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Abstract—In this paper, we conduct centrality analysis and community detection for attributed networks. An attributed network, as a
generalization of a graph, has node attributes and edge attributes that represent the “features” of nodes and edges. Traditionally,
centrality analysis and community detection of a graph are done by providing a sampling method, such as a random walk, for the
graph. To take node attributes and edge attributes into account, the sampling method in an attributed network needs to be twisted from
the original sampling method in the underlining graph. For this, we consider the family of exponentially twisted sampling methods and
propose using path measures to specify how the sampling method should be twisted. For signed networks, we define the influence
centralities by using a path measure from opinions dynamics and the trust centralities by using a path measure from a chain of trust.
For attributed networks with node attributes, we also define advertisement-specific influence centralities by using a specific path
measure that models influence cascades in such networks. For networks with a distance measure, we define the path measure as the
total distance along a path. By specifying the desired average distance between two randomly sampled nodes, we are able to detect
communities with various resolution parameters. Various experiments are conducted to further illustrate these exponentially twisted
sampling methods by using three real datasets: the political blogs, the MemeTracker dataset, and the WonderNetwork.
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1 INTRODUCTION

C ENTRALITY analysis [1], [2] and community detection
[3], [4] have been two of the most important research

topics in social network analysis. In the literature (see e.g.,
the book [5]), there are various notions of centralities defined
for ranking the importance of nodes in a network, including
the degree centrality, eigenvector centrality, Katz centrality,
PageRank, closeness centrality, and betweenness centrality.
Among them, PageRank [6], proposed by Google, is perhaps
one of the most famous centrality measures for ranking
web pages. The key idea behind PageRank is to model the
behavior of a web surfer by a random walk (the random
surfer model) and then use that to sample the probability
for a web surfer to visit a specific web page. The higher
the probability for a web surfer to visit a specific web
page is, the more important that web page is. Personalized
PageRank [7], [8] is a generalization of PageRank. In the
original PageRank, the random surfer starts a new web
page uniformly among all the web pages. The key insight
of Personalized PageRank is to use a biased selection to
represent personal interest among all the web pages, and
that leads a different sampling probability for a web surfer
to visit a specific web page.

The basic goal of community detection is to find a partition
of a graph so as to discover and understand the large-scale
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structure of a network. As commented in [9], researchers
from different fields have different opinions on what a good
community should look like. There are several notions for
this in the literature: (i) a good community should have
more edges within the community than the edges going
outside the community (see e.g., [10], [11]), (ii) a good
community should be densely connected [12], [13], [14], (iii)
a graph with a good community structure should behave
quite differently from random graphs [15], [16], (iv) a good
community should have a high probability to trap a random
walker inside the community [17], [18], [19], [20], and (v)
rumors are spread fast within a good community [21]. As
mentioned before, people have different views. As such,
community detection (clustering) is in general considered
as an ill-posed problem [22], and communities can only be
formally defined on top of a specific viewpoint [9], [23]. To
obtain a viewpoint of a network, one typical method is to
“sample” the network, e.g., edge sampling, random walks,
diffusion [16], or random gossiping [21]. Mathematically,
each sampling method renders a (probability) measure for
further analysis of the sampled network. The goal of this
paper is to provide a general framework for centrality anal-
ysis and community detection in attributed networks. We
do not aim to solve a specific ranking task or a community
detection task for a specific dataset.

In this paper, we consider attributed networks. An at-
tributed network is a generalization of a network (graph).
In addition to the set of nodes and the set of edges in an un-
derlining network, an attributed network could have node
attributes and edge attributes that specify the “features” of
nodes and edges. Our study of attributed networks is moti-
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vated by the recent advances of online social networks. On-
line social networks contain more information than merely
nodes (persons) and edges (interactions), e.g., the personal
information of a person, the dialogues between two persons,
the comments/interests/ratings of a person on various top-
ics, et al. Such side information can be further processed to
gain more insights and improve solutions to classic tasks
of analyzing online social networks (see e.g., [24], [25], [26],
[27], [28], [29], [30]). For instance, the dialogues between two
persons can be used for knowing whether the two persons
are friends or enemies. In particular, as pointed out in [25],
users on Epinions can express trust or distrust of others, and
users on Slashdot can declare others to be either “friends” or
“foes.” That leads to a special class of attributed networks,
called signed networks, where each edge in a signed network
is labelled with either a positive sign or a negative sign to
indicate the friendship/enemy or trust/distrust relationship
between the two ends of an edge. Another typical example
of an attributed network is that every node in the net-
work represents a person with different ratings/interests
on various topics [26], [29]. The problem we would like to
address is how we rank nodes in attributed networks. Such
a problem will be called the centrality analysis in attributed
networks. Another example of an attributed network is a
network with a distance measure that specifies the distance
between two nodes. We will also address how community
detection can be done in such an attributed network.

Our approach to centrality analysis and community de-
tection in attributed networks is to use the probabilistic
framework for structural analysis in networks in [9], [23],
[31]. Like PageRank [6], the probabilistic framework re-
quires a sampling method of a network, called a viewpoint.
The sampling method of a network is characterized by
a probability measure for randomly selecting a path r in
the network. In order to take the attributes of nodes and
edges into account, one needs a biased viewpoint as previ-
ously discussed in Personalized PageRank [7], [8]. As such,
the sampling method in an attributed network (and the
corresponding probability measure) needs to be a twisted
probability measure of its underlining network. For this, we
propose using a path measure f(r) that maps every path r
in an attributed network to a real-valued vector. By specify-
ing the average values of a path measure, we then have a set
of constraints for the twisted sampling probability measure.
This then leads to the exponentially twisted probability
measure [32], [33], [34] that minimizes the Kullback-Leibler
distance between the twisted probability measure and the
original probability measure under the set of constraints
from the average values of the path measure.

Each path measure with specified average values leads
to a method of ranking nodes in an attributed network
and that method is in general different from the original
ranking method in its underlining network. For centrality
analysis, we introduce three path measures in attributed
networks and that leads to three new notions of centrali-
ties in attributed networks. For signed networks that have
both positive edges and negative edges, we show how
the influence centralities can be defined by using a path
measure derived from opinions dynamics and how the trust
centralities can be defined by using a path measure derived
from a chain of trust. In particular, we show that one may

vary the specified average value of the path measure in a
signed network so that the influence centrality is turned into
the positive degree ranking, the negative degree ranking,
and the total degree ranking. For attributed networks with
node attributes, we also show how advertisement-specific
influence centralities can be defined by using a specific
path measure that models influence cascades in such net-
works. For community detection, we consider an attributed
network with a distance measure. We show communities
with different sizes can be detected by specifying a resolu-
tion parameter derived from the average distance between
two randomly sampled nodes. We then conduct various
experiments to illustrate these centralities by using two real
datasets: the political blogs in [35] and the MemeTracker
dataset [36]. For the political blogs, our numerical results
show how the top 100 nodes are changed when the specified
average value of the path measure for influence centrality in
a signed network is changed. For the MemeTracker dataset,
our numerical results show how the top 100 nodes are
changed when the topics of the advertisement-specific influ-
ence centralities are changed. To illustrate the effect of the
resolution parameter for the community detection problem,
we also conduct various experiments by using a synthetic
dataset and the real network from the WonderNetwork
website [37].

The rest of the paper is organized as follows. In Section 2,
we review the probabilistic framework of sampled graphs
in undirected/directed networks. We then generalize such
a probabilistic framework to attributed networks by using
exponentially twisted sampling in Section 3. In Section 4,
we introduce various path measures for centrality analysis
and community detection in various attributed networks.
We then conduct various experiments to evaluate the effects
of these path measures in Section 5. The paper is concluded
in Section 6.

2 REVIEW OF THE PROBABILISTIC FRAMEWORK
OF SAMPLED GRAPHS

In [9], [23], a probabilistic framework for structural analysis
in undirected/directed networks was proposed. The main
idea in that framework is to sample a network by randomly
selecting a path in the network. A network with a path
sampling distribution is then called a sampled graph in [9],
[23] that can, in turn, be used for structural analysis of the
network, including centrality and community. Specifically,
suppose a network is modeled by a graph G(V,E), where
V denotes the set of vertices (nodes) in the graph and E
denotes the set of edges (links) in the graph. Let n = |V | be
the number of vertices in the graph and index the n vertices
from 1, 2, . . . , n. Also, let A = (ai,j) be the n× n adjacency
matrix of the graph, i.e.,

ai,j =

{
1, if there is an edge from vertex i to vertex j,
0, otherwise.

Let Ru,w be the set of (directed) paths from u to w and
R = ∪u,w∈VRu,w be the set of paths in the graph G(V,E).
According to a probability mass function p(·), called the path
sampling distribution, a path r ∈ R is selected at random with
probability p(r). In [9], [23], there are many methods for
sampling a graph with a randomly selected path. Here we
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introduce the following three commonly used approaches:
(i) sampling by uniformly selecting a directed edge, (ii)
sampling by a Markov chain, and (iii) sampling by a random
walk on an undirected network with path length 1 or 2.

Example 1. (Sampling by uniformly selecting a directed
edge) Given a directed graph G = (V,E) with the adja-
cency matrix A = (ai,j), one only sample directed paths
with length 1 and this is done by uniformly selecting a
directed edge among all the directed edges. Specifically,
sampling by uniformly selecting a directed edge has the
following probability mass function:

p(r) =

{
1/m, if r is an edge from vertex i to vertex j,
0, otherwise, ,

where m = |E| is the total number of directed edges in
the graph.

Example 2. (Sampling by a Markov chain) Given a directed
graph G = (V,E) with the adjacency matrix A = (ai,j),
consider an ergodic Markov chain on this graph. Let pu,w
be the transition probability from node u to node w and
πu be the steady state probability of node u. In particular,
for PageRank [6] with the web surfing probability λ, the
transition probability of the corresponding Markov chain
is

pu,w = (1− λ)
1

n
+ λ

au,w
koutu

, (1)

where koutu is the out-degree of node u. Its steady state
probabilities (with

∑n
u=1 πu = 1) can be obtained from

solving the following system of equations:

πu = (1− λ)
1

n
+ λ

n∑
w=1

awu
koutw

πw, for all u = 1, 2, . . . , n.

(2)
For a path r that traverses a sequence of nodes
{u1, u2, . . . , uk−1, uk} in a directed network, we have
from the Makrov property that

p(r) = πu1 · pu1,u2 · . . . · puk−1,uk
. (3)

Consider the reverse path of r, denoted by Rev(r), that
traverses a sequence of nodes {uk, uk−1, . . . , u2, u1}. If
the Markov chain is reversible (see e.g., the book [38]),
then it follows from the detailed balance equation that

p(r) = p(Rev(r)). (4)

It is known that the corresponding Markov chain for
PageRank is in general not reversible. However, the cor-
responding Markov chain for a random walk on an undi-
rected graph is reversible. We will discuss this further in
the next example.

Example 3. (Sampling by a random walk on an undirected
network with path length 1 or 2) For an undirected
graph G(V,E), let m = |E| be the total number of edges
and kv be the degree of node v, v = 1, 2, . . . , n. A path
r with length 1 can be represented by the two nodes
{u1, u2} it traverses. Similarly, a path with length 2 can
be represented by the three nodes {u1, u2, u3} it traverses.

A random walk with path length not greater than 2 can
be generated by the following two steps: (i) with the
probability kv/2m, an initial node v is chosen, (ii) with
probability βi, i = 1, 2, a walk with length i is chosen. As
such, we have

p(r) =


β1

2mau1,u2
, if r = {u1, u2},

β2

2m

au1,u2
au2,u3

ku2
, if r = {u1, u2, u3},

(5)

where β1 +β2 = 1 and βi ≥ 0, i = 1, 2. For an undirected
network, we have ai,j = aj,i for all i, j = 1, 2, . . . , n.
Thus, in view of (5), we also have

p(r) = p(Rev(r)), (6)

where Rev(r) is the reverse path of r. Moreover, if β2 =
0, then the random walk has path length 1, and this is
equivalent to sampling by uniformly selecting an edge.

Let U (resp. W ) be the starting (resp. ending) node
of a randomly selected path by using the path sampling
distribution p(·). Then the bivariate distribution

pU,W (u,w) = P(U = u,W = w) =
∑

r∈Ru,w

p(r) (7)

is the probability that the ordered pair of two nodes (u,w) is
selected. As such, pU,W (u,w) can be viewed as a similarity
measure from node u to node w and this leads to the
definition of a sampled graph in [9], [23].
Definition 4. (Sampled graph [9], [23]) A graphG(V,E) that

is sampled by randomly selecting an ordered pair of two
nodes (U,W ) according to a specific bivariate distribution
pU,W (·, ·) in (7) is called a sampled graph and it is denoted
by the two-tuple (G(V,E), pU,W (·, ·)).

Let pU (u) (resp. pW (w)) be the marginal distribution of
the random variable U (resp. W ), i.e.,

pU (u) = P(U = u) =
n∑

w=1

pU,W (u,w), (8)

and

pW (w) = P(W = w) =
n∑
u=1

pU,W (u,w). (9)

Then pU (u) is the probability that node u is selected as a
starting node of a path and it can be viewed as an out-
centrality of u. On the other hand, pW (w) is the probability
that nodew is selected as an ending node of a path and it can
be viewed as an in-centrality of w. For directed networks,
e.g., citation networks [5], the in-centrality and the out-
centrality of the degree centrality (sampling by uniformly
selecting an edge in Example 1) is the in-degree (resp. out-
degree) centrality that is represented by the number of in-
coming (resp. outgoing) edges. As commented in [5], the pa-
pers with high out-degree centralities in a citation network
are usually survey papers that contain lots of references.
On the other hand, highly-cited papers are the papers with
high in-degree centralities. The in-centrality and the out-
centrality are in general not the same. Clearly, if the bivariate
distribution pU,W (·, ·) is symmetric, then the in-centrality
and the out-centrality are the same. A recent advance in
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[23] shows that one does not need a symmetric bivariate
distribution to ensure the equality between the in-centrality
and the out-centrality. In particular, for the Markov chain
sampling methods, one still has pU (u) = pW (u) and the in-
centrality and the out-centrality are the same. In that case,
we will simply refer PU (u) as the centrality of node u.
Definition 5. (Covariance, Community, and Modularity

[9], [23]) For a sampled graph (G(V,E), pU,W (·, ·)), the
covariance between two nodes u and w is defined as
follows:

q(u,w) = pU,W (u,w)− pU (u)pW (w). (10)

Moreover, the covariance between two sets S1 and S2 is
defined as follows:

q(S1, S2) =
∑
u∈S1

∑
w∈S2

q(u,w). (11)

Two sets S1 and S2 are said to be positively correlated if
q(S1, S2) ≥ 0. In particular, if a subset of nodes S ⊂ V
is positively correlated to itself, i.e., q(S, S) ≥ 0, then it is
called a community or a cluster (in this paper, we will use
community and cluster interchangeably).
Let P = {Sk, k = 1, 2, . . . ,K}, be a partition of V , i.e.,
Sk ∩ Sk′ is an empty set for k 6= k′ and ∪Kk=1Sk = V .
The modularity Q(P) with respect to the partition Sk,
k = 1, 2, . . . ,K , is defined as

Q(P) =
K∑
k=1

q(Sk, Sk). (12)

There are many physical interpretations (and equivalent
statements) for the definition of a community in [9], [23].
Moreover, as pointed out in the book [5], the physical
meaning of the modularity with respect to a partition of
a graph is how much it differs from that partition of a
random graph generated by the configuration model. As
such, a good partition of a graph should have a large mod-
ularity. In view of this, one can then tackle the community
detection/clustering problem by looking for algorithms that
yield large modularity. For this, we define the modularity
matrix Γ for the sampled graph (G(V,E), pU,W (·, ·)) as the
n × n matrix with its (u,w)th element being q(u,w) in
(10). Then the modularity maximization problem can be
formulated as the optimization problem that finds an n×K
partition matrix HK to maximize tr(HT

KΓHK) over K and
HK . The modularity maximization problem is known to be
NP-hard [39] and one has to resort to heuristic algorithms.
In the literature, there are several community detection
algorithms that find a partition to achieve a local maximum
of the modularity in (12), e.g., the spectral modularity
maximization algorithm [40], the hierarchical agglomerative
algorithm [15], the partitional algorithm [41], and (iv) the
fast unfolding algorithm [42]. For a detailed introduction of
these algorithms, we refer to [23].

3 EXPONENTIALLY TWISTED SAMPLING IN AT-
TRIBUTED NETWORKS

Now we generalize the probabilistic framework in [9], [23]
to attributed networks. In order to take the attributes of
nodes and edges into account, the sampling method in

an attributed network and the corresponding probability
measure needs to be a twisted probability measure of its
underlining network. This then leads to the exponentially
twisted probability measure [32], [33], [34].

An attributed network is a generalization of a graph
G(V,E) by assigning each node u ∈ V an attribute
hV (u) and each edge e ∈ E an attribute hE(e).
As such, an attributed network can be represented as
G(V,E, hV (·), hE(·)), where hV (·) and hE(·) are called the
node attribute function and the edge attribute function,
respectively.

For a path r that traverses a sequence of nodes
{u1, u2, . . . , uk−1, uk} in an attributed network, we can
define a path measure f(r) as a function of the attributes
of the nodes and edges along the path r, i.e.,

{hV (u1), . . . , hV (uk), hE(u1, u2), . . . , hE(uk−1, uk)}.

In this paper, we assume that a path measure f(·) is a
mapping from the set of paths R to an L-dimensional real-
valued vector in RL, i.e.,

f(r) = (f1(r), f2(r), . . . , fL(r)),

where fi(·), i = 1, 2, . . . , L, are real-valued functions.
Now suppose that we have already had a sampled graph

(G(V,E), p0(·)) that uses the probability mass function
p0(r) to sample a path r in G(V,E). The question is how
the sampling distribution should be changed so that the
average path measure is equal to a specified vector f̄ . In
other words, what is the most likely sampling distribution
p(·) that leads to the average path measure f̄ given that the
original sampling distribution is p0(·)? For this, we intro-
duce the Kullback-Leibler distance between two probability
mass functions p(·) and p0(·):

D(p‖p0) =
∑
r∈R

p(r) log(
p(r)

p0(r)
). (13)

The Kullback-Leibler distance is known to be nonnegative
and it is zero if and only if p(·) = p0(·) (see e.g., [33]). Also,
according to the Sanov theorem (see e.g., the books [33],
[34]), the larger the Kullback-Leibler distance is, the more
unlikely for p0(·) to behave like p(·). Thus, to address the
question, we consider the following constrained minimiza-
tion problem:

min D(p‖p0)

s.t.
∑
r∈R

p(r) = 1,∑
r∈R

f(r)p(r) = f. (14)

The first constraint states that the total probability must be
equal to 1. The second constraint states that the average
path measure must be equal to f̄ with the new sampling
distribution p(·).

The above minimization problem can be solved by using
Lagrange’s multipliers α ∈ R and θ ∈ RL as follows:

I = D(p‖p0) + α(1−
∑
r∈R

p(r))

+θ · (f −
∑
r∈R

f(r)p(r)). (15)
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Taking the partial derivative with respect to p(r) yields

∂I

∂p(r)
= log p(r) + 1− log p0(r)− α− θ · f(r) = 0. (16)

Thus,

p(r) = exp(α− 1) ∗ exp(θ · f(r)) ∗ p0(r). (17)

Since
∑
r∈R p(r) = 1, it then follows that

p(r) = C ∗ exp(θ · f(r)) ∗ p0(r), (18)

where

C =
1∑

r∈R exp(θ · f(r)) ∗ p0(r)
(19)

is the normalization constant.
To solve the parameter vector θ, we let

F = log(1/C).

The quantity F is called the free energy as it is analogous
to the free energy in statistical mechanic [5]. Also, the
parameter vector θ is called the inverse temperature vector.
It is easy to see that for i = 1, 2, . . . , L that

∂F

∂θi
=
∑
r∈R

fi(r)p(r) = f i. (20)

These L equations can then be used to solve θi, i =
1, 2, . . . , L.

Once we have the sampling distribution in (18), we can
define a bivariate distribution pU,W (u,w) as in (7). Analo-
gous to the discussion of a sampled graph in the previous
section, the marginal distribution of the random variable U
(resp. W ), i.e., pU (u) (resp. pW (w)), can be viewed as an
out-centrality of u (resp. in-centrality of w).

To summarize, in order to define the out-centrality and
the in-centrality of an attributed network, one needs (i) the
original sampling distribution p0(·) for the network, and
(ii) the path measure f(·) of the attributed network. Once
a specified average path measure f̄ (or the inverse temper-
ature vector θ) is given, one can have the new sampling
distribution p(·) in (18). This then leads to the bivariate dis-
tribution in (7). The marginal distributions of that bivariate
distribution then correspond to the out-centrality and the
in-centrality of the attributed network.

4 PATH MEASURES IN ATTRIBUTED NETWORKS

In this section, we introduce three path measures in at-
tributed networks and these lead to influence centralities
in signed networks in Section 4.1, the trust centralities in
signed networks in Section 4.2, and the advertisement-
specific influence centralities in networks with node at-
tributes in Section 4.3. For community detection, we con-
sider an attributed network with a distance measure in
Section 4.4. We show communities with different sizes can
be detected by specifying a resolution parameter derived
from the average distance between two randomly sampled
nodes.

4.1 Influence centralities in signed networks
In this section, we consider a special class of attributed
networks, called signed networks. A signed network G =
(V,E, hE(·)) is an attributed network with an edge attribute
function hE(·) that maps every undirected edge in E to the
two signs {+,−}. In this paper, we represent the positive
(resp. negative) sign by 1 (resp. -1). An edge (u,w) mapped
with the + sign is called a positive edge, and it is generally
used for indicating the friendship between the two nodes u
and w. On the other hand, an edge mapped with the − sign
is called a negative edge. A negative edge (u,w) indicates
that u and w are enemies.

One interesting question for signed networks is how the
nodes in signed networks are ranked. Our idea for this is to
use opinion dynamics. If u andw are connected by a positive
(resp. negative) edge, then it is very likely that u will have
a positive (resp. negative) influence on w and vice versa.
As such, if we start from a node u with a positive opinion
on a certain topic, then a neighbor of node u connected
by a positive (resp. negative) edge will tend to have the
same (resp. the opposite) opinion as node u has. Now we
can let the opinion propagate through the entire network
(via a certain opinion dynamic) and count the (expected)
number of nodes that have the same opinion as node u has.
If such a number is large, then it seems reasonable to say that
node u has a large positive influence on the other nodes in
the network. In other words, a node u has a large positive
influence if there is a high probability that the other end of
a randomly selected path has the same opinion as node u.
This then leads us to define the notion of influence centralities
for ranking nodes in signed networks.

The above argument is based on the general belief that
“a friend of my friend is likely to be my friend” and “an
enemy of my enemy can be my friend” in [5]. As such, for
a path r that traverses a sequence of nodes {u1, u2, . . . , uk}
in a signed network, we define the following path measure
as the product of the edge signs along the path, i.e.,

f(r) =
∏

(ui,ui+1)∈r

hE(ui, ui+1). (21)

Note that f(r) is either 1 or -1 as the edge attribute function
hE(·) that maps every undirected edge in E to {1,−1}.

As an illustrating example, let us consider using the
sampling distribution p0(r) by a random walk with path
length 1 or 2 in Example 3. It then follows from (18), (21)
and (5) that

p(r) =



C · eθhE(u1,u2) · β1

2mau1,u2 ,
if r = {u1, u2},

C · eθ·hE(u1,u2)·hE(u2,u3) · β2

2m

au1,u2
au2,u3

ku2
,

if r = {u1, u2, u3}.
(22)

The constant C in (22) is the normalization constant. Sum-
ming all the paths from u to w yields the bivariate distribu-
tion

pU,W (u,w) = C
[
eθhE(u,w) · β1

2m
au,w

+
∑
u2∈V

eθ·hE(u,u2)·hE(u2,w) · β2
2m

au,u2
au2,w

ku2

]
. (23)
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The marginal distribution of the bivariate distribution, de-
noted by PU (u), is called the influence centrality of node u
(with respect to the inverse temperature θ).

If we only select paths with length 1, i.e., β2 = 0 in (23),
then there is a closed-form expression for the influence cen-
trality. For this, we first compute the normalization constant
C by summing over u and w in (23) and this yields

C =
m

m+eθ +m−e−θ
, (24)

where m+ (resp. m−) is the total number of positive (resp.
negative) edges in the graph. Thus, for β2 = 0,

pU (u) =
∑
w∈V

pU,W (u,w)

=
(k+u e

θ + k−u e
−θ)

2(m+eθ +m−e−θ)
, (25)

where k+u (resp. k−u ) is the number of positive (resp. nega-
tive) edges of node u.

Now suppose we require the average path measure f̄ to
be equal to some fixed constant −1 < γ < 1. Then we have
from (20) that

γ = f̄ =
∂F

∂θ

=
m+ exp(θ)−m− exp(−θ)
m+ exp(θ) +m− exp(−θ)

, (26)

where F = log(1/C) with C in (24) being the free energy.
This then leads to

θ = ln( 2

√
m−(1 + γ)

m+(1− γ)
). (27)

Now we discuss the connection of the influence centralities
with the three degree ranking methods: (i) ranking by the
number of positive edges (positive degree), (ii) ranking by
the number of negative edges (negative degree), and (iii)
ranking by the total number of edges (total degree). When
γ → 1, we have from (27) that θ →∞. As a result from (25),
PU (u)→ k+u

2m+ and this corresponds to positive degree rank-
ing. On the other hand, when γ → −1, we have θ → −∞
and PU (u) → k−u

2m− . This corresponds to negative degree
ranking. Finally, if we choose γ = (m+ −m−)/(m+ +m−),
then θ = 0 and PU (u) = ku

2m . This corresponds to total
degree ranking. Thus, different choices of γ lead to different
ranking methods. We will illustrate this further in Section
5.1.

4.2 Trust centralities in signed networks

As discussed in the previous section, the influence cen-
tralities are based on the general belief that “an enemy of
my enemy can be my friend.” Such a statement might be
valid for modelling opinion dynamics. However, it is not
suitable for modelling trust. In addition to the interpretation
of a signed edge as the friend/enemy relationship, another
commonly used interpretation is the trusted/untrusted link.
A path r that traverses a sequence of nodes {u1, u2, . . . , uk}
can be trusted if every edge is a trusted link so that there
exists a chain of trust. In view of this, the notion of trust
centrality in a signed network can be defined by using the

path measure f that is the minimum of the edge signs along
the path, i.e.,

f(r) = min
(ui,ui+1)∈r

h(ui, ui+1). (28)

4.3 Advertisement-specific influence centralities in
networks with node attributes
In this section, we consider another class of attributed net-
works that have node attributes. For a graph G(V,E) with
the node attribute function hV (u) that maps every node u
to a vector in RL

(hV,1(u), hV,2(u), . . . , hV,L(u)). (29)

One intuitive way to interpret such an attributed network
is to view the graph G(V,E) as a social network with n
users and the attribute vector in (29) as the scores of user
u on various topics. Now suppose an advertisement z can
be represented by a vector of scores (z1, z2, . . . , zL) with
zi being the score of the ith topic. Then we would like to
find out who is the most influential user in the network to
pass on the advertisement z. Such a problem was previously
studied in [26] for ranking nodes in Twitter. In TwitterRank
[26], a two-step approach was used. First, a topic-specific
ranking is obtained for each topic by using a random surfer
model similar to that in PageRank [6]. The second step is
then to take the weighted average over these topic-specific
rankings. Specifically, suppose that RTi(u) is the ranking
for topic i and user u. TwitterRank for advertisement z and
user u is then defined as the following weighted average:

L∑
i=1

zi ·RTi(u). (30)

One flaw for such a two-step approach is that it neglects
the fact that the propagation of a specific advertisement
through a user depends on how much a user “likes” the
advertisement. To model how much a user “likes” an ad-
vertisement, we use the similarity measure from the inner
product of the score vector of the user and that of the
advertisement. It is possible that in a cascade of two users
{u1, u2}, both users like the advertisement because their
inner products are large, but user u1 likes one topic in that
advertisement and user u2 likes another different topic in
that advertisement. Such a cascade cannot be modelled by
using the two-step approach in TwitterRank [26]. In view
of this, it might be better to use a one-step approach for
computing advertisement-specific influence centralities. As
the influence centralities in the previous section, we propose
using opinion dynamics through a path. For a path r that
traverses a sequence of nodes {u1, u2, . . . , uk−1, uk} in the
attributed network, we define the following path measure

f(r) = min
u∈r

[
L∑
i=1

zi · hV,i(u)]. (31)

4.4 Clustering with a distance measure
In this section, we consider another class of attributed net-
works in which the edge attribute of a directed edge is the
distance from one end to the other end of the directed edge.
Denote such a network by G = (V,E, d(·, ·)), where d(u,w)
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is the distance from node u to node w. Let n = |V | be the
number of nodes in the graph. In this paper, we assume that
the distance is nonnegative, i.e., d(u,w) ≥ 0. Also, we can
extend the definition of the distance between two nodes that
are not connected by a directed edge by setting the distance
to be infinity, i.e., d(u,w) = ∞ if there does not exist a
directed edge from node u to node w. We also add n self
edges by letting d(u, u) = 0 for all the n nodes. By doing so,
we have a complete graph with n self edges and the total
number of directed edges m is n2.

A natural selection of a path measure in such a complete
graph with n self edges is the total distance along a (di-
rected) path, i.e.,

f(r) =
∑

(ui,ui+1)∈r

d(ui, ui+1), (32)

for a path r that traverses a sequence of nodes
{u1, u2, . . . , uk} in such a complete graph with n self edges.

As an illustrating example, let us consider using the sam-
pling distribution p0(r) by uniformly selecting a directed
edge in Example 1, i.e.,

p0(r) =

{
1/n2, if r = {u1, u2},
0, otherwise. (33)

From (18) and (33), we have the following exponentially
twisted sampling distribution

p(r) =

{
C · exp(θ · d(u1, u2)) · 1

n2 , if r = {u1, u2},
0, otherwise, (34)

where C in (34) is the normalization constant. Summing up
all the n2 directed edges yields

C =
n2∑

u1∈V
∑
u2∈V exp(θ · d(u1, u2))

.

This then leads to the following bivariate distribution

pU,W (u,w) =
exp(θ · d(u,w))∑

u1

∑
u2

exp(θ · d(u1, u2))
. (35)

Note that under the original uniform sampling distribu-
tion, the average distance between two randomly selected
nodes U and W is

Ep0 [d(U,W )] =
1

n2

∑
u∈V

∑
w∈V

d(u,w). (36)

On the other hand, the average distance between two ran-
domly selected nodes U and W under the exponentially
twisted sampling distribution is

Ep[d(U,W )] =

∑
u∈V

∑
w∈V d(u,w) exp(θ · d(u,w))∑

u1

∑
u2

exp(θ · d(u1, u2))
. (37)

To solve the parameter θ, we can specify the average
distance between two randomly selected nodes under the
exponentially twisted sampling distribution to be a desired
value d̄, i.e.,

Ep[d(U,W )] = d̄. (38)

For the clustering purpose, in general one should choose d̄
to be smaller than Ep0 [d(U,W )] in (36) so that a pair of two
nodes with a shorter distance is selected more often than
another pair of two nodes with a larger distance. Clearly, if
we choose θ < 0, then d̄ ≤ Ep0 [d(U,W )]. Also, as θ →∞, d̄

approaches to the maximum distance between a pair of two
nodes. On the other hand, as θ → −∞, d̄ approaches to the
minimum distance between a pair of two nodes.

Once we have the bivariate distribution in (35), we can
perform community detection (or clustering) by using mod-
ularity maximization algorithms as discussed in Section 2.
The parameter θ serves as a resolution parameter that can
be used for detecting communities with different sizes (we
will illustrate this further in Section 5.4). In particular, for
clustering data points in a Euclidean space, one may simply
choose the distance measure between two points (nodes) as
the square of the Euclidean distance, i.e., for two data points
x and y in a Euclidean space, d(x, y) = ‖x − y‖2. Then the
exponentially twisted sampling associated with a particular
resolution parameter θ can be viewed as a transformation
for data points in a Euclidean space to a sampled graph.
Such a transformation is related to the transformation used
in [43] (for spectral clustering) and [44] (for support vector
clustering).

For our experiments in Section 5.4, we will consider
distance measures that are semi-metrics. A distance measure
d(u,w) is called a semi-metric if it satisfies the following
three properties:

(D1) (Nonnegativity) d(u,w) ≥ 0.
(D2) (Null condition) d(u, u) = 0.
(D3) (Symmetry) d(u,w) = d(w, u).

It is called a metric if the distance measure also satisfies the
triangular inequality, i.e.,

(D4) (Triangular inequality) d(u,w) ≤ d(u, v) +
d(v, w).

For the bivariate distribution in (35), let us consider the
covariance measure q(u,w) in (10) when θ is very small.
Using the first order approximation eθz ≈ 1 + θz + o(θ) in
(10) yields

q(u,w) ≈ (−θ)
( 1

n

∑
u2∈V

d(u2, w) +
1

n

∑
u1∈V

d(u, u1)

− 1

n2

∑
u2∈V

∑
u1∈V

d(u2, u1)− d(u,w)
)

+ o(θ).

Thus, when we choose a very small negative θ, the
covariance measure q(u,w) is proportional to

γ(u,w) =
1

n2

∑
u2∈V

∑
u1∈V

(
d(u, u1) + d(u2, w)

−d(u1, u2)− d(u,w)
)
. (39)

The function γ(u,w) is called a cohesion measure (resp.
semi-cohesion measure) if the distance measure d(x, y) is
a metric (resp. semi-metric) in [41], [45]. Analogous to (11),
one can define the cohesion measure between two sets S1

and S2 as follows:

γ(S1, S2) =
∑
u∈S1

∑
w∈S2

γ(u,w). (40)

Since the covariance measure q(u,w) is proportional to the
cohesion measure γ(u,w) for a small negative θ, commu-
nity detection can be done directly by finding a partition
{Sk, k = 1, 2, . . . ,K} that maximizes

∑K
k=1 γ(Sk, Sk). Such
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a maximization problem is known as the modularity max-
imization problem and it was shown to be NP-hard [39].
There are various heuristic algorithms proposed in the liter-
ature, including the spectral modularity maximization algo-
rithm [40], the hierarchical agglomerative algorithm [15], the
partitional algorithm [41], and the fast unfolding algorithm
[42]. Among these algorithms, the partitional algorithm is
a linear-time algorithm with the computation complexity
O((n+m)I), where I is the number of iterations [23].

5 EXPERIMENTS

In this section, we conduct several experiments to evaluate
our framework for centrality analysis and community de-
tection in attributed networks. Here we report our results
for the influence centralities in signed networks in Section
5.1, the trust centralities in Section 5.2, the advertisement-
specific influence centralities in Section 5.3 and clustering
with a distance measure in Section 5.4. Additional experi-
mental results can be found in the full report [46].

5.1 Experimental results for the influence centralities
in signed networks

In this section, we evaluate the influence centralities in
signed networks by using the real dataset from the political
blogs in [35]. The network in [35] is a directed network of hy-
perlinks between weblogs collected around the time of the
United States presidential election of 2004. There are 1,490
nodes and 19,090 edges in this dataset. These 1490 nodes can
be partitioned into two (ground-truth) communities (par-
ties). In order to have a signed network for our experiment,
we add 4,000 negative edges between two nodes chosen
randomly from each community. We then symmetrize the
adjacency matrix by using the matrix A + AT (to obtain an
undirected network). We also delete the nodes with degree
smaller than 7, and remove self edges and multiple edges.
As a result, we obtain a simple undirected signed network
with 863 nodes and 16,650 edges, including 15,225 positive
edges and 1,425 negative edges.

For our experiment, we use sampling by a random walk
with path length 1, i.e., β2 = 0 in Example 3. In Figure 1, we
show the ranking results of the influence centralities for six
values of γ. The corresponding θ is computed from (27). The
top 100 nodes are marked with different colors, 1-20 in red,
21-40 in orange, 41-60 in yellow, 61-80 in green and 81-100 in
blue. When γ is chosen to be -0.9 in Figure 1(a), the top 100
nodes seem to be uniformly distributed among all the nodes.
It is interesting to see that the top 100 nodes gradually move
toward the “center” of each community when the value of
γ is increased. Also, these top 100 nodes are separated into
the two communities, and they are closely packed with each
other around the center of each community. In our plots,
the nodes near the center of each community have large
degrees. As discussed in Section 4.1, the choice of γ is closely
related to the three degree ranking methods: (i) ranking by
the number of positive edges (positive degree), (ii) ranking
by the number of negative edges (negative degree), and
(iii) ranking by the total number of edges (total degree). To
further illustrate the connection between the influence cen-
trality and the three degree ranking methods, we compute

the Jaccard index between the top 100 nodes obtained from
the influence centrality and the top 100 nodes obtained from
each of the degree centrality method. Recall that the Jaccard
index between two sets S1 and S2 is computed as follows:

J(S1, S2) =
|S1 ∩ S2|
|S1 ∪ S2|

. (41)

In Figure 2, we plot the three curves of the Jaccard indices
with respect to γ. One can see that the Jaccard index for
the curve from ranking by negative degree is a decreasing
function of γ, while the other two curves are increasing
functions of γ. This shows that the influence centrality with
γ close to -1 is mostly in line with ranking by negative
degree. Intuitively, one can view nodes with high negative
degrees as speakers of a party who have the tendency to
criticize the other party. On the other hand, the influence
centrality with γ close to 1 is mostly in line with ranking by
positive degree. This is because increasing γ increases the
probability that a positive edge is sampled (and decreases
the probability that a negative edge is sampled). Nodes with
high positive degrees can be viewed as party leaders of a
party. The party leaders of these two parties (clusters) can
be easily found as shown in Figure 1(f). Note that there is
a slight difference between ranking by positive degree and
ranking by total degree when γ is close to 1 as ranking by
total degree still counts the number of negative edges and
those negative edges have little chance being selected when
γ is close to 1.

5.2 Experimental results for the trust centralities in
signed networks
We use the same signed network as that in the previous
section. For the trust centrality, we consider sampling by a
random walk with path length 1 or 2, where β1 = 0.7 and
β2 = 0.3 in Example 3. Note that if we use sampling by a
random walk with path length 1, then the trust centrality
obtained this way is the same as the influence centrality. As
shown in Figure 3, the ranking results do not change very
much for various values of θ. For a path with length 2, its
path measure is 1 only when the two edges traversed by
the path are positive edges. As such, nodes that have a large
number of positive edges tend to have high trust centralities
(for a wide range of θ). For this dataset, 91.5% of edges are
positive edges. Thus, when θ is larger than zero, the ranking
result is similar to that by the positive degree and that by
the total degree.

5.3 Experimental results for the advertisement-specific
influence centralities
In this section, we evaluate the performance of the
advertisement-specific influence centrality by using the
MemeTracker dataset [36]. Such a dataset collects the quotes
and phrases, called “memes,” that frequently appear over
time across mass media and personal blogs. To obtain
the advertisement information from these memes, we use
Carrot2 [47], an open source clustering engine, to classify
memes into fifteen topics including “People”, “Going”,
“Know”, “Years”, “Way”, “United States”, “States”, “Life”,
“Believe”, “Lot”, “Love”, “America”, “Country”, “Barack
Obama” and “Obama”. As “United States” and “Barack
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(a) γ = -0.9 (θ=-2.6566) (b) γ =-0.5 (θ=-1.7337) (c) γ =0 (θ=-1.1844)

(d) γ =0.5 (θ=-0.6351) (e) γ =0.9 (θ=0.2878) (f) γ =0.99 (θ=1.4623)

Fig. 1. The ranking results of the influence centrality by sampling with β2=0 for various values of θ

Fig. 2. The three Jaccard index curves between the influence centralities
and the three degree centralities for the top 100 nodes.

Obama” are clearly subsets of the two topics, “States” and
“Obama”, they are merged into these two topics. Therefore,
we obtain a dataset with thirteen topics. As in the previous
experiment, we delete the nodes with degree smaller than 7,
and remove self edges and multiple edges. This then leads
to an attributed network with 2082 nodes and 16,503 edges.

Again, we use sampling by a random walk with path
length 1, i.e., β2 = 0 in Example 3. The inverse temperature
θ is set to be 0.2 (as the top 250 nodes do not change when θ
is larger than 0.2 in our experiments). In Figure 4, we show
the ranking results for the six most frequently-used phrases,

i.e., “Going”, “Know”, “People”, “Years”, “America”, and
“Obama”. As shown in Figure 4, different topics lead to
different ranking results.

In addition, we also perform the ranking experiments by
combining various topics. In Figure 5(a), we show the rank-
ing result of advertisement-specific influence centralities by
combining the two topics “Going” and “Obama.” In Figure
5(b), we show the ranking result of advertisement-specific
influence centralities by combining the two topics “Know”
and “America.” These ranking results are not necessarily the
same as that from each topic.

5.4 Experimental results for clustering with a distance
measure

5.4.1 The effect of the resolution parameter

In this section, we illustrate how the parameter θ in the
exponential twisted sampling in (35) can be used as a
resolution parameter for detecting clusters with different
sizes. In Fig. 6, we plot a set of 1250 data points on a plane
with different scales of the two axes. A quick glance at this
figure might yield five (resp. four, three and one) clusters
in Fig. 6 (a) (resp. (b), (c) and (d)). As such, the problem of
clustering is in general considered as an ill-posed problem
[22], [48] and the answer of the number of clusters in the
same dataset usually depends on how one “views” this
dataset.

To see how the parameter θ in the exponential twisted
sampling in (35) can be used as a resolution parameter for
detecting clusters with different sizes for this data set, we
use the distance measure that is the square of the Euclidean
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(a) θ =0 (b) θ =1 (c) θ =2

Fig. 3. The ranking results of the trust centrality by sampling with β1=0.7 and β2=0.3 for various values of θ

(a) Going (b) Know (c) People

(a) Years (b) America (c) Obama

Fig. 4. The ranking results of advertisement-specific influence centralities with different topics

distance between two points. In Figure 7, we plot the aver-
age distance d̄ under the exponentially twisting sampling as
a function of θ. The plot in Fig. 7 allows us to solve θ in (37)
and (38) numerically for each given d̄.

As shown in Fig. 7, one can select a particular θ for
the exponential twisted sampling distribution so that the
average distance is d̄. Once θ is determined, we have the bi-
variate distribution in (35) and we then perform community
detection (or clustering) by using a modularity maximiza-
tion algorithm. For our experiment, we use the partitional-
hierarchical algorithm [23] that consists of two phases: the
partition algorithm in the first phase and the hierarchical
agglomerative algorithm in the second phase (that takes the
output from the first phase as its input). In Table 1, we list
the average distance d̄ for various choices of θ. It is clear to
see from Fig. 8 that various choices of θ lead to various reso-
lutions of the clustering algorithm. Specifically, for θ = −0.5

(and d̄ = 2.6055), there are five clusters detected by the
partitional-hierarchical algorithm. Data points in different
clusters are marked with different colors. For θ = −0.01
(and d̄ = 31.1958), there are four clusters detected by the
partitional-hierarchical algorithm. Finally, for θ = −0.0001
(and d̄ = 36.6545), there are only three clusters detected
by the partitional-hierarchical algorithm. These clustering
results obtained by using different sampling distributions
are in line with those plotted by using different scales of the
two axes in Fig. 6.

TABLE 1
The average distance d̄ for various choices of θ.

θ -0.5 -0.01 -0.0001 0 1
d̄ 2.6055 31.1958 36.6545 36.7121 87.8800
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(a) Going and Obama (b) Know and America

Fig. 5. The ranking results of advertisement-specific influence centralities from combining two topics

x
-20 0 20 40 60

y

-40

-20

0

20

40

x
-200 0 200 400 600

y

-400

-200

0

200

400

x
-500 0 500 1000

y
-1000

-500

0

500

x
-2000 0 2000 4000 6000

y

-4000

-2000

0

2000

4000

(a) Scale 1 (b) Scale 2 (c) Scale 3 (d) Scale 4

Fig. 6. A dataset plotted with different scales of the two axes.

Fig. 7. The average distance d̄ as a function of θ for the dataset in Fig.
6(a).

5.4.2 Clustering of a real network

In this section, we consider the real network from the Won-
derNetwork website [37]. Such a dataset was previously
used in [45] to test the performance of the K-set+ clustering
algorithm. In this dataset, there are 216 servers in different
locations and the latency (measured by the round trip time)
between any two servers of these 216 servers are recorded
in real time. As in [45], we symmetrize the latency matrix
by taking the average of the latency measures from both
directions so that the latency measure is a semi-metric.
In addition to the latency measure, we also compute the

distance measure by using the geographic location of each
server in the WonderNetwork website. For such a dataset,
we compute the corresponding semi-cohesion measures in
(39) from the latency measure and the distance measure,
respectively. We then use the corresponding semi-cohesion
measure as the input of the partitional-hierarchical algo-
rithm and run 20 times of the algorithm. In each of the
20 trials, the initial partition is randomly selected. The
output partition that has the best objective value from these
20 trials is selected. The results for the distance measure
and the latency measure are shown in Figure 9(a) and (b),
respectively. For the K-set+ clustering algorithm, one needs
to specify the number of clusters K and K was to set to be
5 in the experiments in [45]. On the other hand, there is no
need to specify the number of clusters K in the partitional-
hierarchical algorithm. As shown in Figure 9(a) and (b),
the partitional-hierarchical algorithm outputs three clusters
(with the servers in the same cluster being marked with the
same colored marker). In Figure 9(a), the three clusters are
(i) North America and South America (marked in red), (ii)
Europe (marked in green), and (iii) Asia, Africa and Aus-
tralia (marked in red). Note that the key difference between
Figure 9(a) and (b) is that the servers in Africa are clustered
with the servers in Europe for the latency measure. This is
because there are a few connected cables between Africa
and Europe (as discussed in [45] by using the Submarine
Cable Map [49]). Also, there are four servers, two in Russia
(Vladivostok and Novosibirsk), one in Karaganda and one
in Lahore, that have low latency to the servers in Europe and
they are clustered with the servers in Europe. Even though
New Delhi and Lahore are geographically close, however,
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Fig. 8. An illustrating example for various resolutions of d̄ (points in different clusters are marked with different colors).

(a) The (geographic) distance measure

(b) The latency measure

Fig. 9. Clustering for the WonderNetwork dataset: (a) the (geographic)
distance measure and (b) the latency measure.

they are marked with different colors in Figure 9(b) as there
are no directly connected cables between New Delhi and
Lahore and that leads to large latency between these two
servers.

6 CONCLUSION

In this paper, we proposed using the exponentially twisted
sampling along with path measures for centrality analy-
sis and community detection in attributed networks. For
signed networks, we defined the influence centralities by
using a path measure from opinions dynamics and the trust
centralities by using a path measure from a chain of trust.
For attributed networks with node attributes, we also de-
fined advertisement-specific influence centralities by using
a specific path measure that models influence cascades in

such networks. For a network with a distance measure, we
defined the path measure as the total distance along a path.
By specifying the desired average distance between two
randomly sampled nodes, we showed how one can detect
communities with various resolution parameters. Various
experiments were conducted to illustrate these exponen-
tially twisted sampling methods.

The goal of this paper is to provide a general frame-
work for centrality analysis and community detection in
attributed networks. We do not aim to solve a specific
ranking task or a community detection task for a specific
dataset. To apply our framework for a specific ranking task
or a community detection task for a specific dataset, one
needs to carefully choose the path measures and the desired
average values of the path measures. This might require
lots of fine-tuning of parameters and it is beyond the scope
of this paper. There are various practical applications of
network sampling and community detection, e.g., the topic
recognition in academic networks [50], and the network
mapping problem [51]. Finding the suitable viewpoints defi-
nitely requires further insight for each of these applications.
Thus, the more we understand about the application, the
better the path measures and the desired average values of
the path measures can be assigned for that application.
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