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Discrete-Time Signals
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 Signals are represented as sequences of numbers, called 
samples

 Sample value of a typical signal or sequence denoted as x
= {x[n]} with − ∞ ≤ n ≤ ∞ 

 x[n] is defined only for integer values of n and undefined for 
non-integer values of n

 Representation of discrete-time signals:

 Functional representation

 Tabular representation

 Sequence representation

x(n) = {…,0.2, 2.2, 1.1, 0.2, -3.7, 2.9. …}
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Discrete-Time Signals
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 Graphical representation 

Discrete-Time Signals
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 Sampling a speech signal
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Basic Sequences
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 Unit sample sequence -

 Unit step sequence -
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 Unit ramp signal -

 Real exponential signal -
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 Complex exponential signal -
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 Complex exponential signal -
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 Sinusoidal signals with different frequencies

Basic Sequences

2011/3/2 Digital Signal Processing 10

Basic Sequences

 An arbitrary sequence can be represented in the time-
domain as a weighted sum of some basic sequence and 
its delayed (advanced) versions 
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The Norm of a Discrete-Time Signal

 Size of a Signal - given by the norm of the signal

Lp-norm：

where p is a positive integer

 The value of p is typically 1 or 2 or ∞

L2-norm        is the root-mean-squared (rms) value of {x[n]}

L1-norm        is the mean absolute value of {x[n]}

L∞-norm        is the peak absolute value of {x[n]} (why?)
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Classification of  Discrete-Time Signals

 Periodic signals and aperiodic signals
 A signal is periodic with period N (N > 0) if and only if

 The smallest value of N for which the above condition
holds is called the (fundamental) period

 A signal not satisfying the periodicity condition is
called nonperiodic or aperiodic

      for all x n N x n n 
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Classification of  Discrete-Time Signals

 Conjugate-symmetric sequence:

 If x[n] is real, then it is an even sequence

 for a conjugate-symmetric sequence {x[n]}, x[0] 
must be a real number

   *x n x n 
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Classification of  Discrete-Time Signals

 Conjugate-antisymmetric sequence:

 If x[n] is real, then it is an odd sequence

 for a conjugate anti-symmetric sequence {y[n]}, y[0] 
must be an imaginary number

   *x n x n  
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Classification of  Discrete-Time Signals
 Any complex sequence can be expressed as a sum of its 

conjugate-symmetric and conjugate-antisymmetric parts:

where

 Any real sequence can be expressed as a sum of its even 
part and its odd part:

where
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Classification of  Discrete-Time Signals

 Periodic signals and aperiodic signals
 A signal is periodic with period N (N > 0) if and only if

 The smallest value of N for which the above condition
holds is called the (fundamental) period

 A signal not satisfying the periodicity condition is
called nonperiodic or aperiodic

      for all x n N x n n 
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Classification of  Discrete-Time Signals

 Energy signals and power signals
 The total energy of a signal x(n) is defined by

 An infinite length sequence with finite sample values
may or may not be an energy signal (with finite energy)

 The average power of a discrete-time signal x[n] is
defined by

 Define the signal energy of x(n) over the finite interval
− N ≤ n ≤ N as
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Classification of  Discrete-Time Signals

 Energy signals and power signals
 The signal energy can then be expressed as

 The average power of x(n) becomes

 If E is finite, P = 0. On the other hand, if E is infinite,
the average power P may be either finite or infinite

 If P is finite (and nonzero), the signal is called a power
signal
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Classification of  Discrete-Time Signals

 Energy signals and power signals
 Example – Determine the power and energy of the

unit step sequence

The average power of the unit step signal is

It’s a power signal with infinite energy

 Example - Consider the causal sequence defined by

Note: x(n) has infinite energy, its average power is
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Classification of  Discrete-Time Signals

 An infinite energy signal with finite average power is 
called a power signal

 Example - A periodic sequence which has a finite
average power but infinite energy

 A finite energy signal with zero average power is called 
an energy signal

 Example - A finite-length sequence which has finite
energy but zero average power
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Classification of  Discrete-Time Signals

 A sequence x[n] is said to be bounded if

 Example - The sequence x[n] = cos0.3πn is a bounded 
sequence as

 A sequence x[n] is said to be absolutely summable if

 Example - The following sequence is absolutely 
summable 0.3 , 0
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Classification of  Discrete-Time Signals

 A sequence x[n] is said to be square summable if

 Example - The sequence

is square-summable but not absolutely summable
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Manipulation of  Discrete-Time Signals (1/5)

 Transformation of independent variable (time)
 Time shifting: A signal x[n] may be shifted in time by

replacing the independent variable n by n – k

2011/3/2 Digital Signal Processing 24

 Transformation of independent variable (time)
 Folding/Reflection: A signal x[n] may be folded in

time by replacing the independent variable n by –n

Manipulation of  Discrete-Time Signals (2/5)
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 The operations of folding and time delaying (or
advancing) a signal are NOT commutative

 Denote the time-delay operation by TD and the folding
operation by FD

Now

whereas

    ,      0kTD x n x n k k  

    FD x n x n 

        k kTD FD x n TD x n x n k    

            k kFD TD x n FD x n k x n k TD FD x n     

Manipulation of  Discrete-Time Signals (3/5)
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 Transformation of independent variable (time)
 Time Scaling or down-sampling: A signal x[n] may

be scaled in time by replacing n by n

Manipulation of  Discrete-Time Signals (4/5)
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 Transformation of independent variable (time)
 Addition, multiplication, and scaling of sequences:

Amplitude modifications include addition, multiplication,
and scaling of discrete-time

 Amplitude scaling of a signal by a constant :

 Sum of two signals:

 Product of two signals:

   ,      y n Ax n n    

     1 2+ ,      y n x n x n n    

     1 2 ,      y n x n x n n    

Manipulation of  Discrete-Time Signals (5/5)
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Discrete-Time Systems
 Discrete-time system: A device or an algorithm that

performs some prescribed operation on a discrete-time
signal (input or excitation) to produce another discrete-
time signal (output or response)

 We say that the input signal x[n] is “transformed” by the
system into a signal y[n] as expressed below

    y n T x n
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Input-Output Description of  Systems
 The input-output description or a discrete-time system

consists of a mathematical expression or a rule, which
explicitly defines the relation between the input and
output signals

 Example: Determine the response of the following
systems to the input signal

(a) (b)

(c) (d)

   Tx n y n

  , 3 3

0, otherwise
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Linear Systems: Accumulator

 Accumulator -

 The output y[n] is the sum of the input sample x[n] and 
the previous output y[n −1]

 The system cumulatively adds, i.e., it accumulates all 
input sample values

 Input-output relation can also be written in the form

 The second form is used for a causal input sequence, in 
which case y[−1] is called the initial condition
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Linear Systems: Moving Average
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 An application: Consider x[n] = s[n] + d[n] where s[n] =
2[n(0.9)n] is the signal corrupted by a random noise d[n]
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Nonlinear Systems: Median Filter (1/3)

 The median of a set of (2K+1) numbers is the number 
such that K numbers from the set have values greater than 
this number and the other K numbers have values smaller 

 Median can be determined by rank-ordering the numbers 
in the set by their values and choosing the number at the 
middle

 Example: Consider the set of numbers

{2, −3, 10, 5, −1}

 Rank-order set is given by
{−3 , −1, 2 , 5, 10}

 median{2, −3, 10, 5, −1} = 2
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 Median Filtering Example

Nonlinear Systems: : Median Filter (2/3)

2011/3/2 Digital Signal Processing 34

Original Image Noisy Image
(pepper-and-salt noise)

Filtered Image

 Median Filtering Example

Nonlinear Systems: Median Filter (3/3)
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Block Diagram Representation of  
Discrete-Time Systems
 Adder

 Constant multiplier

2011/3/2 Digital Signal Processing 35

 Signal multiplier/Modulator

 Unit delay element

 Unit advance element

2011/3/2 Digital Signal Processing 36

Block Diagram Representation of  
Discrete-Time Systems
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 Example:        1 1 1
1 1

4 2 2
y n y n x n x n    
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Block Diagram Representation of  
Discrete-Time Systems

Static vs. Dynamic Systems

 A discrete-time system is called static or memoryless if
its output at any time instant depends at most on the
input sample at the same time

 If a discrete-time system is not static, it is said to be 
dynamic or to have memory

   
     3

y n ax n

y n nx n bx n



 

     

   
0

3 1    (finite memory)

         (infinite memory)
k

y n x n x n

y n x n k




  

 

    ,y n x n n T

2011/3/2 Digital Signal Processing 38



20

Time (Shift) Invariance

 Time-invariant vs. time-variant systems
 A system is called time-invariant if its input-output

characteristics do not change with time

 Definition: A relaxed system T is time-invariant or 
shift-invariant if and only if 

Implies that

For every input signal x(n) and every time shift k.

 In general, we can write the output of a time-invariant
system as

    y n x n T

( ) ( )x n y nT

( ) ( )x n k y n k  T

 ( , ) ( )y n k x n k T
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 Examples         1y n x n x n x n   T

   ,y n k y n k 

     , 1y n k x n k x n k    

     1y n k x n k x n k     

time invariant

      y n x n nx n T

   ,y n k y n k 

   ,y n k nx n k 

     y n k n k x n k   

time variant

2011/3/2 Digital Signal Processing 40

Time (Shift) Invariance
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 Examples       y n x n x n  T

   ,y n k y n k 

   ,y n k x n k  

   y n k x n k   

time variant

       0cosy n x n x n n T

   ,y n k y n k time variant

    0, cosy n k x n k n 

     0cosy n k x n k n k   
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Time (Shift) Invariance

Linearity (1/3)

 A linear system is one that satisfies the superposition
principle

 Definition: A system T is linear if and only if

for any arbitrary input sequences x1[n] and x2[n], and any
arbitrary constants a1 and a2.

 Multiplicative/scaling property: Suppose that a2 = 0

 Additivity property: Suppose that a1 = a2 = 1

          1 1 2 2 1 1 2 2a x n a x n a x n a x n  T T T

       1 1 1 1 1 1a x n a x n a y n T T

              1 2 1 2 1 2x n x n x n x n y n y n    T T T
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 Graphical representation of the superposition principle

T is linear if and only if y[n] = y’[n]
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Linearity (2/3)

Linearity (3/3)

 Linear vs. non-linear systems
 The linear condition can be extended arbitrarily to any

weighted linear combination of signals

where

 If a system produces a nonzero output with a zero
input, it may be either non-relaxed or nonlinear

 Examples: (a) y[n] = nx[n], (b) y[n] = x[n2], (c) y[n] =
x2[n], (d) y[n] = Ax[n] + B, (e) y[n] = ex[n]
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Causality

 Causal vs. non-causal systems
 Definition: A system is said to be causal if the output

of the system at any time n depends only on present
and past inputs, but does not depend on future inputs

where T{·} is some arbitrary function.

 Noncausal vs. anticausal

 If a system produces a nonzero output with a zero
input, it may be either non-relaxed or nonlinear

 Examples: (a) y[n] = x[n]  x[n  1], (b) y[n] = x[n] +
3x[n+4], (c) y[n] = x[n2], (d) y[n] = x[2n], (e) y[n] = x[n]

        , 1 , 2 ,y n x n x n x n   T
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Stability
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 Bounded-Input, Bounded Output (BIBO) stability

If y[n] is the response to an input x[n] and if

 Example – the M-point moving average filter is BIBO
stable

 With a bounded input

then
[ ]      for all values of xx n B n

[ ]      for all values of yy n B n
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Passive & Lossless Systems
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 A discrete-time system is defined to be passive if, for
every finite-energy input x[n], the output y[n] has, at
most, the same energy

 For a lossless system, the above inequality is satisfied 
with an equal sign for every input 

 Example - Consider the discrete-time system defined by 
y[n] =α x[n − N] with N a positive integer

 Its output energy is given by

passive system if ǀαǀ <1, and lossless if ǀαǀ =1
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Interconnection of  Discrete-Time Systems

 Cascade interconnection

 Systems T1 and T2 can be combined or consolidated
into a single overall system

 In general . However, if systems T1 and T2

are LTI, then (a) is time invariant and (b)

    1 1y n x nT

        2 1 2 1y n y n x n T T T

     2 1   where c cy n x n T T TT

1 2 2 1 TT TT

1 2 2 1 TT TT
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Interconnection of  Discrete-Time Systems

 Parallel interconnection

 We can use parallel and cascade interconnection of
systems to construct larger, more complex systems
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Techniques for the Analysis of  Linear 
Systems
 Two basic methods for analyzing the behavior of a linear

system:

 The first is based on the direct solution of the input-
output equation

 The second method is to decompose or resolve the
input signal into a sum of elementary signals. Then,
using the linearity of the system, the response of the
system to the elementary signals are sum to obtain
the total response

2011/3/2 Digital Signal Processing 50
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Techniques for the Analysis of  Linear 
Systems

 Suppose the input signal is resolved into a weighted
sum of elementary signals

 The response yk[n] of the system to the component
xk[n] is

 If the system is linear, we have

2011/3/2 Digital Signal Processing 51
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Why  & how to do the signal decomposition?

Resolution of a Discrete-Time Signal into 
Impulses
 Select the elementary signals xk[n] to be

where k represents the delay of the unit sample sequence

 Multiply the two sequences x[n] and [nk]?
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   kx n n k 

       x n n k x k n k   
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 Consequently

 Example - Consider a finite-duration sequence given as

The sequence can be resolved as
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k

x n x k n k




 

   2, 4,0,3x n 

       2 1 4 3 2x n n n n      

Resolution of a Discrete-Time Signal into 
Impulses

 The response of a relaxed linear system to the unit sample 
sequence input:

 If the impulse at the input is scaled by as

 If the input is expressed as

The output becomes
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Resolution of a Discrete-Time Signal into 
Impulses
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Response of LTI Systems to Arbitrary 
Inputs
 If the system is time invariant, and denote the response of 

the LTI system to the unit sample sequence as 

 The response of the system to             is

 Consequently

 The relaxed LTI system is completely characterized by a 
single function h[n], the impulse response.

 Convolution is commutative
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    h n k n k  T

     
k

y n x k h n k
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 n k 

         
k k

y n x k h n k h k x n k
 

 

    

 The output of an LTI system at n = n0 is given by 

 To compute y[n0]

 Folding. Fold h[k] about k = 0 to obtain h[k]

 Shifting. Shift h[k] by n0 to the right (left) if is positive 
(negative), to obtain h[n0k]

 Multiplication. Multiply x[k] by h[n0k] to obtain the 
product sequence

 Summation. Sum all the values of           to obtain y[n0]
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Computing the Convolution Sum
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Computing the Convolution Sum

2011/3/2 Digital Signal Processing 57

   1, 2,3,1x n     1, 2,1, 1h n  

   , 0,0,1, 4,8,8,3, 2, 1,0,0,y n    

Computing the Convolution Sum
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Computing the Convolution Sum
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Tabular Method of Convolution Sum 
Computation

2011/3/2 Digital Signal Processing 60
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 Example:
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Computing the Convolution Sum

2011/3/2 Digital Signal Processing 62

Computing the Convolution Sum
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Properties of Convolution (1/2)
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 Commutative Property

 Identity and Shifting Properties

         

       
k

k

y n x n h n x k h n k

h n x n h k x n k









   

   





       y n x n n x n  
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Properties of Convolution (2/2)
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 Associative Property

 Distributive Property

                    1 2 2 1 1 2x n h n h n x n h n h n x n h n h n       

              1 2 1 2x n h n h n x n h n x n h n     
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Causality of LTI Systems (1/2)
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 The output of an LTI system at n = n0 is given by

 Divide the sum into two sets of terms:

 For a causal system, h[n] = 0 for n < 0

 Since h[n] is the response of the relaxed LTI system to a 
unit impulse sequence at n = 0, an LTI system is causal 
if and only if its impulse response is zero for negative 
values of n

     0 0
k

y n x k h n k




 

          

               

1

0 0 0
0

0 0 0 0

depend on present and past inputs depend on future inputs

0 1 1 1 1 2 2

k k

y n h k x n k h k k x n k

h x n h x n h x n h x n

 

 

   

   
             
   
   

 

  

2011/3/2 Digital Signal Processing 66

 The output of an causal LTI system becomes

 A sequence x[n] is called a causal sequence if x[n] = 0 
for n < 0; otherwise, it’s a noncausal sequence

 If the input to a causal LTI system is a causal sequnce, 
the input-output equation reduces to

 Example: Determine the unit step response of the LTI 
system with impulse response 

         
0

n

k k

y n h k x n k x k h n k


 

    

         
0 0

n n

k k

y n h k x n k x k h n k
 

    

   ,       1nh n a u n a 

 
1

0

1

1

nn
k

k

a
y n a

a






 



Causality of LTI Systems (2/2)
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Stability of LTI Systems (1/3)
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 BIBO Stability Condition - A discrete-time system is 
BIBO stable if and only if the output sequence {y[n]} 
remains bounded for all bounded input sequence {x[n]} 

 An LTI discrete-time system is BIBO stable if and only if 
its impulse response sequence {h[n]} is absolutely 
summable, i.e. 

 Proof: Assume h[n] is a real sequence

Sufficient condition: Since the input sequence x[n] is 
bounded we have
therefore

 h
k

B h k




  

( ) xx n B  
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Stability of LTI Systems (2/3)
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 Thus, Bh < ∞ implies ǀy[n]ǀ ≤ BxBh < ∞, indicating that y[n] is
also bounded

 To prove the necessary condition, assume y[n] is bounded, 
i.e., ǀy[n]ǀ ≤ By

 Consider the bounded input given by

 For this input, y[n] at n = 0 is

 Therefore, if Bh = ∞, then {y[n]} is not a bounded sequence
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 Example - Consider a causal LTI discrete-time system 
with an impulse response

 For this system

 Therefore Bh < ∞ if |a| < 1 , for which the system is BIBO 
stable

 If |a| = 1, the system is not BIBO stable
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