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Motivation and References

• Many students are confused with conditional expectation.

• In this talk, we explain how conditional expectation (taught in

probability) is related to linear transformation and vector projection

(taught in linear algebra).

• References:

I S.J. Leon. Linear Algebra with Applications. New Jersey: Prentice Hall,

1998.

I S. Ghahramani. Fundamentals of Probability. Pearson Prentice Hall,

2005.
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Conditional Expectation

• Consider two discrete random variables X and Y .

• Let p(x, y) = P(X = x, Y = y) be the joint probability mass function.

• Then the marginal distribution

pX(x) = P(X = x) =
∑

y∈B

p(x, y),

where B is the set of possible values of Y .

• Similarly,

pY (y) = P(Y = y) =
∑

x∈A

p(x, y),

where A is the set of possible values of X.

• Then the conditional probability mass function of X given Y = y is

pX|Y (x|y) = P(X = x|Y = y) =
p(x, y)

pY (y)
.
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Conditional Expectation

• The conditional expectation of X given Y = y is defined as

E[X|Y = y] =
∑

x∈A

xpX|Y (x|y). (1)

• Consider a real-valued function h from R to R.

• From the law of unconscious statistician, the conditional expectation of

h(X) given Y = y is

E[h(X)|Y = y] =
∑

x∈A

h(x)pX|Y (x|y).

• The conditional expectation of X given Y , denoted by E[X|Y ], is the

function of Y that is defined to be E[X|Y = y] when Y = y.

• Specifically, let δ(x) be the function with δ(0) = 1 and δ(x) = 0 for all x 6= 0.

• Also, let δy(Y ) = δ(Y − y) be the indicator random variable such that

δy(Y ) = 1 if the event {Y = y} occurs and δy(Y ) = 0 otherwise.

• Then

E[X|Y ] =
∑

y∈B

E[X|Y = y]δy(Y ) =
∑

y∈B

∑

x∈A

xpX|Y (x|y)δy(Y ). (2)
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Properties of Conditional Expectation

• The expectation of the conditional expectation of X given Y is the same

as the expectation of X, i.e.,

E[X ] = E[E[X|Y ]]. (3)

• Let h be a real-valued function from R to R. Then

E[h(Y )X|Y ] = h(Y )E[X|Y ]. (4)

As E[X|Y ] is a function of Y ,

E[E[X|Y ]|Y ] = E[X|Y ]E[1|Y ] = E[X|Y ].

• This then implies

E[X − E[X|Y ]|Y ] = 0. (5)

• Using (3) and (5) yields

E[h(Y )(X − E[X|Y ])] = E[E[h(Y )(X − E[X|Y ])]|Y ]

= E[h(Y )E[(X − E[X|Y ])]|Y ] = 0. (6)
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Properties of Conditional Expectation

• Let f be a real-valued function from R to R.

E[(X − f (Y ))2] = E
[(

(X − E[X|Y ]) + (E[X|Y ]− f (Y ))
)2]

= E[(X − E[X|Y ])2] + 2E[(X − E[X|Y ])(E[X|Y ]− f (Y ))] + E[(E[X|Y ]− f (Y ))2]

= E[(X − E[X|Y ])2] + E[(E[X|Y ]− f (Y ))2],

where the crossterm is 0 from (6).

• The conditional expectation of X given Y is the function of Y that

minimizes E[(X − f (Y ))2] over the set of functions of Y , i.e.,

E[(X − E[X|Y ])2] ≤ E[(X − f (Y ))2], (7)

for any function f .
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Vector Space

• Let V be the a set on which the operations of vector addition and scalar

multiplication are defined.

• Axioms:

I (Commutative law) u + v = v + u for all u and v in V .

I (Associative law(i)) (u + v) + w = u + (v + w) for all u, v, w in V .

I (Zero element) There exists an element 0 such that u + 0 = u for

any u ∈ V .

I (Inverse) For any u ∈ V , there exists an element −u ∈ V such that

u + (−u) = 0.

I (Distributive law(i)) α(u + v) = αu + αv for any scalar α and u, v ∈ V .

I (Distributive law(ii)) (α + β)u = αu + βu for any scalars α and β and

any u ∈ V .

I (Associative law (ii)) (αβ)u = α(βu) for any scalars α and β and any

u ∈ V .

I (Identity) 1 · u = u for any u ∈ V .
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Vector Space

• Closure properties:

I If u ∈ V and α is a scalar, then αu ∈ V .

I If u, v ∈ V , then u + v ∈ V .

• Additional properties from the axioms and the closure properties:

I 0 · u = 0.

I u + v = 0 implies that v = −u.

I (−1) · u = −u.

• Example: the vector space C[a, b]

I Let C[a, b] be the set of real-valued functions that are defined and

continuous on the closed interval [a, b].

I Vector addition: (f + g)(x) = f (x) + g(x).

I Scalar multiplication: (αf )(x) = αf (x).
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Subspace

• (Subspace) If S is a nonempty subset of a vector space V , and S satisfies

the closure properties, then S is called a subspace of V .

• (Linear combination) Let v1, v2, . . . , vn be vectors in a vector space V . A

sum of the form α1v1 + α2v2 + . . . + αnvn is called a linear combination of

v1, v2, . . . , vn.

• (Span) The set of all linear combinations of v1, v2, . . . , vn is called span of

v1, v2, . . . , vn (denoted by Span(v1, v2, . . . , vn)).

• (Spanning set) The set {v1, v2, . . . , vn} is a spanning set for V if and only if

every vector in V can be written as a linear combination of v1, v2, . . . , vn,

i.e.,

V ⊂ Span(v1, v2, . . . , vn).

• (Linearly independent) The vectors v1, v2, . . . , vn in a vector space V are

said to be linearly independent if

c1v1 + c2v2 + . . . cnvn = 0

implies that all of the scalars c1, . . . , cn must be 0.
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Basis and Dimension

• (Basis) The vectors v1, v2, . . . , vn form a basis for a vector space V if and

only if

I v1, v2, . . . , vn are linear independent.

I v1, v2, . . . , vn span V .

• (Dimension) If a vector space V has a basis consisting of n vectors, we

say that V has dimension n.

I finite-dimensional vector space: If there is a finite set of vectors

that span the vector space.

I infinite-dimensional vector space: for example C[a, b]

• Theorem: Suppose that V is a vector space of dimension n > 0.

I Any set of n linear independent vectors spans V .

I Any n vectors that span V are linear independent.

I No set of less than n vectors can span V .
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Coordinates

• Let E = {v1, v2, . . . , vn} be an ordered basis for a vector space V .

• For any vector v ∈ V , it can be uniquely written in the form

v = c1v1 + c2v2 + . . . cnvn.

• The vector c = (c1, c2, . . . , cn)T in Rn is called the coordinate vector of v

with respect to the ordered basis E (denoted by [v]E).

• The ci’s are called the coordinates of v relative to E.

• A vector space with dimension n is isomorphic to Rn once a basis is

found.
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Random Variables on the Same Probability Space

• A probability space is a triplet (S,F , P ), where S is the sample space, F is

the set of (measurable) events, and P is the probability measure.

• A random variable X on a probability space (S,F , P ) is a mapping from

X : S 7→ R.

• The set of all random variables on the same probability space forms a

vector space with each random variable being a vector.

I Vector addition: (X + Y )(s) = X(s) + Y (s) for every sample point s in

the sample space S.

I Scalar multiplication: (αX)(s) = αX(s) for every sample point s in

the sample space S.
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The Set of Functions of a Discrete Random Variable

• Suppose that X is a discrete random variable with the set of possible

values A = {x1, x2, . . . , xn}.
• Let δxi

(X) = δ(X − xi) be the indicator random variable with δxi
(X) = 1 if

the event {X = xi} occurs and 0 otherwise.

• Let σ(X) = Span(δx1(X), δx2(X), . . . , δxn(X)).

I δx1(X), δx2(X), . . . , δxn(X) are linearly independent. To see this,

suppose si is a sample point such that X(si) = xi. Then

(c1δx1(X) + c2δx2(X) + . . . + cnδxn(X))(si) = 0(si) = 0

implies that ci = 0.

I {δx1(X), δx2(X), . . . , δxn(X)} is a basis of σ(X).

I σ(X) is a vector space with dimension n.
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The Set of Functions of a Discrete Random Variable

• σ(X) is the set of (measurable) functions of the random variable X.

I For any real-valued function g from R to R, g(X) is a vector in

σ(X) as

g(X) =

n∑
i=1

g(xi)δxi
(X).

I For any vector v in σ(X), there is a real-valued function g from R
to R such that v = g(X). To see this, suppose that

v =

n∑
i=1

ciδxi
(X).

We simply find a function g such that g(xi) = ci for all i.

• The vector (g(x1), g(x2), . . . , g(xn))T ∈ Rn is the coordinate vector of g(X)

with respect to the ordered basis {δx1(X), δx2(X), . . . , δxn(X)}.
• In probability theory, σ(X) is often called as the σ-algebra generated by

the random variable X, and a random variable Y is called

σ(X)-measurable if there is a (measurable) function g such that Y = g(X).
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Linear Transformation

• A mapping L from a vector space V into a vector space W is said to be a

linear transformation if

L(αv1 + βv2) = αL(v1) + βL(v2)

for all v1, v2 ∈ V and for all scalars α, β.

• (Matrix representation theorem) If E = [v1, v2, . . . , vn] and F = [w1, w2, . . . , wm]

are ordered bases for vector spaces V and W , respectively, then

corresponding to each linear transformation L : V 7→ W there is an m× n

matrix A such that

[L(v)]F = A[v]E for each v ∈ V.

• The matrix A is called the matrix representing the linear transformation

L relative to the ordered bases E and F .

• The jth column of the matrix A is simply of the coordinate vector of L(vj)

with respect to the ordered basis F , i.e.,

aj = [L(vj)]F .
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Conditional Expectation As a Linear Transformation

• Suppose that X is a discrete random variable with the set of possible

values A = {x1, x2, . . . , xn}.
• Suppose that Y is a discrete random variable with the set of possible

values B = {y1, y2, . . . , ym}.
• Let σ(X) = Span(δx1(X), δx2(X), . . . , δxn(X)) be the vector space that consists

of the set of functions of the random variable X.

• Let σ(Y ) = Span(δy1(Y ), δy2(Y ), . . . , δym(Y )) be the vector space that consists

of the set of functions of the random variable Y .

• Consider the linear transformation L : σ(X) 7→ σ(Y ) with

L(δxi
(X)) =

m∑
j=1

P(X = xi|Y = yj)δyj
(Y ), i = 1, 2, . . . , n.

• The linear transformation L can be represented by the m× n matrix A

with

ai,j = P(X = xi|Y = yj).
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Conditional Expectation As a Linear Transformation

• Since g(X) =
∑n

i=1 g(xi)δxi
(X), we then have

L(g(X)) = L(

n∑
i=1

g(xi)δxi
(X))

=

n∑
i=1

g(xi)L(δxi
(X))

=

n∑
i=1

g(xi)

m∑
j=1

P(X = xi|Y = yj)δyj
(Y )

=

m∑
j=1

( n∑
i=1

g(xi)P(X = xi|Y = yj)
)
δyj

(Y )

=

m∑
j=1

E[g(X)|Y = yj]δyj
(Y )

= E[g(X)|Y ].

• The linear transformation L of the random variable g(X) is the condition

expectation of g(X) given Y .
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Inner Product

• (Inner product) An inner product on a vector space V is a mapping that

assigns to each pair of vectors u and v in V a real number 〈u, v〉 with the

following three properties:

I 〈u, u〉 ≥ 0 with equality if and only if u = 0.

I 〈u, v〉 = 〈v, u〉 for all u and v in V .

I 〈αu + βv, w >= α〈u,w〉 + β〈v, w〉 for all u, v, w in V and all scalars α

and β.

• (Inner product space) A vector space with an inner product is called an

inner product space.

• (Length) The length of a vector u is given by

||u|| =
√
〈u, u〉.

• (Orthogonality) Two vectors u and v are orthogonal if 〈u, v〉 = 0.

• (The Pythagorean law) If u and v are orthogonal vectors, then

||u + v||2 = ||u||2 + ||v||2.
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Inner Product on the Vector Space of Random Variables

• Consider the vector space of the set of random variables on the same

probability space.

• Then

〈X, Y 〉 = E[XY ]

is an inner product of that vector space.

• Note that E[X2] = 0 implies that X = 0 with probability 1.

• If we restrict ourselves to the set of random variables with mean 0. Then

two vectors are orthogonal if and only if they are uncorrelated.

• As a direct consequence, two independent random variables with mean 0

are orthogonal.
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Scalar Projection and Vector Projection

• (Scalar projection) If u and v are vectors in an inner product space V and

v 6= 0, then the scalar projection of u onto v is given by

α =
〈u, v〉
||v|| .

• (Vector Projection) The vector projection of u onto v is given by

p = α(
1

||v||v) =
〈u, v〉
〈v, v〉v.

• Properties:

I u− p and p are orthogonal.

I u = p if and only if u is a scalar multiple of v.
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Vector Projection on a Vector Space with an Orthogonal

Basis

• An order basis {v1, v2, . . . vn} for a vector space V is said to be an

orthogonal basis for V if 〈vi, vj〉 = 0 for all i 6= j.

• Let S be a subspace of an inner product space V . Suppose that S has an

orthogonal basis {v1, v2, . . . vn}. Then the vector projection of u onto S is

given by

p =

n∑
i=1

〈u, vi〉
〈vi, vi〉vi.

• Properties:

I u− p is orthogonal to every vector in S.

I u = p if and only if u ∈ S.

• (Least square) p is the element of S that is closest to u, i.e.,

||u− v|| > ||u− p||,
for any v 6= p in S. Prove by the Pythagorean law.

||u− v||2 = ||(u− p) + (p− v)||2 = ||u− p||2 + ||p− v||2.
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Conditional Expectation as a Vector Projection

• We have shown that E[g(X)|Y ] is the linear transformation of L(g(X)) from

σ(X) to σ(Y ) with

L(δxi
(X)) =

m∑
j=1

P(X = xi|Y = yj)δyj
(Y ) = E[δxi

(X)|Y ], i = 1, 2, . . . , n.

• Note that δyi
(Y )δyj

(Y ) = 0 for all i 6= j.

• Thus, E[δyi
(Y )δyj

(Y )] = 0 for all i 6= j.

• {δy1(Y ), δy2(Y ), . . . , δym(Y )} is an orthogonal basis for σ(Y ).

• The vector projection of δxi
(X) on σ(Y ) is then given by

m∑
j=1

〈δxi
(X), δyj

(Y )〉
〈δyj

(Y ), δyj
(Y )〉δyj

(Y ) =

m∑
j=1

E[δxi
(X)δyj

(Y )]

E[δyj
(Y )δyj

(Y )]
δyj

(Y )

=

m∑
j=1

E[δxi
(X)δyj

(Y )]

E[δyj
(Y )]

δyj
(Y ) =

m∑
j=1

P(X = xi, Y = yj)

P(Y = yj)
δyj

(Y )

=

m∑
j=1

P(X = xi|Y = yj)δyj
(Y ) = E[δxi

(X)|Y ].
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Conditional Expectation as a Vector Projection

• Recall that an inner product is a linear transformation for the first

argument, i.e.,

〈αu + βv, w >= α〈u,w〉 + β〈v, w〉
for all u, v, w in V and all scalars α and β.

• Since g(X) =
∑n

i=1 g(xi)δxi
(X), the vector projection of g(X) on σ(Y ) is then

given by
m∑

j=1

〈g(X), δyj
(Y )〉

〈δyj
(Y ), δyj

(Y )〉δyj
(Y ) =

m∑
j=1

〈∑n
i=1 g(xi)δxi

(X), δyj
(Y )〉

〈δyj
(Y ), δyj

(Y )〉 δyj
(Y )

=

n∑
i=1

g(xi)

m∑
j=1

〈δxi
(X), δyj

(Y )〉
〈δyj

(Y ), δyj
(Y )〉δyj

(Y )

=

n∑
i=1

g(xi)E[δxi
(X)|Y ] = E[

n∑
i=1

g(xi)δxi
(X)|Y ]

= E[g(X)|Y ].

• Thus, E[g(X)|Y ] is the vector projection of g(X) on σ(Y ).
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Conditional Expectation as a Vector Projection

• It then follows from the properties of vector projection that

I g(X)− E[g(X)|Y ] is orthogonal to every random variable in σ(Y ), i.e.,

for any real-valued function h : R 7→ R,

〈g(X)− E[g(X)|Y ], h(Y )〉 = E[(g(X)− E[g(X)|Y ])h(Y )] = 0.

I (Least square) E[g(X)|Y ] is the element of σ(Y ) that is closest to

g(X), i.e., for any real-valued function h : R 7→ R and

h(Y ) 6= E[g(X)|Y ],

E[(g(X)−h(Y ))2] = ||g(X)−h(Y )|| > ||g(X)−E[g(X)|Y ]|| = E[(g(X)−E[g(X)|Y ])2].
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Conditioning on a Set of Random Variables

• Note that Y only needs to be a random element in the previous

development.

• In particular, if Y = (Y1, Y2, . . . , Yd) is a d-dimensional random vector, then

σ(Y ) = σ(Y1, Y2, . . . , Yd) is the set of functions of Y1, Y2, . . . , Yd.

• E[g(X)|Y ] = E[g(X)|Y1, Y2, . . . , Yd] is the vector projection of g(X) on

σ(Y1, Y2, . . . , Yd).

I g(X)− E[g(X)|Y1, Y2, . . . , Yd] is orthogonal to every random variable in

σ(Y1, Y2, . . . , Yd), i.e., for any function h : Rd 7→ R,

〈g(X)− E[g(X)|Y1, Y2, . . . , Yd], h(Y1, Y2, . . . , Yd)〉
= E[(g(X)− E[g(X)|Y1, Y2, . . . , Yd])h(Y1, Y2, . . . , Yd)] = 0.

I (Least square) E[g(X)|Y1, Y2, . . . , Yd] is the element of σ(Y1, Y2, . . . , Yd)

that is closest to g(X), i.e., for any function h : Rd 7→ R and

h(Y1, Y2, . . . , Yd) 6= E[g(X)|Y1, Y2, . . . , Yd],

E[(g(X)− h(Y1, Y2, . . . , Yd))
2] > E[(g(X)− E[g(X)|Y1, Y2, . . . , Yd])

2].
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General Definition of Conditional Expectation

• In some advanced probability books, conditional expectation is defined in

a more general way.

• For a σ-algebra G, E[X|G] is defined to be the random variable that

satisfies

(i) E[X|G] is G-measurable, and

(ii)
∫

A XdP =
∫

A E[X|G]dP for all A ∈ G.
• To understand this definition, consider the σ-algebra generated by the

random variable Y (denoted by σ(Y )).

• The condition that E[X|Y ] is σ(Y )-measurable is simply that E[X|Y ] is a

(measurable) function of Y , i.e., E[X|Y ] = h(Y ) for some (measurable)

function.

• To understand the second condition, one may rewrite it as follows:

E[1AX ] = E[1AE[X|Y ]], (8)

for all event A in σ(Y ), where 1A is the indicator random variable with

1A = 1 when the event A occurs.
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General Definition of Conditional Expectation

• Since 1A is σ(Y )-measurable, it must be a function of Y . Thus, (8) is

equivalent to

E[g(Y )X ] = E[g(Y )E[X|Y ]], (9)

for any (measurable) function g.

• Now rewriting (9) using the inner product yields

〈g(Y ), X − E[X|Y ]〉 = 0, (10)

for any function g.

• The condition in (10) simply says that X − E[X|Y ] is orthogonal to every

vector in σ(Y ) (X − E[X|Y ] is in the orthogonal complement of σ(Y )).

• To summarize, the first condition is that the vector projection should be

in the projected space, and the second condition is that the difference

between the vector being projected and the vector projection should be

in the orthogonal complement of the projected space.

• These two conditions are exactly the same as those used to define

projections in linear algebra.
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Projections on the Set of Linear Functions of Y

• Recall that σ(Y ) = Span(δy1(Y ), δy2(Y ), . . . , δym(Y )) is the set of functions of

Y .

• σL(Y ) = Span(Y, 1) be the set of linear functions of Y , i.e., the set of

functions of the form aY + b for some constants a and b.

• σL(Y ) is a subspace of σ(Y ).

• However, Y and 1 are in general not orthogonal as E[Y · 1] = E[Y ] may not

be 0.

• (Gram-Schmidt orthogonalization process) {Y − E[Y ], 1} is an orthogonal

basis for σL(Y ) as

E[(Y − E[Y ]) · 1] = E[Y ]− E[Y ] = 0.

• The projection of a random variable X on σL(Y ) is then given by

pL =
〈X, Y − E[Y ]〉

〈Y − E[Y ], Y − E[Y ]〉(Y − E[Y ]) +
〈X, 1〉
〈1, 1〉 · 1

=
E[XY ]− E[X ]E[Y ]

E[(Y − E[Y ])2]
(Y − E[Y ]) + E[X ].
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Projections on the Set of Linear Functions of Y

• It then follows from the properties of vector projection that

I X − E[XY ]−E[X]E[Y ]
E[(Y−E[Y ])2]

(Y − E[Y ])− E[X ] is orthogonal to every random

variable in σL(Y ), i.e., for any constants a and b,

E
[(

X − E[XY ]− E[X ]E[Y ]

E[(Y − E[Y ])2]
(Y − E[Y ])− E[X ]

)(
aY + b

)]
= 0.

I (Least square) E[XY ]−E[X]E[Y ]
E[(Y−E[Y ])2]

(Y − E[Y ]) + E[X ] is the element of σL(Y )

that is closest to X, i.e., for any constants a and b,

E[(X − aY − b)2] ≥ E
[(

X − E[XY ]− E[X ]E[Y ]

E[(Y − E[Y ])2]
(Y − E[Y ])− E[X ]

)2]
.

• When X and Y are jointly normal, then the vector projection of X on

σ(Y ) is the same as that on σL(Y ), i.e.,

E[X|Y ] =
E[XY ]− E[X ]E[Y ]

E[(Y − E[Y ])2]
(Y − E[Y ]) + E[X ].
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Projections on a Subspace of σ(Y )

• Let Yi = φi(Y ), i = 1, 2, . . . , d, where φi(·)’s are some known functions of Y .

• Let σφ(Y ) = Span(1, Y1, Y2, . . . , Yd).

• σφ(Y ) is a subspace of σ(Y ).

• In general, {1, Y1, Y2, . . . , Yd} is not an orthogonal basis of σφ(Y ).

• How do we find an orthogonal basis of σφ(Y )?

• (Zero mean) Let Ỹi = Yi − E[Yi]. Then 〈1, Ỹi〉 = E[Ỹi] = 0.

• (Matrix diagonalization) Let Ỹ = (Ỹ1, Ỹ2, . . . , Ỹd)
T . Let A = E[ỸỸT ] be the

d× d covariance matrix. As A is symmetric, there is an orthogonal matrix

U and a diagonal matrix D such that

D = UTAU.

Let Z = (Z1, Z2 . . . , Zd)
T = UTỸ. Then

E[ZZT ] = E[UTỸỸTU ] = UTE[ỸỸT ]U = UTAU = D.

• Thus, {1, Z1, Z2, . . . , Zd} is an orthogonal basis of σφ(Y ).
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Projections on a Subspace of σ(Y )

• The projection of a random variable X on σφ(Y ) is then given by

pφ =

d∑

k=1

〈X, Zk〉
〈Zk, Zk〉Zk +

〈X, 1〉
〈1, 1〉 · 1

=

d∑

k=1

E[XZk]

E[Z2
k ]

Zk + E[X ].

• It then follows from the properties of vector projection that

I X − pφ is orthogonal to every random variable in σφ(Y ), i.e., for any

constants ak, k = 1, 2, . . . , d, and b,

E
[(

X − pφ

)( d∑

k=1

akφk(Y ) + b
)]

= 0.

I (Least square) pφ is the element of σφ(Y ) that is closest to X, i.e.,

for any constants ak, k = 1, 2, . . . , d, and b,

E[(X −
d∑

k=1

akφk(Y )− b)2] ≥ E
[(

X − pφ)
2
]
.
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Regression

• We have shown how to compute the conditional expectation (and other

projections on a subspace of σ(Y )) if the point distribution of X and Y is

known.

• Suppose that the point distribution of X and Y is unknown.

• Instead, a random sample of size n is given, i.e., {(xk, yk), k = 1, 2, . . . , n} is

known.

• How do you find h(Y ) such that E[(X − h(Y ))2] is minimized?

• (Empirical distribution) Even though we do not know the true

distribution, we still have the empirical distribution, i.e.,

P(X = xk, Y = yk) =
1

n
, k = 1, 2, . . . , n.

• Then one can use the empirical distribution to compute the conditional

expectation (and other projections on a subspace of σ(Y )).
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Linear Regression

• (Linear regression) Use the empirical distribution as the distribution of X

and Y . Then

pL =
E[XY ]− E[X ]E[Y ]

E[(Y − E[Y ])2]
(Y − E[Y ]) + E[X ],

where

E[XY ] =
1

n

n∑

k=1

xkyk,

E[X ] =
1

n

n∑

k=1

xk, E[Y ] =
1

n

n∑

k=1

yk,

E[Y 2] =
1

n

n∑

k=1

y2
k.

• pL minimizes the empirical square error (risk)

E[(X − aY − b)2] =
1

n

n∑

k=1

(xk − ayk − b)2

for any constants a and b.
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