
1

An Enhanced Fast Multi-Radio Rendezvous
Algorithm in Heterogeneous Cognitive Radio

Networks
Yeh-Cheng Chang, Cheng-Shang Chang and Jang-Ping Sheu

Department of Computer Science and Institute of Communications Engineering
National Tsing Hua University
Hsinchu 30013, Taiwan, R.O.C.

Email: jas1123kimo@gmail.com; cschang@ee.nthu.edu.tw; sheujp@cs.nthu.edu.tw

Abstract—In this paper, we propose a fast rendezvous algo-
rithm for a heterogeneous cognitive radio network (CRN), where
each user might have more than one radio. One of the well-
known problems for most multi-radio rendezvous algorithms
in the literature is that they are not backward compatible to
users with only one radio. To tackle this backward compatibility
problem, our approach is a hierarchical construction that groups
several time slots into an interval and proposes a novel algorithm
to emulate two radios with a single radio in an interval. By doing
so, at the interval level, each user behaves as if it had (at least)
two radios. For the two-user rendezvous problem in a CRN with
N commonly labelled channels, the interval length is chosen to
be M time slots, where M = 2⌈log2(⌈log2 N⌉)⌉ + 7. We show
that the maximum time-to-rendezvous (MTTR) of our algorithm
is bounded above by 9M⌈n1/m1⌉ ·⌈n2/m2⌉ time slots, where n1

(resp. n2) is the number of available channels to user 1 (resp. 2),
and m1 (resp. m2) is the number of radios for user 1 (resp. 2).
For the setting that each user is equipped with only one radio
and two available channels, our MTTR bound is only M and
that improves the state-of-the-art bound 16(⌈log2 log2 N⌉ + 1)
in the literature. By conducting extensive simulations, we show
that for the expected time-to-rendezvous (ETTR), our algorithm
is also better than several existing multi-radio algorithms.

keywords: multichannel rendezvous, maximum time-to-
rendezvous, multiple radios

I. THE MULTICHANNEL RENDEZVOUS PROBLEM

Rendezvous search that asks two persons to find each other
among a set of possible locations is perhaps one of the most
common problems in our daily life. Such a problem has been
studied extensively in the literature (see e.g., the book [2] and
references therein). Motivated by the problem of establishing
a control channel between two secondary spectrum users
in a cognitive radio network (CRN), the rendezvous search
problem has regained tremendous research interest lately. In
a CRN, there are two types of users: primary spectrum users
(PUs) and secondary spectrum users (SUs). PUs usually have
the licence to use the spectrum assigned to them. On the
other hand, SUs are only allowed to share spectrum with PUs
provided that they do not cause any severe interference to PUs.
To do this, SUs first sense a number of frequency channels.
If a channel is not blocked by a PU, then that channel is

The conference version of this paper [1] was accepted for presentation in
ICC 2018.

available to that SU and it may be used for establishing a
communication link. One of the fundamental problems in a
CRN is then for two SUs to find a common available channel
and such a problem is known as the multichannel rendezvous
problem.

The objective of this paper is to provide a fast rendezvous
algorithm for the multichannel rendezvous problem with mul-
tiple radios. In the traditional setting of the multichannel
rendezvous problem, the number of radio for a user is assumed
to be 1. It is a common wisdom that increasing the number of
radios for each user can speed up the rendezvous process. For
this, let us consider a CRN with N channels (with N ≥ 2),
indexed from 0 to N − 1. Time is slotted (the discrete-time
setting) and indexed from t = 0, 1, 2, There are two users
who would like to rendezvous on a common available channel
by hopping over these N channels with respect to time. The
available channel set for user i, i = 1, 2, is

ci = {ci(0), ci(1), . . . , ci(ni − 1)},

where ni = |ci| is the number of available channels to user i,
i = 1, 2. We assume that there is at least one channel that is
commonly available to the two users, i.e.,

c1 ∩ c2 ̸= ϕ. (1)

Moreover, we assume that user i has mi radios, where mi ≥ 1,
i = 1 and 2. Denote by X1(t) (resp. X2(t)) the set of channels
selected by user 1 (resp. user 2) on its mi radios at time t. Then
the time-to-rendezvous (TTR), denoted by T , is the number
of time slots (steps) needed for these two users to select a
common available channel, i.e.,

T = inf{t ≥ 0 : X1(t) ∩X2(t) ̸= ϕ}+ 1, (2)

where we add 1 in (2) as we start from t = 0.

In this paper, we do not assume that the clocks of these
two users are synchronized. In order to guarantee rendezvous
within a finite number of time slots, we will construct periodic
Channel Hopping (CH) sequences based on the available
channel set to a user. For the setting that each user has two
radios, the rendezvous search is rather simple as shown in
[3]. In that setting, user i can select two different primes pi,0
and pi,1 (with pi,0 < pi,1) not smaller than ni, and run the

2

modular clock algorithm in [4] with pi,0 (resp. pi,1) for the
first (resp. second) radio of user i, i = 1 and 2. Since there
is at least one prime selected by user 1 that is different from
one of the two primes selected by user 2, it follows from
the Chinese Remainder Theorem that these two users will
rendezvous within p1,1 · p2,1 time slots. Let us simply call
such an algorithm the two-prime modular clock algorithm.

But the problem arises when each user only has a single
radio in the traditional setting. Then the Chinese Remainder
Theorem may not be applicable as they may select the
same prime. Such a problem also arises in many multi-radio
schemes, e.g. GCR [3], RPS [5], AMRR [6], proposed in
the literature. To address the backward compatibility problem
that some users in a CRN might only have a single radio,
our idea is to emulate each radio of a user as it were two
radios. Specifically, we will construct CH sequences that group
several slots into an interval and within an interval each
radio selects two channels according to the two-prime modular
clock algorithm. When a user has more than one radio, we
simply divide its available channels as evenly as possible to
its radio(s). By doing so, the number of channels assigned to
each radio is much smaller and thus the primes selected by
each radio are also smaller. As a result, the maximum TTR
(MTTR) can be greatly reduced.

We summarize our contributions as follows:
(i) For the two-user rendezvous problem in a CRN with N
commonly labelled channels, we propose a fast rendezvous
algorithm with the MTTR bounded above by 9M⌈n1/m1⌉ ·
⌈n2/m2⌉ time slots, where M = 2⌈log2(⌈log2 N⌉)⌉+ 7.
(ii) Our algorithm is backward compatible with users equipped
with a single radio. For the setting that each user is equipped
with only one radio and two available channels, our MTTR
bound is only M and that improves the state-of-the-art bound
16(⌈log2 log2 N⌉+ 1) in [7].
(iii) By conducting extensive simulations, we show that for
the expected time-to-rendezvous (ETTR), our algorithm out-
performs several existing algorithms, including JS/I and JS/P
[5], GCR [3], RPS [5], and AMRR [6]. Furthermore, even for
the setting where each user is equipped with more than one
radio, the (measured) MTTR of our algorithm is comparable
to those in these algorithms (that do not have bounded MTTR
when a user is equipped with a single radio).

The rest of this paper is organized as follows: In Section
II, we discuss related works on the multichannel rendezvous
problem. We then introduce the generic multi-radio CH se-
quences in Section III. Further improvements of our generic
CH sequences are shown in Section IV. To show the effec-
tiveness of our algorithm, we conduct extensive simulations
to compare the performance of our algorithm with several
existing algorithms in Section V. The paper is then concluded
in Section VI.

II. RELATED WORKS

In this section, we first introduce the taxonomy of the multi-
channel rendezvous problem. For a more detailed introduction
of the multichannel rendezvous problem, we refer readers to
the tutorial [8] and the book [9]. We then discuss some recent
works on multi-radio CH schemes.

The channel hopping schemes for the multichannel ren-
dezvous problem are in general classified as follows:

Symmetric/Asymmetric: The first classification is based on
whether users can be assigned different roles in the rendezvous
process. In asymmetric algorithms (see e.g., [10] , [11], [12],
[13]), a user is assigned the role of a sender or receiver. Users
assigned with different roles then follow different strategies
to generate their CH sequences. For instance, the receiver can
stay at the same channel while the sender cycles through all the
available channels. Since users follow different strategies, the
time-to-rendezvous can be greatly reduced in the asymmetric
setting. On the other hand, in a symmetric CH scheme, users
follow the same strategy to generate their CH sequences and
it is much more difficult to guarantee rendezvous.

Onymous/Anonymous: Onymous algorithms (see e.g.,
[11], [14], [15], [16], [17], [19], [20]) assume that each user
is assigned with a unique identifier (ID), e.g., a MAC address.
As such, users can use their unique IDs to play different roles
to speed up the rendezvous process. The hard part of this
approach is to find an efficient mapping of IDs that minimizes
the MTTR.

Synchronous/Asynchronous: Synchronous algorithms (see
e.g., [21], [22]) assume that the clocks of users are synchro-
nized so that they have a common index of time. As such,
users can start their CH sequences synchronously to speed up
the rendezvous process. For instance, users can have the same
jump pattern and rendezvous in every time slot [23]. Clock
synchronization is easy to obtain if there is a global clock
source, e.g., GPS or base stations. However, in a distributed
environment it might not be practical to assume that the clocks
of two users are synchronized as they have not rendezvoused
yet. Without clock synchronization, guaranteed rendezvous
is much more difficult. In the literature, there are various
asynchronous algorithms that have bounded MTTR (see e.g.,
[7], [11], [12], [13], [14], [15], [16], [17], [24], [25], [26],
[27]).

Homogeneous/Heterogeneous: In a homogenous environ-
ment, the available channel sets of the two users are assumed
to be the same. On the other hand, the available channel
sets of the two users might be different in a heterogeneous
environment. Two users that are close to each other are likely
to have the same available channel sets. Due to the limitation
of the coverage area of a user, two users tend to have different
available channel sets if they are far apart. Rendezvous in a
homogeneous environment is in general much easier than that
in a heterogeneous environment. There are various heteroge-
neous CH algorithms that have bounded MTTR (see e.g., [7],
[11], [12], [24], [25], [27]). We note that in the literature some
authors refer a homogenous (resp. heterogeneous) environment
as a symmetric (resp. asymmetric) environment.

Oblivious/Non-oblivious: In most previous works for the
multichannel rendezvous problem, it is commonly assumed
that there is a universal channel labelling. As such, it is
possible for a user to learn from a failed attempt to rendezvous.
In particular, a universal channel labelling allows channels
to be ordered and that piece of information can be used for
speeding up the rendezvous process (see e.g., [7], [25]). On
the other hand, oblivious rendezvous (see e.g., [3], [6], [15],

3

[19]) is referred to the setting where nothing can be learned
from a failed attempt to rendezvous. In such a setting, the
available channel sets are different (heterogeneous) and there
is no role assignment (symmetric), no clock synchronization
(asynchronous), and no universal channel labelling. Such a
setting is the most challenging setting of the multichannel
rendezvous problem.

Single-radio/Multi-radio: Recently, several research works
focus on the multi-radio CH schemes [3], [5], [6]. Here,
users are assumed to be equipped with multiple radios. As
a result, they can generate CH sequences that hop on more
than one channel in a time slot. This improves the probability
of rendezvous and thus shortens the time-to-rendezvous.

In this paper, we focus on the symmetric, anonymous,
asynchronous, and heterogeneous model with multi-radios. As
discussed in Section I, we do assume that there is a universal
channel labelling. In the following, we briefly review several
multi-radio CH schemes in such an environment. Yu et al. [5]
proposed various CH algorithms for multiple radios that utilize
the CH sequences from a single radio setting, e.g., the Jump-
Stay (JS) sequence [24]. The JS/I strategy in [5] simply assigns
every radio the JS sequence that starts independently from a
time slot in the period of the JS sequence. On the other hand,
the JS/P strategy [5] assigns the JS sequence in the round-robin
fashion to the radios of each user. As such, the JS/P strategy
does not guarantee rendezvous if the two users do not have the
same number of radios. They also proposed a CH algorithm,
called the role-based parallel sequence (RPS). In general, RPS
partitions the radios of a user into two modes: the stay mode
and the jump mode. It reserves one radio in the stay mode
and that radio stays on one particular channel for a specific
period, while the other radios in the jump mode hop among
the channels. It was shown that RPS can guarantee rendezvous
within O(P (N −G)/(min(m1,m2)−1) time slots, where N
is the number of channels, P is a prime not less than N , G
is the number of common channels, and m1 (resp. m2) is the
number of radios for user 1 (resp. 2).

In [6], Yu et al. proposed the adjustable version of RPS,
called Adjustable Multi-radio Rendezvous (AMRR). Instead
of using a single radio as the stay radio in [5], AMRR provides
a control knob for the users to optimize MTTR or ETTR
by making the number of stay radios adjustable. In general,
the MTTR of AMRR can be improved by increasing the
number of stay radios and the ETTR can be improved by
decreasing the number of stay radios. Also, AMRR can be
used in heterogeneous CRNs and this is more general than
the homogeneous assumption in [5]. The MTTR of AMRR
was shown to be O((n1n2)/(m1m2)), where n1 and n2 are
the numbers of available channels for user 1 and user 2,
respectively. The bound is independent of the total number
of channels N . But it only holds when m1 > 1 and m2 > 1.

Li et al. proposed a General Construction for Rendezvous
(GCR for short) in [3]. As described in Section I, GCR
utilizes the two-prime modular clock algorithm to guarantee
rendezvous. For this, they first arrange the available radios
into pairs and divide the available channels into these pairs
of radios. Due to this pairing strategy, GCR requires the
number of radios to be an even number (for a better MTTR

bound). It was shown in [3] that the MTTR of GCR is
O((n1n2)/(m1m2)). As in AMRR, this bound only holds
when m1 > 1 and m2 > 1.

We note that RPS [5], AMRR [6] and GCR [3] cannot
guarantee a bounded MTTR in a single radio environment.
A comparison table for the MTTRs of these multi-radio
algorithms is given in Table I.

TABLE I
COMPARISONS OF THE MTTRS OF VARIOUS MULTI-RADIO RENDEZVOUS

ALGORITHMS

Algorithm MTTR Applicability
in single radio

RPS [5] O(P (N−G)
min(m1,m2)−1) no

JS/I [5] O(NP (P −G)) yes
JS/P [5] O(NP (P−G)

m) yes
AMRR [6] O(n1n2

m1m2
) no

GCR [3] O(n1n2

m1m2
) no

OURS 9M⌈n1/m1⌉ · ⌈n2/m2⌉ yes

N is the total number of channels, P is a prime not less than N ,
M = 2⌈log2(⌈log2 N⌉)⌉+ 7, G is the number of common

channels of two users.

III. THE GENERIC CH SEQUENCES

In this section, we introduce the generic multi-radio CH
sequences that have bounded MTTR in CRNs. The MTTR
bound will be further tightened in Section IV by optimizing a
couple of parameters.

A. Complete symmetrization mapping

As mentioned in the Introduction section, the idea is to
emulate each radio of a user as it were two radios in an
interval. In the setting with two radios, suppose user 1 selects
two channels a1 and a2 and user 2 selects two channels b1
and b2 in a time slot. To emulate that with a single radio,
one needs the following four combinations (a1, b1), (a1, b2),
(a2, b1) and (a2, b2) to occur in an interval. As such, the length
of an interval is at least four time slots (if the clocks are
synchronized). If the clocks are not synchronized, it will take
longer. In the following, we introduce a class of codewords,
called complete symmetrization class, that makes sure that
these four combinations occur in an interval of M time slots.

Definition 1 (Complete symmetrization mapping) Consider
a set of M -bit codewords

{wi = (wi(0), wi(1), . . . , wi(M − 1)), i = 1, 2, . . . ,K}.

Let

Rotate(wi, d)

= (wi(d), wi(d+ 1), . . . , wi((d+M − 1) mod M))

= (w̃i(0), w̃i(1), . . . , w̃i(M − 1)),

4

ALGORITHM 1: The Manchester mapping algorithm

Input: An integer 0 ≤ x ≤ 2L − 1.
Output: An M -bit codeword(

w(0), w(1), . . . , w(M − 1)
)

with
M = 2 ∗ L+ 10.

1: Let
(
β1(x), β2(x), . . . , βL(x)

)
be the binary

representation of x, i.e., x =
∑L

i=1 βi(x)2
i−1.

2: Use the Manchester encoding scheme to encode x into
a 2L-bit codeword,(
β1(x), β̄1(x), β2(x), β̄2(x), . . . , βL(x), β̄L(x)

)
, where

β̄i(x) is the (binary) inverse of βi(x).
3: Add the 10-bit delimiter 0100011101 in front of the
2L-bit codeword to form a (2L+ 10)-bit codeword.

be the vector obtained by cyclically shifting the vector wi d
times. Then this set of codewords is called a complete M -
symmetrization class if either the time shift (d mod M) ̸= 0
or i ̸= j, there exist 0 ≤ τ1, τ2, τ3, τ4 ≤ M − 1 such that

(i) (wi(τ1), w̃j(τ1)) = (0, 0),
(ii) (wi(τ2), w̃j(τ2)) = (1, 1),
(iii) (wi(τ3), w̃j(τ3)) = (0, 1), and
(iv) (wi(τ4), w̃j(τ4)) = (1, 0).

A one-to-one mapping from the set of integers [1, . . . ,K] to
a complete M -symmetrization class is called a complete M -
symmetrization mapping.

We note that if i = j and (d mod M) = 0, then wi(τ) =
w̃i(τ) for all τ and thus conditions (i) and (ii) hold trivially.
As such, we know that conditions (i) and (ii) always hold for
a complete symmetrization mapping.

In Algorithm 1, we show how one can construct a complete
M -symmetrization mapping by using the Manchester coding
(that replaces a bit 0 by the two bits 01 and a bit 1 by the two
bits 10). From Algorithm 1, we have for an integer 0 ≤ x ≤
2L − 1,

(wx(0), wx(1), . . . , wx(M − 1))

= (0, 1, 0, 0, 0, 1, 1, 1, 0, 1, β1(x), β̄1(x),

β2(x), β̄2(x), . . . , βL(x), β̄L(x)),

where
(
β1(x), β2(x), . . . , βL(x)

)
is the binary representation

of x. In the following lemma, we show that the Manchester
mapping in Algorithm 1 is indeed a complete symmetrization
mapping.

Lemma 2 Algorithm 1 is a complete symmetrization map-
ping from x ∈ [0, 1, . . . , 2L − 1] to an M -bit codeword(
wx(0), wx(1), . . . , wx(M − 1)

)
with M = 2L+ 10.

Proof. From the Manchester mapping in Algorithm 1, we
know that the substring of 3 consecutive 0’s only appears in
the 10-bit delimiter 0100011101 and thus it appears exactly
once in the M -bit codeword for any cyclic shift d. This also
holds for the substring of 3 consecutive 1’s. Now consider
the codeword

(
wx(0), wx(1), . . . , wx(M − 1)

)
and the cycli-

cally shifted codeword
(
wy(d), wy(d+ 1), . . . , wy((M − 1 +

d) mod M)
)
.

Case 1. (d mod M) = 0 and x ̸= y: In this case, the 10-
bit delimiters of two M -bit codewords are aligned. Thus, the
conditions (i) and (ii) in Definition 1 are satisfied with τ1 = 0
and τ2 = 1. Since x ̸= y, their binary representations are
different. Thus, there exists a k such that βk(x) ̸= βk(y).
In view of the Manchester mapping, there exist 10 + 2k ≤
τ3, τ4 ≤ 10 + 2k + 1 such that the conditions (iii) and (iv) in
Definition 1 are satisfied.
Case 2. (d mod M) = 3:

In this case, the substring of 3 consecutive 0’s in(
wx(0), wx(1), . . . , wx(M − 1)

)
is aligned with the substring

of 3 consecutive 1’s in
(
wy(d), wy(d+ 1), . . . , wy((M − 1 +

d) mod M)
)
, i.e.,(

wx(0), wx(1), . . . , wx(M − 1)
)

= (0, 1, 0, 0, 0, 1, 1, 1, 0, 1, ∗, ∗, . . .),(
wy(d), wy(d+ 1), . . . , wy((M − 1 + d) mod M)

)
= (0, 0, 1, 1, 1, 0, 1, ∗, ∗ . . .).

It is easy to verify that τ1 = 0, τ2 = 6, τ3 = 2 and τ4 = 1 for
this case.
Case 3. (d mod M) = M − 3:

In this case, the substring of 3 consecutive 1’s in(
wx(0), wx(1), . . . , wx(M − 1)

)
is aligned with the substring

of 3 consecutive 0’s in
(
wy(d), wy(d+ 1), . . . , wy((M − 1 +

d) mod M)
)
, i.e.,(

wx(0), wx(1), . . . , wx(M − 1)
)

= (0, 1, 0, 0, 0, 1, 1, 1, 0, 1, ∗, ∗, . . .),(
wy(d), wy(d+ 1), . . . , wy((M − 1 + d) mod M)

)
= (∗, ∗, ∗, 0, 1, 0, 0, 0, 1, 1, . . .).

It is easy to verify that τ1 = 3, τ2 = 9, τ3 = 4 and τ4 = 5.
Case 4. (d mod M) ̸∈ {0, 3,M − 3}:

In this case, the substring of 3 consecutive 0’s in(
wx(0), wx(1), . . . , wx(M − 1)

)
is neither aligned with the

substring of 3 consecutive 0’s nor aligned with the substring
of 3 consecutive 1’s in

(
wy(d), wy(d+ 1), . . . , wy((M − 1 +

d) mod M)
)
. Thus, we know that 2 ≤ τ1, τ3 ≤ 4 and the con-

ditions (i) and (iii) in Definition 1 are satisfied. Similarly, the
substring of 3 consecutive 1’s in

(
wx(0), wx(1), . . . , wx(M −

1)
)

is neither aligned with the substring of 3 consecutive
0’s nor aligned with the substring of 3 consecutive 1’s in(
wy(d), wy(d+ 1), . . . , wy((M − 1 + d) mod M)

)
. Thus, we

know that 5 ≤ τ2, τ4 ≤ 7 and the conditions (ii) and (iv) in
Definition 1 are satisfied.

B. Each user has exactly two channels and one radio

Now consider the two-user rendezvous problem with a
common channel labelling of the N channels, indexed from
0 to N − 1. Suppose that each user has exactly two available
channels and one radio. Since there is a common channel

5

labelling of the N channels, without loss of generality we
assume that ci(0) < ci(1), i = 1 and 2. Let

(β1(z), β2(z), . . . , β⌈log2 N⌉(z))

be the binary representation of z ∈ [0, 1, . . . , N − 1], i.e.,

z =

⌈log2 N⌉∑
i=1

βi(z)2
i−1.

Note that in our notation the first bit is the least significant bit
of the binary representation. Based on the available channel
set, we assign user i an integer xi with

xi = max{k : βk(ci(0)) < βk(ci(1))} − 1. (3)

The integer xi + 1 is the largest bit that the binary rep-
resentations of the two available channels ci(0) and ci(1)
differ. Note that 0 ≤ xi ≤ ⌈log2 N⌉ − 1 and thus the
binary representation of xi requires at most ⌈log2(⌈log2 N⌉)⌉
bits. Such an assignment method was previously used in [7],
[25]. In the following theorem, we improve the MTTR from
16(⌈log2 log2 N⌉+1) in [7] to 2⌈log2(⌈log2 N⌉)⌉+10 when
ni = 2 for all i.

Theorem 3 Suppose that the assumption in (1) holds and
ni = 2 for i = 1, 2. User i uses the Manch-
ester complete symmetrization mapping in Algorithm 1
with the integer xi in (3) to generate an M -bit code-
word

(
wxi(0), wxi(1), . . . , wxi(M − 1)

)
with M =

2⌈log2(⌈log2 N⌉)⌉ + 10. At time t, user i hops on channel
ci(0) (resp. ci(1)) if wxi(t mod M) = 0 (resp. 1). Then both
users rendezvous within M time slots.

Proof. We have shown in Lemma 2 that Algorithm 1 is
indeed a complete symmetrization mapping. If x1 ̸= x2, it then
follows from the assumption in (1) and the four conditions (i),
(ii), (iii) and (iv) in Definition 1 for a complete symmetrization
mapping that these two users rendezvous within M time slots.
Thus, we only need to consider the case that x1 = x2.

If x1 = x2 = k for some k, then βk(c1(0)) = βk(c2(0)) =
0 and βk(c1(1)) = βk(c2(1)) = 1. This implies that
c1(0) ̸= c2(1) as their binary representations are different.
Similarly, c1(1) ̸= c2(0). Thus, under the assumption in (1),
we have either c1(0) = c2(0) or c1(1) = c2(1). Thus, the
two conditions (i) and (ii) in Definition 1 imply that these two
users rendezvous within M time slots.

C. Emulating two radios by a single radio

The result in Theorem 3 enables us to emulate two radios
by using a single radio. To do this, we partition the time into a
sequence of intervals with each interval consisting of 2M time
slots. The 2M time slots in an interval ensure that the overlap
between an interval of a user and the corresponding interval
of another user consists of at least M consecutive time slots
even when the clocks of the two users are not synchronized.
Within an interval, user i runs the channel hopping sequence in
Theorem 3 for a pair of two channels in its available channel

ALGORITHM 2: The (simple) modular clock algorithm
Input: An available channel set

c = {c(0), c(1), . . . , c(n− 1)} and a period
p ≥ |c|.

Output: A CH sequence {X(t), t = 0, 1, . . .} with
X(t) ∈ c.

1: For each t, let k = (t mod p).
2: If k ≤ |c| − 1, let X(t) = c(k).
3: Otherwise, select X(t) uniformly at random from the
available channel set c.

ALGORITHM 3: The emulation algorithm
Input: An available channel set

c = {c(0), c(1), . . . , c(n− 1)} and the total
number of channels in the CRN N .

Output: A CH sequence {X(t), t = 0, 1, . . .} with
X(t) ∈ c.

0: Partition time into intervals with each interval consists
of 2M time slots, where M = 2⌈log2(⌈log2 N⌉)⌉+ 10.

1: Select two primes p1 > p0 ≥ |c|.
2: For the tth interval, selects the first (resp. second)
channel according to the (simple) modular clock
algorithm in Algorithm 2 at time t by using the prime
p0 (resp. p1) as its input. Let ca(t) and cb(t) be these
two selected channels.

3: If ca(t) = cb(t), replace one of them by another
channel in c.

4: Order these two channels so that ca(t) < cb(t).
5: Let x(t) + 1 be the largest bit that the binary
representations of the two available channels ca(t) and
cb(t) differ, i.e.,

x(t) = max{k : βk(ca(t)) < βk(cb(t))} − 1.

6: Within the tth interval, uses the Manchester complete
symmetrization algorithm in Algorithm 1 with the
integer x(t) to generate an M -bit codeword(
wx(t)(0), wx(t)(1), . . . , wx(t)(M − 1)

)
with

M = 2⌈log2(⌈log2 N⌉)⌉+ 10.
7: At the τ th time slot in the tth interval, output the
channel ca(t) (resp. cb(t)) if wx(t)(τ mod M) = 0
(resp. 1).

set. Thus, at the time scale of intervals, each user behaves as if
it had two radios. The detailed emulation algorithm is shown
in Algorithm 3.

To select the two channels in an interval, we follow the two-
prime modular clock algorithm in [3]. Specifically, user i first
selects two primes pi,1 > pi,0 ≥ ni. For the tth interval, user
i selects one channel according to the (simple) modular clock
algorithm (see Algorithm 2) at time t by using the prime pi,0
as its input period. It also selects the other channel by using the
same algorithm and the other prime pi,1. Replace the second
channel by an arbitrary available channel if these two selected
channels are identical.

6

ALGORITHM 4: The multiple radio algorithm
Input: An available channel set

c = {c(0), c(1), . . . , c(n− 1)}, the number of
radios m and the total number of channels in the
CRN N .

Output: m CH sequences with {X(k)(t), , t = 0, 1, . . .},
k = 1, 2, . . . ,m for the kth radio.

1: Assign the |c| channels in the round robin fashion to
the m radios. Let c(k) be the set of channels assigned
to the kth radio, k = 1, 2, . . . ,m.

2: For the kth radio, construct the CH sequence by using
the emulation algorithm in Algorithm 3 with the input
c(k) and N .

Theorem 4 Suppose that the assumption in (1) holds. User i
uses the emulation algorithm in Algorithm 3 to generate its
CH sequence. Then both users rendezvous within 18Mn1 ·n2

time slots, where

M = 2⌈log2(⌈log2 N⌉)⌉+ 10.

Proof. In Step 0 of the emulation algorithm (Algorithm 3),
the interval length is set to be 2M so that there is an overlap of
(at least) M consecutive time slots for Theorem 3 to hold even
when the clocks of the two users are not synchronized. As a
direct consequence of Theorem 3 and the Chinese Remainder
Theorem, we know that user i and user j rendezvous within
2Mpi,1 · pj,1 time slots when the assumption in (1) holds. As
pi,1 can be found in (ni, 3ni] [28], the MTTR is then bounded
above 18Mn1 ·n2, where M = 2⌈log2(⌈log2 N⌉)⌉+10 (with
N being the total number of channels).

D. Multiple radios

Now we consider the multiple radio setting. Suppose that
user i has mi ≥ 1 radios, i = 1 and 2. It is possible that
mi = 1 in this setting. We first divide the ni available channels
as evenly as possible to the mi radios so that each radio
is assigned with at most ⌈ni/mi⌉ channels. Let c

(k)
i be the

channel assigned to the kth radio of user i. For the kth radio
of user i, construct the CH sequence by using the emulation
algorithm in Algorithm 3 with the input c

(k)
i and N . The

detailed algorithm is shown in Algorithm 4.

Theorem 5 Suppose that the assumption in (1) holds. User
i uses the multiple radio algorithm in Algorithm 4 to gen-
erate its CH sequence. Then both users rendezvous within
18M⌈n1/m1⌉ · ⌈n2/m2⌉ time slots, where

M = 2⌈log2(⌈log2 N⌉)⌉+ 10.

Proof. Let c
(k)
i be the set of channels assigned to the kth

radio of user i, k = 1, 2, . . . ,mi, i = 1 and 2. Under the
assumption in (1), we first argue by contradiction that there
must exist some 1 ≤ k∗1 ≤ m1 and 1 ≤ k∗2 ≤ m2 such that

c
(k∗

1)
1 ∩ c

(k∗
2)

2 ̸= ϕ.

To see this, suppose that for all 1 ≤ k1 ≤ m1 and 1 ≤ k2 ≤
m2,

c
(k1)
1 ∩ c

(k2)
2 = ϕ.

This then implies that

∪m1

k1=1 ∪
m2

k2=1

(
c
(k1)
1 ∩ c

(k2)
2

)
= ϕ.

As c1 = ∪m1

k1=1c
(k1)
1 and c2 = ∪m2

k2=2c
(k2)
2 , we then reach a

contraction to the assumption in (1).
Since the channels are assigned in the round robin fashion

to the radios, we know that

|c(k
∗
1)

1 | ≤ ⌈n1/m1⌉

and
|c(k

∗
2)

2 | ≤ ⌈n2/m2⌉.

The MTTR result of this theorem then follows from the MTTR
result in Theorem 4 by using the k∗1

th radio of user 1 and the
k∗2

th radio of user 2.

To illustrate the construction of our CH sequences, let us
consider a CRN with two users: SU1 and SU2. Suppose that
there are N = 6 channels, {0, 1, 2, 3, 4, 5}, and each user has
a single radio, i.e., m1 = m2 = 1. The available channels for
SU1 is {1, 3, 4} and the available channels for SU2 is {2, 3}.
Thus, n1 = 3 and n2 = 2. As such, we can simply choose
p1,0 = 3, p1,1 = 5, p2,0 = 2, and p2,1 = 3. In Fig. 1 and Fig.
2, we show the two selected channels for these two users in
the tth interval after Step 2 of Algorithm 3 and after Step 4
of Algorithm 3, respectively.

r: a randomly chosen channel from the available channel set.

Fig. 1. The two selected channels in the tth interval after Step 2 of Algorithm
3.

*: a channel replaced by a randomly chosen channel from the available
channel set.

Underline: reordering of the two channels (so that ca(t) < cb(t)).

Fig. 2. The two selected channels in the tth interval after Step 4 of Algorithm
3.

In Fig. 3, we show the CH sequences of Algorithm 3 in
the first interval. To illustrate the effect that the clocks of
these two users are not synchronized, we assume that there

7

Fig. 3. An illustrating example of the CH sequences of Algorithm 3.

is a clock drift of three time slots between these two users.
Since N = 6, we have M = 2⌈log2(⌈log2 N⌉)⌉ + 10 = 14
and thus each interval contains 2M = 28 times slots. In the
first interval, SU1 selects the two channels ca(1) = 1 and
cb(1) = 4. The 3-bit binary representation of channel 1 (resp.
4) is (β1, β2, β3) = (1, 0, 0) (resp. (0, 0, 1)). As the largest
bit that these two binary representations differ is the third bit,
we have from (3) that x1 = 2 (after Step 5 of Algorithm
3). The 2-bit binary representation of x1 is (1, 0) and the
Manchester encoding of x1 is (1, 0, 0, 1). Adding the 10-bit
delimiter 0100011101, the 14-bit codeword after the Manch-
ester mapping in Algorithm 1 is 01000111011001 for SU1

in the first time interval (after Step 6 of Algorithm 3). Thus,
the 28 time slots in the first interval, called the logical CHS
of SU1, are labelled with 0100011101100101000111011001.
Now every logical channel, labelled with 0 (resp. 1) in the
28 times slots of the first interval, is mapped to the physical
channel 1 (resp. 4). This then leads to the physical channels
hopping sequence 1411144414411414111444144114 in the
first interval (after Step 7 of Algorithm 3). Similarly, SU2

selects the two channels ca(1) = 2 and cb(1) = 3. The 3-bit
binary representation of channel 2 (resp. 3) is (β1, β2, β3) =
(0, 1, 0) (resp. (1, 1, 0)). As the largest bit that these two binary
representations differ is the first bit, we have from (3) that
x2 = 0. The 2-bit binary representation of x2 is (0, 0) and the
Manchester encoding of x2 is (0, 1, 0, 1). Thus, its logical CHS
is 0100011101010101000111010101 and the corresponding
physical CHS is 2322233323232323222333232323. Now in
the second interval, SU1 selects the two channels ca(2) = 3
and cb(2) = 4. These two users rendezvous at SU2’s 26th

time slot on channel 3 (see Fig. 3).

IV. THE ENHANCED CH SEQUENCES

In this section, we discuss further improvements of our
generic CH sequences in the previous section.

A. The minimum delimiter length for complete symmetrization
mappings

In the Manchester mapping algorithm (Algorithm 1), the
delimiter is 10 bits long. One natural question is whether one

ALGORITHM 5: The enhanced Manchester mapping
algorithm
The algorithm is the same as that in Algorithm 1 except
Step 3.

3: Add the 7-bit delimiter 1100101 in front of the 2L-bit
codeword to form a (2L+ 7)-bit codeword.

can further shorten the length of the delimiter. For L = 2, we
test the complete symmetrization property for every bit string
with the length less than 7 and the results are all negative.
Thus, the length of the delimiter in the Manchester mapping
algorithm is at least 7 bits long. For bit strings with the length
7, we only find two delimiters 1100101 and 0011010 that
possess the complete symmetrization property. Note that the
latter is simply the binary inverse of the former. With this
finding from the exhaustive search for L = 2, we propose
in Algorithm 5 the enhanced Manchester mapping algorithm.
We prove in Lemma 6 below that Algorithm 5 is indeed a
complete symmetrization mapping for any L ≥ 1.

Lemma 6 Algorithm 5 is a complete symmetrization map-
ping from x ∈ [0, 1, . . . , 2L − 1] to an M -bit codeword(
wx(0), wx(1), . . . , wx(M−1)

)
with M = 2L+7 and L ≥ 1.

Proof.
As in the proof of Lemma 2, we consider the codeword(

wx(0), wx(1), . . . , wx(M − 1)
)

and the cyclically shifted
codeword

(
wy(d), wy(d+1), . . . , wy((M − 1+ d) mod M)

)
.

Note from Algorithm 5, we have for an integer 0 ≤ x ≤ 2L−1,

(wx(0), wx(1), . . . , wx(M − 1))

= (1, 1, 0, 0, 1, 0, 1, β1(x), β̄1(x),

β2(x), β̄2(x), . . . , βL(x), β̄L(x)),

where
(
β1(x), β2(x), . . . , βL(x)

)
is the binary representation

of x.
Case 1. (d mod M) = 0 and x ̸= y: In this case, the 7-
bit delimiters of two M -bit codewords are aligned. Thus, the
conditions (i) and (ii) in Definition 1 are satisfied with τ1 = 2
and τ2 = 0. Since x ̸= y, their binary representations are

8

different. Thus, there exists a k such that βk(x) ̸= βk(y). In
view of the enhanced Manchester mapping, there exist 7 +
2k ≤ τ3, τ4 ≤ 7 + 2k + 1 such that the conditions (iii) and
(iv) in Definition 1 are satisfied.
Case 2. (d mod M) = 1, 2, and 3:

In this case, the four conditions are satisfied as shown in
Fig. 4. In particular, when the shift is 1, we have τ1 = 2,
τ2 = 0, τ3 = 3, and τ4 = 1. When the shift is 2, we have
τ1 = 3, τ2 = 4, τ3 = 2, and τ4 = 0. Finally, when the shift is
3, we have τ1 = 2, τ2 = 1, τ3 = 3, and τ4 = 0.

Fig. 4. Illustration for the four conditions when (d mod M) = 1, 2, and 3.

Case 3. (d mod M) = 4, 6, . . . , 2L+ 2:
In this case, the four conditions are satisfied as shown in Fig.

5. Note that for every shift k = (d mod M) = 4, 6, . . . , 2L+2,
the 4-bit substring 1100 in the delimiter of codeword wy is
aligned with the 4-bit substring of codeword wx

β 2L+2−k
2

(x)β̄ 2L+2−k
2

(x)β 2L+4−k
2

(x)β̄ 2L+4−k
2

(x).

Note that if k = 2L+2, we can simply define β0(x)β̄0(x) to be
01 as shown in Fig. 5. Since the four possible combinations of
β(2L+2−k)/2(x)β̄(2L+2−k)/2(x)β(2L+4−k)/2(x)β̄(2L+4−k)/2(x)
are 0101, 0110, 1001, and 1010. The four conditions are
satisfied.

Fig. 5. Illustration for four conditions when (d mod M) = 4, 6, . . . , 2L+2.

Case 4. (d mod M) = 5, 7, . . . , 2L+ 3:
In this case, the four conditions are satisfied as shown in Fig.

6. Note that for every shift k = (d mod M) = 5, 7, . . . , 2L+3,
the 4-bit substring 1100 in the delimiter of codeword wx is
aligned with the 4-bit substring of codeword wy

β(k−5)/2(y)β̄(k−5)/2(y)β(k−6)/2(y)β̄(k−6)/2(y).

If (k− 5)/2 = 0, we can simply define β0(y)β̄0(y)) to be 01
as shown in Fig. 6. Similar to the argument used in Case 3,
the four conditions are satisfied.

Fig. 6. Illustration for four conditions when (d mod M) = 5, 7, . . . , 2L+3.

Case 5. (d mod M) = 2L+ 4, 2L+ 5, 2L+ 6:
In this case, the four conditions are satisfied as shown in

Fig. 7. In particular, when the shift is 2L+6, we have τ1 = 3,
τ2 = 1, τ3 = 2, and τ4 = 4. When the shift is 2L + 5, we
have τ1 = 5, τ2 = 6, τ3 = 2, and τ4 = 4. Finally, when the
shift is 2L+ 4, we have τ1 = 5, τ2 = 4, τ3 = 3, and τ4 = 6.

Fig. 7. Illustration for four conditions when (d mod M) = 2L + 4, 2L +
5, 2L+ 6

As a direct result of the complete symmetrization mapping
property in Lemma 6 and the proof of Theorem 3, we have
the following corollary for the two-user rendezvous problem
in which each user has exactly two available channels and one
radio.

Corollary 7 Suppose that the assumption in (1) holds and
ni = 2 for i = 1, 2. User i uses the enhanced Manchester
coding algorithm in Algorithm 5 with the integer xi in (3) to
generate an M -bit codeword

(
wxi(0), wxi(1), . . . , wxi(M −

1)
)

with M = 2⌈log2(⌈log2 N⌉)⌉+ 7. At time t, user i hops
on channel ci(0) (resp. ci(1)) if wxi(t mod M) = 0 (resp. 1).
Then both users rendezvous within M time slots.

B. The minimum interval length

In Step 0 of the emulation algorithm (Algorithm 3), the
interval length is set to be 2M so that there is an overlap
of (at least) M consecutive time slots for Theorem 3 to hold
even when the clocks of the two users are not synchronized.
We will show that the condition for these M time slots to be
consecutive is not needed if we use the enhanced Manchester
mapping algorithm in Algorithm 5. Specifically, we propose
an enhanced emulation algorithm in Algorithm 6 to emulate
two radios by a single radio. In Algorithm 6, we partition the
time into a sequence of intervals with each interval consisting
of only M time slots. The rest of the algorithm is the same
as the original emulation algorithm in Algorithm 3.

In the following theorem, we show an enhanced version of
Theorem 4.

Theorem 8 Suppose that the assumption in (1) holds and
N ≥ 3. User i uses the MTTR-enhanced emulation algorithm
in Algorithm 6 to generate its CH sequence. Then both users
rendezvous within 9Mn1 · n2 time slots, where

M = 2⌈log2(⌈log2 N⌉)⌉+ 7.

Proof. Consider two users, SU1 and SU2. Since each user
chooses two primes in Algorithm 6, without loss of generality
we may assume that SU1 selects a prime p1 that is different

9

ALGORITHM 6: The MTTR-enhanced emulation algo-
rithm
The algorithm is the same as that in Algorithm 3 except
Step 0 and Step 6.

0: Partition time into intervals with each interval consists
of M time slots, where M = 2⌈log2(⌈log2 N⌉)⌉+ 7.

6: Within the tth interval, uses the enhanced Manchester
complete symmetrization algorithm in Algorithm 5 with
the integer x(t) to generate an M -bit codeword(
wx(t)(0), wx(t)(1), . . . , wx(t)(M − 1)

)
with

M = 2⌈log2(⌈log2 N⌉)⌉+ 7.

from another prime p2 selected by SU2, i.e., p1 ̸= p2. Ac-
cording to the assumption in (1), there is a common available
channel c. Suppose that channel c is the cth1 (resp. cth2) channel
in the channel available set of SU1 (resp. SU2). Then it follows
from the modular clock algorithm in Algorithm 2 that channel
c will be used as one of the two channels in the (ℓ1p1+ c1)

th

interval of SU1 for ℓ1 = 0, 1, 2, Similarly, channel c will
be used as one of the two channels in the (ℓ2p2+c2)

th interval
of SU2 for ℓ2 = 0, 1, 2, Let d be the clock drift between
these users. Also let d1 = ⌊d/M⌋ and d0 = (d mod M) so
that d = d1M +d0. Since p1 and p2 are two different primes,
it follows from the Chinese Remainder Theorem that there
exists a unique 0 ≤ t1 ≤ p1p2 − 1 that satisfies the following
equation:

t1 = ℓ1p1 + c1 = (ℓ2 + d1)p2 + c2.

Then the first M − d0 time slots of the t1
th interval of SU1

overlaps with the last M − d0 time slots of the (t1 − d1)
th

interval of SU2. On the other hand, there also exists a unique
0 ≤ t2 ≤ p1p2 − 1 that satisfies the following equation:

t2 = ℓ1p1 + c1 = (ℓ2 + d1)p2 + ((c2 − 1) mod p2).

Then the last d0 time slots of the t2
th interval of SU1 overlaps

with the first d0 time slots of the (t2−d1)
th interval of SU2. In

Fig. 8, we illustrate this by an example with p1 = 3, p2 = 2,
c1 = 2, c2 = 2, and d1 = 0. In this example, we have t1 = 2
and t2 = 5. We will show that these two SUs will rendezvous
either in the t1

th interval or the t2
th of SU1. As shown in

Theorem 4, p1 ≤ 3n1 and p2 ≤ 3n2. The MTTR is then
bounded above 9Mn1 ·n2, where M = 2⌈log2(⌈log2 N⌉)⌉+7.

Fig. 8. An illustrating example of the overlapping time slots of a common
available channel.

As in the proof of Lemma 6, we consider the following five
cases. Let L = ⌈log2(⌈log2 N⌉)⌉. Note that M = 2L+7 and
L ≥ 1 (from N ≥ 3).
Case 1. d0 = 0:

In this case, the interval boundaries are aligned. As a direct
consequence of Corollary 7, we know that these two SUs will
rendezvous in the t1

th interval of SU1.
Case 2. d0 = 1, 2, and 3:

In this case, the first M − d0 time slots of the t1
th interval

of SU1 overlaps with the last M − d0 time slots of the (t1 −
d1)

th interval of SU2. As shown in Case 2 of the proof for
Lemma 6 (see Fig. 4), when d0 = 1, we have τ1 = 2, τ2 = 0,
τ3 = 3, and τ4 = 1. Since the number of overlapped time
slots is M − 1 ≥ 6 ≥ max1≤i≤4 τi + 1, we know that these
two SUs will rendezvous in this interval from the complete
symmetrization mapping property.

When d0 = 2, we have τ1 = 3, τ2 = 4, τ3 = 2, and τ4 = 0.
Since the number of overlapped time slots is M − 2 ≥ 5 ≥
max1≤i≤4 τi+1, we know that these two SUs will rendezvous
in this interval.

Finally, when d0 = 3, we have τ1 = 2, τ2 = 1, τ3 = 3,
and τ4 = 0. Since the number of overlapped time slots is
M − 3 ≥ 4 ≥ max1≤i≤4 τi + 1, we know that these two SUs
will rendezvous in this interval.
Case 3. d0 = 4, 6, . . . , 2L+ 2:

In this case, the last d0 time slots of the t2
th interval of SU1

overlaps with the first d0 time slots of the (t2− d1)
th interval

of SU2. Let x1 (resp. x2) be the codeword used by SU1 (resp.
SU2) in the t2

th interval of SU1 (resp. the (t2−d1)
th interval

of SU2). As shown in Case 3 of the proof for Lemma 6 (see
Fig. 5), the 4-bit substring 1100 in the delimiter of codeword
wx2 is aligned with the 4-bit substring of codeword wx1

β 2L+2−k
2

(x1)β̄ 2L+2−k
2

(x1)β 2L+4−k
2

(x1)β̄ 2L+4−k
2

(x1).

As the 4-bit substring 1100 in the delimiter of codeword wx2

appears at the first four bits of wx2 and d0 ≥ 4, we know
that these two SUs will rendezvous in this interval from the
complete symmetrization mapping property.
Case 4. d0 = 5, 7, . . . , 2L+ 3:

In this case, the first M − d0 time slots of the t1
th interval

of SU1 overlaps with the last M − d0 time slots of the (t1 −
d1)

th interval of SU2. Let x1 (resp. x2) be the codeword used
by SU1 (resp. SU2) in the t1

th interval of SU1 (resp. the
(t1−d1)

th interval of SU2). As shown in Case 4 of the proof
for Lemma 6 (see Fig. 6), the 4-bit substring 1100 in the
delimiter of codeword wx1 is aligned with the 4-bit substring
of codeword wx2

β(k−5)/2(x2)β̄(k−5)/2(x2)β(k−6)/2(x2)β̄(k−6)/2(x2).

As the 4-bit substring 1100 in the delimiter of codeword wx1

appears at the first four bits of wx1 and M−d0 ≥ 4, we know
that these two SUs will rendezvous in this interval from the
complete symmetrization mapping property.
Case 5. d0 = 2L+ 4, 2L+ 5, 2L+ 6:

In this case, the last d0 time slots of the t2
th interval of SU1

overlaps with the first d0 time slots of the (t2− d1)
th interval

of SU2. As shown in Case 5 of the proof for Lemma 6 (see
Fig. 7), when d0 = 2L+ 6, we have τ1 = 3, τ2 = 1, τ3 = 2,
and τ4 = 4. Since the number of overlapped time slots is
2L+6 ≥ M −min1≤i≤4 τi, we know that these two SUs will
rendezvous in this interval from the complete symmetrization
mapping property.

When d0 = 2L + 5, we have τ1 = 5, τ2 = 6, τ3 = 2,
and τ4 = 4. Since the number of overlapped time slots is
2L+5 ≥ M −min1≤i≤4 τi, we know that these two SUs will
rendezvous in this interval.

10

Finally, when d0 = 2L + 4, we have τ1 = 5, τ2 = 4,
τ3 = 3, and τ4 = 6. Since the number of overlapped time
slots is 2L+ 4 ≥ M −min1≤i≤4 τi, we know that these two
SUs will rendezvous in this interval.

As an immediate result of Theorem 8, we have the following
corollary for the MTTR for the multiple radio setting.

Corollary 9 Suppose that the assumption in (1) holds and
N ≥ 3. Also, we modify Step 2 of the multiple radio algorithm
in Algorithm 4 by using the MTTR-enhanced emulation algo-
rithm in Algorithm 6. User i then uses the modified multiple
radio algorithm to generate its CH sequence. Then both users
rendezvous within 9M⌈n1/m1⌉ · ⌈n2/m2⌉ time slots, where

M = 2⌈log2(⌈log2 N⌉)⌉+ 7.

C. Improving the performance of ETTR

It is well-known that the simple random algorithm (that
randomly chooses a channel from the available channel set
in every time slot) performs very well in terms of ETTR
in asynchronous heterogeneous CRNs. As such, to improve
the performance of ETTR, it is suggested in [19] to make
the rendezvous algorithms appear to be random. In Step 3
of the modular clock algorithm (Algorithm 2), we simply
choose uniformly at random a channel, say channel c, from
the available channel set. Such a random choice of a channel
does not affect our proof for the MTTR bound. However, it
does have a serious effect on the ETTR of our algorithm.
This is because an interval in the MTTR-enhanced emulation
algorithm (Algorithm 6) consists of M time slots, and channel
c is used through the entire interval that selects channel c.
To improve the ETTR of our algorithm, one should replace
channel c in every time slot of the interval (that uses channel
c) by another randomly selected channel. But this needs to be
done delicately so that it won’t affect the MTTR bound too
much.

The idea is to add a fictitious channel, called channel N ,
in the CRN. By doing so, there are N + 1 channels and
channel N is not in the available channel set of any user.
Now instead of choosing uniformly at random a channel from
the available channel set in Step 3 of the modular clock
algorithm, we simply choose the fictitious channel N (for
further processing). In Algorithm 7, we propose the enhanced
emulation algorithm that provides the detailed implementation
of the idea. The enhanced emulation algorithm (Algorithm 7)
uses the MTTR-enhanced emulation algorithm (Algorithm 6)
with the additional modifications in Step 3 and Step 7 for the
improvement of the ETTR performance. We also note that it
is possible to accomplish this without adding the fictitious
channel N . For instance, if channel N − 1 is not in the
available channel set of a user, then we can simply treat
channel N − 1 as the fictitious channel for that user. But it
makes our presentation very complicated if channel N − 1
is in the available channel set of a user. In that scenario,
there are many cases that need to be treated separately. In

ALGORITHM 7: The enhanced emulation algorithm
Input: An available channel set

c = {c(0), c(1), . . . , c(n− 1)} and the total
number of channels in the CRN N .

Output: A CH sequence {X(t), t = 0, 1, . . .} with
X(t) ∈ c.

0: Partition time into intervals with each interval consists
of M time slots, where
M = 2⌈log2(⌈log2(N + 1)⌉)⌉+ 7.

1: Select two primes p1 > p0 ≥ |c|.
2: For the tth interval, selects the first (resp. second)
channel according to the (simple) modular clock
algorithm in Algorithm 2 (with the fictitious channel N
in Step 3 of the algorithm) at time t by using the prime
p0 (resp. p1) as its input. Let ca(t) and cb(t) be these
two selected channels.

3: If ca(t) = cb(t), we consider the following two cases.
If ca(t) = cb(t) = N , go directly to step 6. If
ca(t) = cb(t) ̸= N , we replace cb(t) by the fictitious
channel N .

4: Order these two channels so that ca(t) < cb(t).
5: Let x(t) + 1 be the largest bit that the binary
representations of the two available channels ca(t) and
cb(t) differ, i.e.,

x(t) = max{k : βk(ca(t)) < βk(cb(t))} − 1.

6: Within the tth interval, uses the enhanced Manchester
complete symmetrization algorithm in Algorithm 5 with
the integer x(t) to generate an M -bit codeword(
wx(t)(0), wx(t)(1), . . . , wx(t)(M − 1)

)
with

M = 2⌈log2(⌈log2(N + 1)⌉)⌉+ 7.
7: If ca(t) = cb(t) = N , we randomly select two
different channels in every time slot of the interval from
the channel available set c. Otherwise, at the τ th time
slot in the tth interval, we output the channel ca(t)
(resp. cb(t)) if wx(t)(τ mod M) = 0 (resp. 1). If one of
the two output channels is the fictitious channel N , we
randomly replace it by a channel from the available
channel set c that is different from the other
non-fictitious channel.

the implementation of our enhanced algorithm in Section V,
we do this without adding the fictitious channel N .

Another possible improvement of the ETTR of our algo-
rithm is to change the starting interval of the CH sequence.
If p0 > |c|, then it might be better to start from the
p1 · p0 − (p0 − |c|)th interval as Step 3 of the modular clock
algorithm (Algorithm 2) will choose the fictitious channel N
from the p1 · p0 − (p0 − |c|)th interval onward.

V. SIMULATION RESULTS

In this section, we conduct extensive simulations to compare
the performance of our proposed algorithm (the enhanced
version in Algorithm 7) with six commonly used multi-radio
channel hopping algorithms in asynchronous heterogenous
CRNs. We used an event-driven C++ simulator in our simula-

11

tions to compare the performance with JS/I [5], JS/P [5], RPS
[5], GCR [3], and AMRR [6]. The AMRR scheme provides
options for the optimization of MTTR (AMRR/M) and ETTR
(AMRR/E). To optimize MTTR, the AMRR scheme assigns
half of the radios as stay radios. On the other hand, to optimize
ETTR, the AMRR scheme assigns one radio as the stay radio.
Since the GCR scheme assigns radios in pairs, the unpaired
radio hops randomly on an available channel in every time slot
when a user has an odd number of radios. When JS/P and JS/I
jump to a channel that is not in the available channel set, it
is replaced by a channel from the available channel set based
on the local time.

In our simulations, we assume that each SU has the in-
formation of the number of channels N in the CRN and its
available channel set. Since GCR, RPS, AMRR are limited to
the setting where the number of radios for each user has to
be larger than one, the number of radios is set to be larger
than one in our simulation (in order to compare our algorithm
with these algorithms). To model the clock drift, each user
randomly selects a (local) time to start its CH sequence. In
our simulation, we only consider the rendezvous between two
users. For each set of parameters, we generate 1,000 different
available channel sets for the two users and perform 1,000
independent runs for each pair of the available channel sets.
We then compute the maximum/average time-to-rendezvous
as the measured MTTR/ETTR. The simulation results are
obtained with 95% confidence intervals. Since the confidence
intervals of ETTR’s are all very small in our simulations, for
clarity, we do not draw the confidence intervals in the figures.

A. Impact of the number of channels when the number of
common channels is fixed

In this simulation, we vary the total number of channels
N from 64 to 192 with fixed n1 = n2 uniformly chosen
in [14, 16], m1 = 2,m2 = 4, and the number of common
channels G = 2. As shown in Fig. 9(a), GCR has the best
performance in MTTR among all the schemes and the MTTR
of our algorithm is almost the same as that of GCR. This is in
line with the theoretical MTTR results in Table I as the MTTR
of GCR is of the same order to ours. Moreover, the MTTR
of our algorithm is almost invariant with respect to N in the
range from 64 to 192. When n1 and n2 are fixed, the MTTR of
our algorithm is only affected by M , the number of time slots
in an interval, which is O(log logN) (as stated in Corollary 9).
On the other hand, the MTTRs of JS/P and JS/I are O(N3).
As such, their MTTRs are worse than our algorithm when
N is large. In Fig. 9(b), we show the comparison results for
ETTR under the same setting. As shown in Fig. 9(b), our
algorithm performs better than the other six schemes for any
value of N . Moreover, the ETTR of our algorithm is also
almost independent of N in the range from 64 to 192.

B. Impact of the number of channels when the number of
common channels is proportional to the number of channels

In this simulation, we vary N from 64 to 192 and n1 =
n2 = N/4, G = N/8 with fixed m1 = 2 and m2 = 4.
In this simulation setting, the number of available channels

(a) MTTR vs. the number of channels N

(b) ETTR vs. the number of channels N

Fig. 9. The effect of the number of channels on MTTR and ETTR with
n1 = n2 uniformly chosen in [14, 16], G = 2 and m1 = 2,m2 = 4.

(a) MTTR vs. the number of total channels N

(b) ETTR vs. the number of total channels N

Fig. 10. The effect of the number of channels on MTTR and ETTR with
n1 = n2 = N/2, G = N/8 and m1 = 3,m2 = 6.

12

(n1, n2) and the number of common channels (G) increase as
the value of N increases. Since we increase the numbers of
available channels n1 and n2 with respect to the total number
of channels N , the MTTR bound for our algorithm in Theorem
5 is now O(N2 log(logN)), which is still better than O(N3)
for the MTTRs of JS/P and JS/I. In Fig. 10, we show the effect
of the number of channels on MTTR and ETTR in this setting.
As expected, the MTTR of AMRR/M is smaller than that of
AMRR/E. Our MTTR is similar to RPS, GCR, and AMRR/M
and better than AMRR/E, JS/P and JS/I in this setting. In Fig.
10(b), we can see that our algorithm has the best ETTR due
to its random hopping property described in Section IV-C.

C. Impact of the number of radios

(a) MTTR for various settings of m1 and m2

(b) ETTR for various settings of m1 and m2

Fig. 11. The effect of the number of radios on MTTR and ETTR for various
settings of m1 and m2.

In this simulation, we fix N = 160, n1 = n2 = 40, G =
20. We then measure MTTR and ETTR for various settings
of (m1,m2). The simulation results are shown in Fig. 11. As
expected, both MTTR and ETTR decrease when the numbers
of radios m1 and m2 are increased. The performance of
AMRR is the worst for small values of m1 or m2. In JS/I and
JS/P, when either m1 or m2 is a multiplicative factor of the
other (ex: (2, 2), (2, 4)), the performance degrades as shown
in Fig. 11. Finally, as shown in Fig. 11(b), our algorithm has
the best ETTR for each case.

(a) MTTR vs. the number of common channels

(b) ETTR vs. the number of common channels

Fig. 12. The effect of the number of common channels on MTTR and ETTR
for various common channels G with n1 = n2 = 64, m1 = m2 = 5.

D. Impact of the number of common channels

In this simulation, we fix N = 160, n1 = n2 = 64,m1 =
5,m2 = 5, and vary G from 3 to 27. The simulation results in
Fig. 12 show that the MTTR of our algorithm is comparable
to the lowest MTTR, and the ETTR of our algorithm is still
the best among all the algorithms.

E. Impact of the number of available channels

In this simulation, we vary n1 and n2 from 8 to 72. The
number of channels N = 160 and G = 3. As the number
of available channels increases, the MTTRs and the ETTRs
of these algorithms also increase. This is because the number
of common channels is fixed and both users need to explore
more channels to rendezvous. Even though the MTTR of our
algorithm is O(n1n2) (as stated in Corollary 9), the simulation
results in Fig. 13 show that the MTTR and the ETTR of our
algorithm are still very good among all the algorithms. In
particular, we can observe from Fig. 13(a) that the MTTR of
our algorithm is comparable to that of GCR and much smaller
than the other algorithms. On the other hand, as shown in Fig.
13(b), the ETTR of our algorithm is still the best among all
the algorithms.

VI. CONCLUSION

In this paper, we proposed a fast multi-radio rendezvous
algorithm for a heterogeneous cognitive radio network. Our

13

(a) MTTR vs. the number of available channels

(b) ETTR vs. the number of available channels

Fig. 13. The effect of the number of available channels on MTTR and ETTR
for various available channels with N = 160, m1 = 2,m2 = 5, and G =3.

algorithm is backward compatible and can also be used in
the traditional setting where users are equipped with only
one radio. For this, we introduced a new notion, called the
complete symmetrization mapping, that allowed us to emulate
two radios with a single radio in an interval. We showed for
the two-user rendezvous problem in a CRN with N commonly
labelled channels, the MTTR of our algorithm is bounded
above by 9M⌈n1/m1⌉ · ⌈n2/m2⌉ time slots, where n1 (resp.
n2) is the number of available channels to user 1 (resp. 2),
m1 (resp. m2) is the number of radios for user 1 (resp. 2),
and M = 2⌈log2(⌈log2 N⌉)⌉ + 7. By conducting extensive
simulations, we also showed that the MTTR of our algorithm is
comparable to GCR [3] (that does not have a bounded MTTR
for the setting with a single radio) and is better than the other
schemes, including JS/I [5], JS/P [5], RPS [5], and AMRR
[6]. The ETTR of our algorithm is the best among all these
commonly used multi-radio algorithms in most parameter
settings.

REFERENCES

[1] C. S. Chang, Y.-C. Chang and J.-P. Sheu, “A Fast Multi-Radio Ren-
dezvous Algorithm in Heterogeneous Cognitive Radio Networks,” Pro-
ceedings of the IEEE International Conference on Computer Communi-
cations (ICC), KANSAS CITY, MO, USA, May 20–24, 2018.

[2] S. Alpern and S. Gal. The Theory of Search Games and Rendezvous.
Dordrecht: Kluwer Academic Publishers, 2003.

[3] G. Li, Z. Gu, X. Lin, H. Pu, and Q.-S. Hua, “Deterministic Distributed
Rendezvous Algorithms for Multi-radio Cognitive Radio Networks,”
In Proceedings of. ACM Proceedings of the 17th ACM international
conference on Modeling, analysis and simulation of wireless and mobile
systems, pp. 313–320, 2014.

[4] N. C. Theis, R. W. Thomas, and L. A. DaSilva, “Rendezvous for
Cognitive Radios,” IEEE Transactions on Mobile Computing, vol. 10,
no. 2, pp. 216–227, 2011.

[5] L. Yu, H. Liu, Y. W. Leung, X. Chu, and Z. Lin, “Multiple Radios for
Fast Rendezvous in Cognitive Radio Networks,” IEEE Transactions on
Mobile Computing, vol. 14, no. 9, pp. 1917–1931, Sept. 2015.

[6] L. Yu, H. Liu, Y. W. Leung, X. Chu, and Z. Lin, “Adjustable Rendezvous
in Multi-radio Cognitive Radio Networks,” Proceedings of the IEEE
Global Communications Conference, pp. 1–7, San Diego, CA, Dec 2015.

[7] Z. Gu, H. Pu, Q.-S. Hua, and F. C. M. Lau, “Improved Rendezvous Al-
gorithms for Heterogeneous Cognitive Radio Networks,” In Proceedings
of IEEE INFOCOM, pp. 154–162, 2015.

[8] C.-S. Chang, D.-S. Lee, and W. Liao, “A Tutorial on Multichannel Ren-
dezvous in Cognitive Radio Networks,” Chapter 1 of Cognitive Radio
Networks: Performance, Applications and Technology. Nova Science
Publisher, 2018.

[9] Z. Gu, Y. Wang, Q.-S. Hua, and F. C. M. Lau, Rendezvous in Distributed
Systems: Theory, Algorithms and Applications. Springer, 2017.

[10] C.-F. Shih, T. Y. Wu, and W. Liao, “DH-MAC: A Dynamic Channel
Hopping MAC Protocol for Cognitive Radio Networks,”Proceedings of
the IEEE International Conference on Communications (ICC), pp. 1–5,
Cape Town, South Africa, May 2010.

[11] J. Li and J. Xie, “Practical Fast Multiple Radio Blind Rendezvous
Schemes in Ad-Hoc Cognitive Radio Networks,”Proceedings of Re-
silience Week (RWS), pp. 1–6, Philadelphia, PA, USA, Aug. 2015.

[12] R. N. Yadav, R. Misra, “Periodic Channel-Hopping Sequence for Ren-
dezvous in Cognitive Radio Networks,”Proceedings of International
Conference on Advances in Computing, Communications and Informat-
ics (ICACCI), pp. 1787–1792, Kochi, India, Aug. 2015.

[13] L. Yu, H. Liu, Y.-W. Leung, X. Chu, and Z. Lin, “Channel-Hopping
Based on Available Channel Set for Rendezvous of Cognitive Radios,”
Proceedings of the IEEE International Conference on Communications
(ICC), pp. 1573–1579, Sydney, NSW, June 2014.

[14] K. Bian and J.-M. Park, “Maximizing Rendezvous Diversity in Ren-
dezvous Protocols for Decentralized Cognitive Radio Networks,”IEEE
Transactions on Mobile Computing, Vol. 12, No. 7, pp. 1294–1307, July
2013.

[15] L. Chen, K. Bian, L. Chen, C. Liu, J.-M. J. Park, and X. Li, “A Group-
Theoretic Framework for Rendezvous in Heterogeneous Cognitive Radio
Networks,”Proceedings of the fifteenth ACM international symposium
on Mobile ad hoc networking and computing (MobiHoc), pp. 165–174,
Philadelphia, PA, USA, Aug. 2014.

[16] I. Chuang, H.-Y. Wu, K.-R. Lee, and Y.-H. Kuo, “A Fast Blind
Rendezvous Method by Alternate Hop-and-Wait Channel Hopping in
Cognitive Radio Networks,”IEEE Transactions on Mobile Computing,
Vol. 13, No. 99, pp. 2171–2184, Jan. 2014.

[17] Z. Gu, Q.-S. Hua, and W. Dai, “Local Sequence Based Rendezvous Al-
gorithms for Cognitive Radio Networks,” Proceedings of the IEEE 11th
International Conference on Sensing, Communication, and Networking
(SECON), pp. 194–202, Singapore, July 2014.

[18] G.-Y. Chang, J.-F. Huang, and Y.-S. Wang, “Matrix-Based Channel
Hopping Algorithms for Cognitive Radio Networks,” IEEE Transactions
on Wireless Communications, Vol. 14, No. 5, pp. 2755–2768, Jan. 2015.

[19] C. S. Chang, C.-Y. Chen, D.-S. Lee, and W. Liao, “Efficient Encoding
of User IDs for Nearly Optimal Expected Time-To-Rendezvous in
Heterogeneous Cognitive Radio Networks.”IEEE/ACM Transactions on
Networking, 2017.

[20] J. Li, H. Zhao, J. Wei, D. Ma, and L. Zhou, “Sender-Jump Receiver-
Wait: a simple blind rendezvous algorithm for distributed cognitive radio
networks,” IEEE Transactions on Mobile Computing, Vol. 17, No.1, pp.
183–196. Jan. 2018.

[21] P. Bahl, R. Chandra and J. Dunagan, “SSCH: Slotted Seeded Channel
Hopping for Capacity Improvement in IEEE 802.11 Ad Hoc Wireless
Networks,”Proceedings of the Annual International Conference on Mo-
bile Computing and Networking (MobiCom), pp. 216–230, NY, USA,
Oct. 2004.

[22] P. K. Sahoo, S. Mohapatra, J.-P. Sheu, “ Dynamic Spectrum Allocation
Algorithms for Industrial Cognitive Radio Networks,”IEEE Transactions
on Industrial Informatics, 2017.

[23] Y. R. Kondareddy and P. Agrawal, “Synchronized MAC Protocol for
Multi-hop Cognitive Radio Networks,” Proceedings of the IEEE Inter-
national Conference on Computer Communications (ICC), 2008.

[24] H. Liu, Z. Lin, X. Chu, and Y.-W. Leung, “Jump-Stay Rendezvous Al-
gorithm for Cognitive Radio Networks,” IEEE Transactions on Parallel
and Distributed Systems, Vol. 23, No. 10, pp. 1867–1881, Oct. 2012.

[25] S. Chen, A. Russell, A. Samanta, and R. Sundaram, “Deterministic
blind rendezvous in cognitive radio networks.” IEEE 34th International

14

Conference on Distributed Computing Systems (ICDCS), pp. 358–367,
2014.

[26] L. Chen, S. Shi, K. Bian, and Y. Ji, “Optimizing Average-Maximum TTR
Trade-off for Cognitive Radio Rendezvous,”Proceedings of the IEEE
International Conference on Communications (ICC), pp. 7707–7712,
London, UK, June 2015.

[27] Z. Gu, H. Pu, Q.-S. Hua, and F. C. M. Lau, “Improved Rendezvous
Algorithms for Heterogeneous Cognitive Radio Networks,”Proceedings
of the IEEE Conference on Computer Communications (INFOCOM),
pp. 154–162, Kowloon, Hong Kong, May 2015.

[28] M. El Bachraoui, “Primes in the interval [2n, 3n],” Int. J. Contemp.
Math. Sci., pp. 617–621, 2006.

