2 {u(n-N)} = (1-2) . ROC:[7>1
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Properties of the z-Transform

= Scaling in the z-domain -
If x(n)«~%>X(z), ROC:1,<|Z<r,

then a5 X(@az), ROC:|alr, <|7<[alr,

Fro any constant a

= Proof Woi -l s e )
Z{a”x(n)}:no; a"x(n)z™" 0|/<’ Remﬁ 0|/§;:)
= i x(n)(a‘lz)fn
= n)(E)alz) ROC: 1, <|a™Z<r, or ROC: [ar, <|7<[dr,

2010/4/7 Introduction to Digital Signal Processing 18




Properties of the z-Transform

= Example - Determine the z-transform and its ROC of the
causal sequence
x(n) =r" (cosawyn)u(n)
and
x(n) =r"(sinwyn)u(n)
= Ans:

By applying the scaling property

1-r(cosw,)z™*

x(n) =r" (cosmyn)u(n)«=> X (2) = 2 (cose) 2T+ 7727 ROC: |Z>r
and similarly
X(n) = r" (Sinwyn) u(n) <2 X (2) = r(sna,)z” ROC: |Z]>t
° 1-2r(cosw,)z*+r%°z*’ '
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Properties of the z-Transform

= Time Reversal -

If x(n)«~%>X(z), ROC:1,<|Z<r,

then

x(—n) <% X(z*), ROC: ri <|4 <rl
2

1
= Proof

Z{xm}= 3 xnz" = Y x)(2) ' = x(27)

n=—x |=—o0

ROC: 1, <|z’l| <r, or ROC: l<|z| <1
r2 rl

= Example - X() = u(n)

u(n)<—z—>1 1

—, ROC:|Z>1 u(—n)<—z—>1—12, ROC: |7 <1
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Properties of the z-Transform

= Differentiation in the z-Domain -

If x(n) <= X (2)

then () <>~ dX(2)
dz

ROC remains unchanged
= Example — Find the z-Transform of

x(n) = na"u(n)
= Example — Find the inverse z-transform of

X(2)=log(1+az'), ROC:|Z>|a|

2010/4/7 Introduction to Digital Signal Processing 21

Properties of the z-Transform

= Convolution of Two Sequences -
I x(N)<«i>X,(z) and  %(N)<«>X,(2)

then () = x () * x,(N) <=2 X(2) = X,(2)X,(2)

The ROC is the intersection of that for X;(z) and X,(2)

= Proof ©
x(n) = Y % (K)x(n-k)

k=—o0
o 0

X(@= 302" = 3| 3 xw (-2

N=—0 N=—00]

Intercahnge the order of the summations and apply the time shifting property

X(@)= 3 00 %=1z || 3 1007 |x.0= X2, (2

N=—o0

2010/4/7 Introduction to Digital Signal Processing 22
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Properties of the z-Transform
Correlation of Two Sequences -
I x(N<«is>X,(2) and XN« X,(2)

then (1= 3" x(x(-1) <R, (2) = X,(DX,(2Y)

The ROC is at least the intersection of that for X;(z) and
Xy(zh)

Proof e ()= %05, (-1)
X(2)=Z{x ()} Z{x,(-)} = X,(2)X,(z")
Example - ) x(n) = a"u(n) )
R,,(2)= Tarilar 1o a(z+ z’l)+ = ROC: |a| <|Z <ﬁ
2010477 Introduction to Digital Signal Procesing »

Properties of the z-Transform

Multiplication of Two Sequences -

I x(N)<«is>X,(2) and XN« X,(2)

th B , 1 zZ\ _
€N x(n) = x,(N)x,(n) «Z> X(2) = ;jg}c X, (V) X, (;)v ldv

where C is the closed contour that encloses the origina and
lies withing the ROC common to both X, (v) and X,(v1)

Proof S -n
X(2)= 3 x(Mx,(n)z
Since 1 o
X (1) =5jgﬁc X, (V" dv
X(2) == x0)| 3 xz(n)(EJn_v‘ldv
2rjde ) &= v
gt
2010/4/7 Introduction to Digital Signal Processing \ 24
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‘ Properties of the z-Transform

= Parseval’s relation -
If

then - 1

x(N<«isX,(2) and %M X,(2)

1

2 %X = X)X | = vy

N=—00 27[ J

= The Initial Value Theorem -
= If x(n) is causal, then

X(0)=limX(2)

= Proof -
)
~n -1 —2
X(2) =Y x(N)Z" =x(0)+XW)Z "+ X(2)Z 2+
n=0
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Properties of the z-Transform
Property Time Domain  z-Domain ROC
Notation x(n) X ROC: < |zl <n
x1(n) X1(z) ROC,
x2(n) X2(2) ROC,
Linearity ajxy(n) + a1 X1(z) + a2 X2(z) At least the intersection of
axxa(n) ROC; and ROC;
Time shifting x(n — k) X (D) That of X(z), except z =0 if
k>0andz=o00itk <0
Scaling in the a'x(n) X@'2) lalr: < |z| < lalr
z-domain
Time reversal x(—n) Xz ,ll <l <L
Conjugation x*(n) X*(z") ROC
Real part Re{x(n)} %[X (@) + X* (2] Includes ROC
TImaginary part Im{x(n)} LilX @ = X"@") Includes ROC
: : : . dX(2) <
Differentiationin  nx(n) e rp<izl<r
the z-domain < ‘ !
Convolution xi(n) % x2(n) X1(2)X2(2) At least, the intersection of
ROC, and ROC,
Correlation T ) = Ry (2) = X1 (@) X227 At least, the intersection of
x1(0) x x2(=1) ROC of X(z) and Xz(z™")
Initial value If x () causal x(0) = lim X(z)
theorem o
Multiplication x1(n)x2(n) w5 pX1@Xz (5)vT dv Atleast, rury < [z < rurz
2010/4/7 Parscval’s relation Z x1(m)x3(n) = # féh W) X3/ v de 2
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Common z-Transform Paris

Signal, x(n) z-Transform, X (z) ROC

1 8(n) 1 All z
2 u(n) : _12_1 Iz > 1
3 a’u(n) l—tz’l |z] > la|
4 na"u(n) ﬁ% Izl > lal
5 —a'u(-n-1) I *10271 |z| < la|
6 —na"u(-—n-—1) (1—_@%,1)7 |z} < lal
7 (coswon)u(n) #_’f:os%oz_‘z lz| > 1
8 (sin won)u (n) Tﬁ—m lz| > 1
9 (a" coswon)u(n) . 21(1;?2;;2;5‘?;21,2 lz| > la]
10 (a" sin won)u(n) . ZaZa’Z[clossir;ﬁ)(ilr P |z] > lal

2010/4/7 Introduction to Digital Signal Processing 27

Rational z-Transforms

In the case of LTI discrete-time systems we are
concerned with in this course, all pertinent z-transforms
are rational functions of z*

That is, they are ratios of two polynomials in z1
B(2) _by+hz'+-+b,z" ¥ 7"
X(@)= Az a+aztta,z" SN a7k
ta N Zk:Oakz

The degree of the numerator polynomial B(z) is M and
the degree of the denominator polynomial A(z) is N
An alternate representation of a rational z-transform is as
a ratio of two polynomials in z:

X(2) = bozi'\:, 2" +(b /b)) 2"+ +Db, /D,

a,z" 2N +(a/a)Nt++ay/a

2010/4/7 Introduction to Digital Signal Processing 28
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Rational z-Transform

A rational z-transform can be alternately written in factored

formas b e (2-2)(2-2)(2-2,)
Ot (e p)zp)(z-p)
:GZ—M+NM G &

3,

ﬁ(z_ Pe) i

k=1

At a root z = z, of the numerator polynomial X(z,) = 0.
These values of z are known as the zeros of G(2)

At a root z = p, of the denominator polynomial X(p,) — .
These values of z are known as the poles of G(z2)

There are [N — M| zeros (if N > M) or poles (if N< M) at z =
0

2010/4/7 Introduction to Digital Signal Processing 29

Rational z-Transform

Example — the z-transform

1 z )
X(Z)_l—az’l =-—» ROC |Z>a

has a zeroatz, =0 and a pole atp, = a

[z}

/// @V

71 : i Re(z)

T
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Pole-zero plot
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Rational z-Transform

Example — Determine the pole-zero plot for the signal

M-1

X(z)=2(az’l) =

n=0

X(n) = {6(1)”

0<n<M-1
elsewhere

a>0

M

" 1_(32’1) M _gM

l-az'  ZM*(z-a)

Since a> 0 zM = aM has M roots at Imiz)
z =ae”* ™ k=01..,M-1

The zero z, = a cancels the pole at ' 0 \
z=a. Thus % "j} Re(i)
z-2z)(z-2)-(z-2z,._ “;_\ ’M:ﬁf
MERCE SRS J
Pole-zero plot
2010/4/7 Introduction to Digital Signal Processing 31
Rational z-Transform
Example — Determine the z-transform and the signal
corresponds to the pole-zero plot
There are 2 zeros (M = 2) at z; =0 and z, = rcosw, and
2 poles (N=2)at P.=re and p,=re’
X(Z)=G_(Z_Zi)(z_zz) It
(z=p)(z=P2) 7
e z(jz%— Cosw")fj% , ROC:|Z>r : / <
(21 )(z-re ) i
-1 y SISy,
X(2)=G— 11205 poc: (4> //%/ b

1-2rz ' cosw, +r°z

x(n) = G(r" coswyn)u(n)

Pole-zero plot

2010/4/7 Introduction to Digital Signal Processing 32
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Rational z-Transform

= A physical interpretation of the concepts of poles and zeros
can be given by plotting the log-magnitude 20log,,|X(z)| for

1-2.4z"+2.88z°

1-0.8z"+0.64z°

* The magnitude plot
exhibits very large peaks
around the poles of X(z2)
(z=0.41)0.6928)

* It also exhibits very
narrow and deep wells

around the location of
the zeros (z=1.21j1.2)

X(Z) =

U,;{x

{

=
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‘ Behavior of a Single Real-Pole Causal Signal

x(n) = a"u(n) «2> X (2) = - 22’1 ., ROC: |7 >|q]

e-plane ) plane )
AN e N 0
Q/l 0 " Q/1 ul I N

< e AN f1r
S S A T

+-plang s e )
N s AN ]
y; 0 . 0 /)n 0t ] l } »
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‘Behavior of a Double Real-Pole Causal Signal

X() = nau(n) 2> X(2) =, ROC: |2|>a
(1-az?)

pli

<

VaRRE
< Ll % [l
NN VAN

) eplane )
p z__,TT” :=z,/‘r\. . 'lT T [

7

| %
H,/%
3

//’

f\a

.
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Behavior of a Causal Signal with a Pair of
Complex-Conjugate Poles

sz $08p

7 1‘/ - x(n) = (r" coswyn) u(n)
e o
N ) l J. i

plane ?‘\
J/ et
L
y I
lu\.h = .
2010/4/7 o~ ~ 36
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Behavior of a Causal Signal with a Double
Pair of Complex-Conjugate Poles

x(n) = (ncosa,n)u(n)

AN
\_ A m=2

,_,
-
=
e
—
=
—
-—
.
,
g
g
r
g —
e
B
T
4 —
K
o
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The System Function of an LTI System

According to the convolution property, the 1/0O-relationship
can be expressed as
Y(2)=H(2X(2)

The system function (impulse/unit-sample response) H(z) is
_Y(®@
H(2) = X(2)

If an LTI system is described by the following constant-
coefficient difference equation

N M
y(n)=-2.ay(n-k)+> bx(n-k)
k=1 k=0
Taking the z-Transform at both sides
N M
Y(2)=->.aY(2z" +> b X(2z"
k=0

k=1

2010/4/7 Introduction to Digital Signal Processing 38
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The System Function of an LTI System
Y(z)[l+§:akzkj = X(z)(kzhj:bkzkj
v 2

X = k:ON (pole-zero systems)
(2) 1+> az"
k=1
Therefore an LTI system described by a constant-coefficient
difference equation has a rational system function
Two important special forms of pole-zero systems:

M M
o Ifa,=0forl<k<N p (2)= Z[q(z-k ZLMZQZM_I( (all-zero system)
k=0 VA=

H(2) =

o Ifb,=0forl<k<M 1 b, 2"
H(2) = N =N (all-pole system)
1+> az* > az'*
k=t k=0
2010/4/7 Introduction to Digital Signal Processing 39

The System Function of an LTI System

Example — A causal LTI IR filter is described by a constant
coefficient difference equation given by
y(n) =x(n -1) -1.2 x(n — 2) + x(n — 3) +1.3 y(n 1)
-1.04y(n - 2) +0.222 y(n - 3) x
Its transfer function is therefore given by . *
z'-12z%+7°
= s 104702222

xﬂ«\

Imaginary Part

Alternate forms: H@ = 2 -12z+1 N
~1.372° +1.04z-0.222
(z 0.6+ j0.8(z-0.6-j0.8)
~ (z-03)z-05+ j0.7Yz-0.5- j0.7)
Note: Poles farthest from z = 0 have a magnitude/0.74

ROC: |7>+0.74

2010/4/7 Introduction to Digital Signal Processing 40
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MATLAB Functions for Rational z-Transform

In general, if the rational z-transform has N poles with R
distinct magnitudes, thenithas R+ 1 ROCs,and R + 1
distinct sequences having the same z-transform

Hence, a rational z-transform with a specified ROC has a
unique sequence as its inverse z-transform

MATLAB [z,p,K] = tf2zp(num,den) determines the zeros,
poles, and the gain constant of a rational z-transform with
the numerator coefficients specified by num and the
denominator coefficients specified by den

[num,den] = zp2tf(z,p,k) implements the reverse process

The factored form of the z-transform can be obtained using
S0s = zp2s0s(z,p,k)

2010/4/7 Introduction to Digital Signal Processing 41

MATLAB Functions for Rational z-Transform

The pole-zero plot is determined using the function zplane

The z-transform can be either described in terms of its
zeros and poles: zplane(zeros,poles) or, in terms of its
numerator and denominator coefficients zplane(num,den)

Example — The pole-zero plot of

=)

27* +162° + 447° + 562+ 32 | ° .-
3z* +32°-157* +18z-12 L

obtained using MATLAB

X(2)=

Imaginary Part
,,
D
i
|
|
x
i
1
|
i
I
|
i
)
v
1
I
1
J
i
1
i
1
L
T
I
|
i
I
|
v
x

2

Real Part
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Inversion of the z-Transform

The inverse z-transform of X(z) is given by %/ Z

x(n) = ?11 (j}c X(2)z"'dz

There are three methods for the evaluation of the inverse z-
transform in practice:

Direct evaluation by the contour integration
Power series expansion
Partial-fraction expansion and table lookup

2010/4/7 Introduction to Digital Signal Processing 43

Inverse z-Transform by Contour Integration

Cauchy’s integral theorem . Let f(z) be a function of the
complex variable z and C be a closed path in the z-plane. If
the derivative df(z)/dz exists on and inside the contour C
and if f(z) has no poles at z = z,, then

ig} f(2) dr— f(z,), ifz isinsdeC
2rj'cz-1z, 0, ifz isoutsideC

More generally, if the (k+1)-order derivative of f(z) exist and
f(z) has no poles at z = z,, then

1 d“'f(2)| o
if z, isinsideC
21_95C f(z)kdz= (k-1)! oz | %
7T zZ— =
( zo) 0, if z, isoutside C

2010/4/7 Introduction to Digital Signal Processing 44
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Inverse z-Transform by Contour Integration

Suppose the integrand of the contour integral is a proper
fraction f(z)/g(z), where f(z) has no poles inside the contour
C and g(2) is a polynomial with distinct roots inside C. Then

L g5 A

2rjieg(z) 27 e\ G z-1
S A w3 A-(-7) @
_;2”1'&‘:2—4(12 .Z;‘A A=(z 4)g(z) o

In the case of the inverse z-transform, we have
1
x(n)=——@¢ X(2)z2"'dz
M= $_X(2

= resdueof X(2)z"* atz=z
> ]

al poles {z } inside C

=7

=Z(z—zi)X(z)z“’l
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Inverse z-Transform by Contour Integration

Example — Evaluate the inverse z-transform of

X@=1 14>

1-—
Using the complex inversion integral
Sol: 1 anl 1 z"
x(n) = dz= dz
" 271'j<J;Cl—aZ‘1 2ﬂj<ﬁc z-a

(1) If n >0, f(2) has only zeros and hence no poles inside C.
The only pole inside Cis z = a. Hence x(n)=f(z)=a", n>0

(2) If n <0, f(z) has an nth-order poles at z = 0 which is also

inside C. If n = 1, we have 1 1 1
X(-1) =—— dz=——
2rjYcz(z-a) z-a

1
z

=0

z=a

+ —
z=0 Z

If n =2, we have
1 1 df_1
x(-2) _;j(ﬁcmdz_&(ZJ 70
x(n) = a"u(n)
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2 =% x(n)=0forn<0

z=a
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Inverse z-Transform by Power Series Expansion

Expand X(z) into a power series as
X(2) = Z cz"

which converges in the glven ROC Then, by the
uniqueness of the z-transform, x(n) = c,, for all n.

Example : Determine the inverse z-transform of

1
X(2) =
(2 1-15z'+0.5z27
If (@) ROC: |z] > 1, (b) ROC: |z} < 0.5
Sol- (a) X(z):—1 1430 L By B
1_§ Z—l_'_} 72 2 4 8 16
2 2
xo-{137 22}
2'4'8'16"
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Inverse z-Transform by Partial-Fraction
Expansion
A rational X(z) can be expressed as
B(2) Z WDZ' by+bzt 44y, 2"
X(2)= N T W
B(2) z 312 l1+az +--+a,z
X(z) is called improper if M = N. It can be re-expressed as
M-N
B2 1 w-n |, Bi(2)
X(2) = = 2\
(2 /Z:(; cz'+ A C+CZ ++c, "N+ A
where the degree of B,(z) is less than N
The rational function B,(z)/A(z) is called a proper fraction
Example — Consider 2+0.8z'+05z2+03z°
X(2) = 1 1 -
+0.8z"+0.2z

By long division we arrive at

-1
X(2)=—35+1 57" 422t 212

1+0.8z1+0.222
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Inverse z-Transform by Partial-Fraction
Expansion

Simple Poles : In most practical cases, the rational z-
transform of interest X(z) is a proper fraction with simple
poles

Letthe poles of X(z) beatz=p,1<k<N
A partial-fraction expansion of X(z) is then of the form

o A A A A
X(2)= ;(l_ pgzlj - 1- plzil +l_ pzzil ! 1-p, z*

The constants in the partial-fraction expansion are called
the residues and are given by

A =(1-p,z*)X(2)

z=p,
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Inverse z-Transform by Partial-Fraction

Expansion
x(n) = ZYX(z)} can be obtained by inverting each term as:
n if ROC: |z >
()" u(n), 4>[d
7-1 1 _ (causal sequence)
1-pz* if ROC: |4 <|p|

_( pk) U= (anticausal sequence)

If x(n) is causal, the ROC is |z| > P, Where ppa = max{|p/,
P4, ---» [PNI}, @nd x(n) becomes

X(n) = (AP + A pS +--+ A pf Ju(n)
The above approach with a slight modification can also be

used to determine the inverse of a rational z-transform of a
non-causal sequence
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Inverse z-Transform by Partial-Fraction

Expansion
Example — Determine the inverse z-transform of
X(2) = 1 _ 1

1-1571+ 0522 (1- z’l)(l— o.52*1)
If (a) ROC: |z] > 1, (b) ROC: |z] < 0.5, and (c) 0.5 < |z] < 1

Ans: X(2) = A{lJr A _
1-z- 1-05z
A=(1-z")H@)|,4=2 A =(1-052")H(2)|,0s=-1
(a) ROC: |z > 1 x(n) =(2-0.5")u(n)

(b) ROC: |2/ <0.5  x(n)=(-2+05")u(-n-1)
(b) ROC: 0.5< |z <1 X(n)=-2u(-n-1)-(0.5)"u(n)
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Inverse z-Transform by Partial-Fraction

Expansion
Multiple Poles : If X(z) has multiple poles, the partial-
fraction expansion is of slightly different form
Let the pole at z = v be of multiplicity L and the remaining N
— L polesbe simpleandatz=A,1<I<N-L
Then the partial-fraction expansion of G(z) is of the form

M=N , N-L P, L ¥
G(2) = 7‘ ‘ —
(2) ;77@2 + ;1_ A/Z—l +iZ:1: (l—VZJ)

where the constants are computed using

1 d-’ I\ <i<
Vi = (L—i)(—V)H d(zH)- [(1_\,2 ) G(Z)]Z:V’ 1=isL

The residues p, are calculated as before
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Decomposition of Rational z-Transforms

Suppose we have a rational z-transform X(z) expressed as
M

k=1
N

143, 8z . [1(1-pz")
k=1

If M >N (i.e., X(2) is improper), we convert X(z) to a sum of
a polynomial and a proper function
M-N
X(2)= Y ¢+ X,(2)
k=0
If the roots are distinct, it can be expanded in partial
fractions as

Mok [1a-zz*
X(Z): Zk:ObKZ ( )

_ 1 1 A L
X(2)=A (1— plz’l) A (1— pzz’l) oA (1— Py z’l)
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Decomposition of Rational z-Transforms

If there some complex conjugate pairs of poles, we can

group and combine the pairs as
A A _(A+A*)+(—Ap*—A*p)z’1_ b, +hz*

+ =
1-pz' 1-p'z" 1+(-p-p)z*+(pp’)z* l+az'+8z°
The partial fraction expansion becomes

M-N B Ky Ky + 271
X@)= 3 6z + Yy I
pary altaz Gl+a,z +a,z

where N = K; + 2K,
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Decomposition of Rational z-Transforms

An alternative form is obtained by expressing X(z) as a
product of simple terms. To avoid complex coefficients in
the decomposition, the complex-conjugate poles and zeros
should be combined as

(l_ Zkzil)(l_ Z‘jzil) _1+b 7z +b, 2"

(1_ P« Zil)(l_ pljzil) Ll ztta,z’
Assuming for simplicity that M = N, X(z) can be expressed
as

“lvbzt 2 1+b,z b, 2

X(2)=h. - .
(2=h lkllJrakz’l i lva,ztva,z?

where N = K; + 2K,
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LTI Discrete-Time Systems in the Transform
Domain

An LTI discrete-time system is completely characterized in
the time-domain by its impulse response sequence {h(n)}

Thus, the transform-domain representation of a discrete-
time signal can also be equally applied to the transform-
domain representation of an LTI discrete-time system
Besides providing additional insight into the behavior of LTI
systems, it is easier to design and implement these
systems in the transform-domain for certain applications
We consider now the use of the DTFT and the z-transform

in developing the transform-domain representations of an
LTI system
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LTI Discrete-Time Systems in the Transform
Domain

Consider LTI discrete-time systems characterized by linear
constant coefficient difference equations of the form

iaky(n—k):ih(x(n—k)

Applying the z-transform to both sides of the difference
equation and making use of the linearity and the time-
invariance properties we arrive at

Z az"Y(2) = Zsz‘k X(2)

A more convenient form of the z-domain representation of
the difference equation is given by

2010/4/7 Introduction to Digital Signal Processing 57

Frequency Response from Transfer Function

If the ROC of the transfer function H(z) includes the unit
circle, then the frequency response H(e?) of the LTI digital
filter can be obtained simply as follows:
H(E")=H(2) ..

For a real coefficient transfer function H(z) it can be shown
L (e =H(e) (o) = H (e (e ) = H (2 H ()
For a stable rational transfer function in the form

M

H(2) by e Ila(z72)
N
8 I[1.z-p)
the factored form of the frequency response is given
H(e")= By giotn-m) [1.(e"-2)

& H’ljzl(ejw - pk)
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Geometric Interpretation of Frequency
Response Computation
It is convenient to visualize the contributions of the zero

factor (z - z) and the pole factor (z — p,) from the factored
form of the frequency response

The magnitude function IS given by

jo)| _ JwN M) H |
‘H(e =2 ‘ |e’“’—pk|
which reduces to
‘H (ejw ‘bo‘ k= 1|ejm Z‘<|
Hk 1|ejw pk

The phase response for a rational transfer function is of the

oM aghi (o) =arg(n 2 +o(N M )+ Yag(e” -2)-3 ag(e” - p)
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Geometric Interpretation of Frequency
Response Computation

The magnitude-squared function of a real-coefficient
transfer function can be computed using

o[ T1e(e"-2)(e"-4)
| TT(e” - p)(e" - i)
The factored form of the frequency response

H(e")= By giotn-m) [1:.(e-2)

N jo
% Hk:l(eJ B pk)
Is convenient to develop a geometric interpretation of the
frequency response computation from the pole-zero plot as
w varies from 0 to 21T on the unit circle

The geometric interpretation can be used to obtain a sketch
of the response as a function of the frequency

‘H(ej”)z—
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Geometric Interpretation of Frequency

Response Computation
A typical factor in the factored form of the frequency
response is given by
(elv — pel?)
where pei?is a zero (pole) if it is zero (pole) factor
As shown below in the z-plane the factor (el* — peif)

represents a vector starting at the point z = pe® and ending
on the unit circle at z = ei%w jim =

As w is varied from O to 2, the >

tip of the vector moves counter- e o
clockwise from the pointz = 1 B o
tracing the unit circle and back to KJ

the pointz=1 =
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Geometric Interpretation of Frequency
Response Computation

As indicated by
‘H (")

M o

‘bo‘ -
&ITT..
the magnitude response |H(el»)|at a specific value of w is
given by the product of the magnitudes of all zero vectors
divided by the product of the magnitudes of all pole vectors
Likewise, from

argH (e”)=arg(h/a,)+o(N-M)+ Y arg(e” -z )~ 3 ag(e” ~ p,)
we observe that the phase response at a specific value of
w is obtained by adding the phase of the term by/a, and the

linear-phase term w(N — M) to the sum of the angles of the
zero vectors minus the angles of the pole vectors

e]w ‘
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3-D View of Transfer Function &
Frequency Response

EVALUATE H(z)
EVERYWHERE

UNIT
CIRCLE

 poles are at z = (1.85¢*/7/? and the zeros at z = %1. o

Flying Thru z-Plane

OLES CAUSE
EAKS in H(z)

T T
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Response of Systems with Rational System

function
Assume that the input signal x(n) has a rational z-transform
N(2)
X(2)=——=
Q(2)
For a initially relaxed system, the output becomes
B(2)N(2)
Y(2)=H(@X(2)) =—=——>
(2=H(29)X(2) A2)Q2)

_3v_A - Q
;l_ pkz_l +; 1- qkz_l
The output y(n) can be subdivided into two parts. The first
part is a function of {p,}, called the natural response of the
system. The second is a function of {q,}, called the forced

response N n N n
P Y =3 A (R U+ X Q6 Ul

the natral response y,.(n). the forced response y;,-(n)
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Transient & Steady-State Responses

The zero-state response of a system to a given input can
be separate into two components: the natural response
and the forced response

N
ynr(n) =ZA<(pk)n U(n)
k=1
where {p,}, k=1, 2, ..., N are the poles of the system.

If |p,| < 1 for all k, then y,(n) decays to zero as n
approaches infinity. In such a case, we refer to the natural
response of the system as the transient response

The forced response of the system has the form
L
Y (N) = sz (qk)n u(n)
k=1

where {p,}, k=1, 2, ..., N are the poles in the forcing
function
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Transient & Steady-State Responses

When the causal input signal is a sinusoid, the forced
response is also a sinusoid. In such case the forced output
is called steady-state response of the system

Example — Determine the transient and steady-state
response of the following system (assuming initially rest)

y(n) =0.5y(n-1) + x(n)
where the input is  x(n) =10cos(zn/ 4)u(n)

Sol B 1 10 1_(1/\/5)2-1
=105 X(2)= 1(_ ﬁzl+zz)
o - 10(1-(1/+2) ) o3 |[omme™ s

(1-0527)(1-e" 27 )(1-e *77) |(1-0527)[ [1-e™2?) " (e *2)

y.,(n) =6.3(0.5)"u(n) - Q) :13.5gcos(7m/4— 28.7°)u(n)
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Causality and Stability

As defined previously, a causal LTI system is one whose
unit sample response h(n) satisfies the condition

h(n)=0, n<O0
The ROC of a causal sequence is the exterior of a circle

A linear LTI system is causal if and only if the ROC of the
system function is the exterior of a circle of radius r < ,
including the point z = «

Recall that a necessary and sufficient condition for a LTI
system to be BIBO stable is

S= ni:‘:o||‘](l’l)| <o

In turn, this condition implies that H(z) must contain the unit
circle within its ROC
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Causality and Stability

Since
|H(2)| :‘Z h(n)z "

N=—o0

< nijh(n)z‘” = nilh(”)||2'”

When evaluated on the unit circle (i.e., |z| = 1)
H@|< X |hem)

Hence, if the system is BIBOn;:able, the unit circle is

contained in the ROC of H(z), vice versa

Therefore, a LTI system is BIBO stable if and only if the
ROC of the system function includes the unit circle

Note that causality and stability are different and that one
does not imply the other

A causal LTI system is BIBO stable if and only if all the
poles of H(z) are inside the unit circle  (why?)
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Causality and Stability

Example — A linear LTI system is characterized by the
system function

a1
H(2) = 3-4z 1 2

1-357%+1522 1-05z° 1-37°
Specify the ROC of H(z) and determine h(n) for the
following conditions:

(a) The system is stable.
(b) The system is causal.
(c) The system is anticausal.
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Pole-Zero Cancelation

Pole-zero cancelation: When a z-transform has pole that is
the same location as a zero, the pole is canceled by the
zero and, consequently, the term containing that pole in the
inverse z-transform vanishes

Pole-zero cancelations can occur either in the system
function H(z) itself (a reduced-order system) or in the
product of H(z)X(z)

Properly selecting the position of the zeros of the input
signal is possible to suppress one or more modes of the
system function, or vice versa

When the zero is located very near the pole but not exactly
at the same location, the term in the response has very
small amplitude. The nonexact pole-zero cancellation can
occur in practice due to insufficient numerical precision

2010/4/7 Introduction to Digital Signal Processing 71

Pole-Zero Cancelation

Example — Determine the response of the system
y(n) :% y(n—21) + x(n) —3x(n-1)

to the input signal x(n) =5(n)—:—135(n—1)
Sol:
The system function is

H(z) = ! = 1

5 ., 1, 1 . 1,
1-— — -= —=
6z +62 [1 22 )(1 3z j
And the z-transform of the input is

1.
X(2)=1-=7
(2) 3
1

1 n
11 v =3 ) uto

Y(2)=H(2)X(2) =
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Stability Condition in Terms of the

Pole Locations

In addition, for a stable and causal digital filter for which
h[n] is a right-sided sequence, the ROC will include the unit
circle and entire z-plane including the point z = «

An FIR digital filter with bounded impulse response is
always stable

On the other hand, an IIR filter may be unstable if not
designed properly

In addition, an originally stable IIR filter characterized by
infinite precision coefficients may become unstable when
coefficients get quantized due to implementation
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Stability of Second-Order Systems

Consider a causal two-pole system described by the

second-order difference equation,
y(n) =-ay(n-1) -a,y(n—2)+bx(n)
The system function is
H(z=Y@ _ by __ b7
X(2) 1+az'+az’® Z+azZ+a,
This system has two zeros at the origin and poles at

__a, |al-da
N

The system is BIBO stable is the poles lie inside the unit
circle, that is, if |p;| <1 and |p,| <1

Thus, if the ROC includes the unit circle |z| = 1, then the
system is stable, and vice versa
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‘ Stability of Second-Order Systems

= The coefficients are related to the roots by

a=-(p+p), =pp
= For stability, the following conditions must be satisfied
al=ppl <1 [al<1l+a,

= Therefore a two-pole system is stable if and only if the two
coefficients satisfy the two conditions.

i

4
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P
ra \\

™,
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‘ Stability of Second-Order Systems

hiz)
240

10w

05

e S-S PSS EHES SRS SRR EESE S F SRR 1y
I i
Flguee 3.5.2  Plat of &%a) given by {3.5.16) with g =005, pp = 0.75;
hin) = [1/(z1 — p))pT™ — 25 i)
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‘ Stability of Second-Order Systems

hiz)
240

15 e |1

NTTTTTWH.. ......................

Figure .52 Plot of B(a) given by (3.5 18 with p = %; i) = (o + 1 puin).
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‘ Stability of Second-Order Systems

R{n)
1.2 F
101
0.8+
0.6 r
0.4+

A e,

0.2 -
-04 -
_net
LA
-1.0 ¢
12t

!?9--..--4.-.._--a. n

i 50

Figura 354 Plotof Afp) given by 3822 wih by = L og = /4, r =03%
Ay = [dgr® fsim ol sin[ (e 4 Ve Jezi(n) .
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Stability of Second-Order Systems

Example — Consider the causal LTI IIR transfer function:
1

1-1.845z" +0.8505862 *
The plot of the impulse response is shown below

H(2) =

¢ nnl ]

I

Amplitude
e

2

0 L ' L
0 10 20 30 40 50 60 70

Time index n

As can be seen from the above plot, the impulse response
coefficient h(n) decays rapidly to zero value as n increases

The absolute summability condition of h(n) is satisfied,
= H(z) is a stable transfer function
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Stability of Second-Order Systems

Now, consider the case when the transfer function coef. are
rounded to values with 2 digits after the decimal point:

A 1
H(z) =
2) 1-1.85z2"+0.85z°2
A plot of the impulse response of is shown below

hln]
B TSN WL VWSSOI VSOV

=

IS

Amplitude

ij
In this case, the impulse response coefficient h(n)increases
rapidly to a constant value as n increases

Hence,h(n)is an unstable transfer function

10 20 30 40 50 60 70
Time index n
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Stability Condition in Terms of the

Pole Locations

Example : The factored form of
1
1-0.845z" +0.8505862 2

1
H(@)= (1-0902zJ1-0.9432 )

which has a real pole at z = 0.902 and a pole at z = 0.943
Since both poles are inside the unit circle H(z) is BIBO stable
Example : The factored form of
@)=ty
1-1.85z2" +0.85z
1

IS A

H(z)= 1-z*f1-0.85z")
which has a pole at z = 1 and the other inside the unit circle
Since one pole is not inside the unit circle, H(z) is not BIBO
stable
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H(z) =

is
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