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Greenput: a Power-saving Algorithm That Achieves
Maximum Throughput in Wireless Networks
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Abstract—The dynamic frame sizing algorithm is a
throughput-optimal algorithm that can achieve maximum net-
work throughput without the knowledge of arrival rates. Moti-
vated by the need for energy-efficient communication in wireless
networks, in this paper we propose a new dynamic frame
sizing algorithm, called the Greenput algorithm, that takes power
allocation into account. In our Greenput algorithm, time is
partitioned into frames and the frame size of each frame is
determined based on the backlogs presented at the beginning of a
frame. To obtain a good delay-energy efficiency tradeoff, the key
insight of our Greenput algorithm is to reduce transmit power to
save energy when the backlogs are low so as not to incur too much
packet delay. For this, we define a threshold parameter Tmax (as
the minimum time to empty the backlogs with maximum power
allocation) and the Greenput algorithm enters the (mixed) power-
saving mode when the backlogs are below the threshold. Using
a large deviation bound, we prove that our Greenput algorithm
is still throughput-optimal. In addition to the stability result, we
also perform a fluid approximation analysis for energy efficiency
and average packet delay when Tmax is very large. To show the
delay-energy efficiency trade-off, we conduct extensive computer
simulations by using the Shannon formula as the channel model
in a wireless network. Our simulation results show that both
energy efficiency and average packet delay are quite close to
their fluid approximations even when Tmax is moderately large.

I. INTRODUCTION

SCHEDULING algorithms that achieve maximum through-
put for a network of constrained links (queues) have been

an ongoing research topic for a long period of time. One of the
most renowned algorithms, known as the maximum weighted
matching (MWM) algorithm proposed for the discrete-time
setting in the pioneering work [1], identifies the most suit-
able set of transmitting links according to the queue length
information available at each time slot. Such an algorithm is
known to be throughput-optimal as it can stabilize a network
of queues as long as the rates of arrival traffic fall within
the capacity region (that is the convex hull of the sets of
transmitting rates). This is done without the need of knowing
the arrival rates. The MWM algorithm was further extended
to various switched processing systems (see e.g., [2]–[6]). In
[7], [8], the issues of power allocation and channel states (of
transmitting links) were also taken into account. In particular,
a Dynamic Routing and Power Control (DRPC) policy was
proposed in [7] to stabilize the queues by solving a joint
routing and power allocation problem. Most of these works
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assumed infinite buffers. The effect of finite buffer-size on the
performance of a network of queues was addressed in [9],
[10]. A standard approach to prove the stability of the MWM
algorithm in these works [1]– [10] is to first consider a Lya-
punov function and then show the existence of a negative drift
of the Lyapunov function when the MWM algorithm (with
back-pressure routing) is used. Another interesting approach is
to use the carrier-sense multiple access (CSMA)-type random
access algorithm to achieve the maximum throughput in ad hoc
wireless networks (see e.g. [11], [12]). This approach usually
requires a timescale separation assumption that assumes the
CSMA Markov chain converges to its steady-state distribution
instantaneously compared to the timescale of adaptation of the
CSMA parameters.

The dynamic frame sizing (DFS) algorithm [13]–[16] is
another class of throughput-optimal algorithms. Unlike the
MWM algorithm, the DFS algorithm is a frame-based al-
gorithm. At the beginning of each frame, an optimization
problem is solved to determine the frame size. For a single-
hop (wireless or wired) network with multiple links (queues),
the frame size is chosen to be the minimum amount of time,
known as the minimum clearance time, to clear the backlogs
observed at the links at the beginning of the frame. As such,
the backlogs at the beginning of a frame are then bounded
above by the arrivals during the previous frame, and a packet
that arrives in one frame will depart the network in the next
frame. Thus, as long as the expected size of each frame is
finite, the expected backlog at each link remains finite. Unlike
the Lyapunov approach for the proof of the stability of the
MWM algorithm, the approach for proving the stability of the
DFS algorithm in [13]– [16] is based on a large deviation
bound for the minimum clearance time (the recurrent time of
a regenerative process). Such a bound is derived by comparing
the minimum clearance time with the time to drain the backlog
at each link with a feasible rate that is larger than its arrival
rate (even though the actual arrival rate is not known). To
extend the DFS algorithm to a multiple-hop network with per
flow queueing, a hierarchical smooth schedule (as an extension
of the smooth schedule in [17]) is used in [15] for providing
guaranteed rate services inside the network. By doing so, the
number of packets in any internal buffer is bounded by a
deterministic constant. Further extension to multicasting flows
with network coding was shown in [16].

Motivated by the need for energy-efficient communication
in wireless networks [18], [19], there has been tremendous
interest in the study of various tradeoff mechanisms to achieve
energy efficiency in each protocol layer (see the recent survey
paper [20] and references therein). One of the main objectives
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of this paper is to study the delay-energy efficiency tradeoff
in wireless networks by using the DFS algorithm. For this,
we propose a new dynamic frame sizing algorithm, called the
Greenput algorithm, that takes power allocation into account.
To obtain a good delay-energy efficiency tradeoff, the key
insight of our Greenput algorithm is to reduce transmit power
to save energy when the backlogs are low and this should not
incur too much packet delay.

In the two recent papers [21], [22], the authors considered
the minimum-time scheduling problem and the minimum-
energy scheduling problem to empty the backlogs in wireless
networks. They showed various characterizations of optimal
schedules for these two problems. In particular, the time
division multiple access (TDMA) schedule (that has the least
interference) is optimal under various channel assumptions.
Inspired by these two important papers, our idea for a generic
power-saving DFS algorithm is to use the minimum-time
schedule with maximum power allocation in [21] when the
backlogs are large, and then switch to the minimum-energy
schedule in [22] when the backlogs are small. To determine
whether the backlogs are small, we define a threshold Tmax

(as the minimum time to empty the backlogs with maximum
power allocation) and we only use the minimum-energy sched-
ule (for saving energy) when the solution of the minimum-time
schedule with maximum power allocation is smaller than the
threshold Tmax. In addition to the threshold Tmax, we also
define another parameter Tmin, called the minimum frame
length for empty queues. When there is no backlog at the
beginning of a frame, all the links in the network remain idle
for a period of time Tmin. The parameter Tmin is known as the
vacation time in the queueing context [23]. We prove such a
generic DFS algorithm (see Algorithm 1 for more detailed
descriptions) with the two key parameters Tmin and Tmax

is also throughput-optimal for any traffic that is within the
capacity of the maximum power allocation.

One of the major difficulties for solving the minimum-
energy schedule in [22] is its computational complexity. If one
uses the well-known Shannon formula for the white Gaussian
noise (AWGN) channel, then the transmit rate is a non-linear
function of the transmit power. As such, the minimum-energy
scheduling problem is a non-linear programming problem. To
cope with such a computational complexity problem, we first
show that there exists an optimal simple TDMA schedule
for the minimum-energy scheduling problem if there is no
constraint on the frame size, i.e., Tmax = ∞. Such a result
implies there might exist a good TDMA schedule if Tmax

is not too small. We then propose the greedy allocation
algorithm (see Algorithm 2 for more detailed descriptions)
to find a simple TDMA schedule for the minimum-energy
scheduling problem. The computational complexity of the
greedy algorithm is very low and it is optimal if the objective
is separable concave [24].

By incorporating the greedy allocation algorithm in Algo-
rithm 2 into the generic DFS algorithm in Algorithm 1, we
then propose the Greenput algorithm (see Algorithm 3 for
more detailed descriptions). In the Greenput algorithm, there
are four operation modes for each frame: (i) empty queue
mode, (ii) power-saving mode, (iii) maximum power mode,

and (iv) mixed power-saving mode. The empty queue mode
is chosen when there is no backlog at the beginning of a
frame. The power-saving mode is used when the backlogs can
be cleared before Tmax by a simple TDMA schedule. The
maximum power mode is used when the backlogs cannot be
cleared before Tmax by using the maximum power allocation.
Finally, the mixed power-saving mode is used when the
backlogs can be cleared before Tmax by using the maximum
power allocation but they cannot be cleared before Tmax by a
simple TDMA schedule. Like the generic DFS algorithm, the
Greenput algorithm is also throughput-optimal for any traffic
that is within the capacity of the maximum power allocation.
For such an algorithm, we also derive a fluid approximation
analysis for energy efficiency and average packet delay (as
a function of the arrival rates) when a large Tmax is in the
one second order of magnitude. To show the delay-energy
efficiency trade-off of the Greenput algorithm, we conduct
extensive computer simulations by using the Shannon formula
as the channel model in a wireless network. Our simulation
results show that average packet delay is roughly the same as
the threshold Tmax under various traffic loads. Also, energy
efficiency (measured in joules/bit) is quite close to the fluid
approximation even when Tmax is moderately large. As such,
one can choose an appropriate threshold Tmax to obtain a good
delay-energy efficiency tradeoff. Finally, we remark that the
Greenput algorithm is not designed specifically for the current
cellular networks, which make scheduling decisions at fixed
time intervals.

The rest of this paper is organized as follows. In section
Section II, we describe our mathematical model for wireless
networks. We first propose the generic DFS algorithm in Sec-
tion III. We then propose the greedy allocation algorithm and
the Greenput algorithm in Section IV. We prove the stability
results and derive approximations for energy efficiency in
Section V. In Section VI, we conduct various simulations
to show the delay-energy efficiency trade-off of the two
key parameters. In Section VII, we conclude this paper by
addressing some further extensions. In Table I, we provide a
list of the notations that are used in the paper.

II. THE MATHEMATICAL MODEL

A. Wireless network models
In this section, we first introduce the mathematical model

and the notations that will be used in the paper.
Consider a network with N links, indexed from 1 to N . Let

H be the collection of nonempty subsets of {1, 2, . . . , N}. A
member g ∈ H is called a group (of links). Clearly, |H| =
2N−1. Also, let p = (p1, p2, . . . , pN ) be the power allocation
vector with pi being the power allocated to link i. In this paper,
we assume that there is maximum power pi,max for link i,
i.e., pi ≤ pi,max for all i = 1, 2, . . . , N . Let ri(g,p) be the
transmit rate of link i when the links in group g are allowed
to transmit at a given time with the power allocation vector
p. Note that pi is the power allocated to link i and it may not
be the power actually consumed by link i. For i ∈ g, link i
transmits with the power pi. On the other hand, for i ̸∈ g, link
i is inactive and there is no power consumption of link i. As
such, we define ri(g,p) = 0 for i ̸∈ g.
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TABLE I: List of Notations

N The number of links
H The collection of nonempty subsets of {1, 2, . . . , N}
λi The arrival rate of link i
Λ The arrival rate vector
µi The stable service rate of link i
µmin The minimum stable service rate
ρ The traffic intensity in (8)
pi The power allocated to link i
p The power allocation vector
pi,max The maximum power of link i
pmax The maximum power vector
g a group of links
ri(g,p) The transmit rate of link i when the links in group g

are allowed to transmit with the power allocation vector p
Tn The length of the nth frame
T ′
n The minimum clearance time with maximum power

allocation in (14)
T ′′
n The schedule length with minimum energy in (21)

yi(n) The backlog of link i at the beginning of the nth frame
Ai(s, t) The amount of data that arrives at link i in [s, t]
Tmax The threshold for power-saving mode
Tmin The minimum frame length for empty queues

(vacation time)
tg The transmission time of group g
t∗g The optimal transmission time of group g in (5)
t′g The optimal transmission time of group g in (11)
t′′g The optimal transmission time of group g in (16)
θ∗ The unique positive solution of (27)
hi,j The channel gain between link i and link j
W The bandwidth of the band limited channel
σ2 The noise variance
γi(g,p) The SINR of link i when the links in group g

are allowed to transmit with the power allocation vector p
γ∗ The SINR threshold for a successful transmission

We make the following two rate monotonic assumptions:

(A1) If α ≥ 1, then ri(g, αp) ≥ ri(g,p) for all i ∈ g and
g ∈ H.

(A2) If g ⊂ g′ and i ∈ g, then ri(g,p) ≥ ri(g
′,p).

The first assumption is rather intuitive and it says that
transmit rate of a link is increased if the power allocated to
each link is increased proportionally. The second assumption
is also intuitive. Given the same amount of power allocation,
the corresponding links in the group with a smaller number of
links have larger rates. This is because there is less interference
in the group with a smaller number of links.

As described in [21], one commonly used model for a
wireless network is the signal-to-interference-and-noise-ratio
(SINR) model in which a transmission at a given rate is suc-
cessful if the SINR at the receiver exceeds a certain threshold.
Specifically, consider N transmitters and N receivers. There
is a link between each pair of transmitters and receivers. Let
H = (hij) be an N × N channel matrix with hij being the
channel gain between transmitter i and receiver j. In a band
limited channel with an additive white Gaussian noise, the
SINR for link i in group g is given by

γi(g,p) =
pihii∑

j∈g,j ̸=i pjhji +Wσ2
, (1)

where W is the bandwidth of the band limited channel and
σ2 is the noise variance. Let γ∗ be the SINR threshold for a

successful transmission. Then

ri(g,p) =

{
1, if γi(g,p) ≥ γ∗,
0, otherwise. (2)

Note from (1) that γi(g, αp) ≥ γi(g,p) for α ≥ 1 (as the noise
variance σ2 is effectively reduced to σ2/α in the SINR). In
view of (2), the assumption in (A1) is satisfied. On the other
hand, if g ⊂ g′ and i ∈ g ∩ g′, then γi(g,p) ≥ γi(g

′,p) (as
there is less interference in the SINR). Thus, the assumption
in (A2) is also satisfied.

The second commonly used model is the Shannon formula
for the additive white Gaussian noise (AWGN) channel:

ri(g,p) = W log2(1 + γi(g,p)). (3)

One can also easily verify (from the monotonic properties
of the SINR discussed in the threshold model) that both
assumptions in (A1) and (A2) are also satisfied for this
Shannon formula model.

B. Admissible arrival traffic under maximum power allocation

In [21], Angelakis et al. considered the minimum-time link
scheduling problem to clear the backlogs presented at the links
in a wireless network as soon as possible. In their minimum-
time link scheduling problem, there are no future arrivals at
the links. In order to define the notion of throughput, we
first extend the minimum-time link scheduling problem to the
setting with future arrivals in this section.

For each link, we assume that there is a queue to store
backlogged data. The traffic that arrives at link i is assumed
to be a Poisson process with rate λi. Let

Λ = (λ1, λ2, . . . , λN ). (4)

The vector Λ is called the arrival rate vector in this paper.
Let pmax = (p1,max, . . . , pN,max) be the power allocation

vector when each link is allocated with the maximum power.
Consider the expected number of arrivals at link i, where i =
1, 2, . . . , N , in a unit time interval. Since the arrival process is
Poisson, the expected number of arrivals is λi. Now consider
the following minimum-time link scheduling problem to empty
the “backlogs” (λ1, λ2, . . . , λN ):

min
tg

∑
g∈H

tg (5)

s.t. λi ≤
∑
g∈H

tg · ri(g,pmax), i = 1, 2, . . . , N, (6)

tg ≥ 0, g ∈ H. (7)

The variable tg in (5) is the (normalized) transmission time of
group g (with respect to one unit of time interval). As such,
it is a dimensionless quantity. Note that the inequality in (6)
imposes a constraint that the backlog accumulated at link i
must be cleared by the service time assigned to link i by
the scheduler. As the minimum-time link scheduling problem
is a linear programming problem, it was shown in Lemma
2 of [21] (or an application of the Carathéodory theorem)
that under (A2) there exists an optimal scheduling solution
using at most N groups. Specifically, let {t∗g, g ∈ H} be an
optimal solution of this linear programming problem and H∗
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be the collection of nonzero elements in {t∗g, g ∈ H}. Then
|H∗| ≤ N . From the minimum-time link scheduling problem,
we define the intensity ρ of an arrival rate vector Λ as follows:

ρ =
∑
g∈H∗

t∗g. (8)

The input traffic with the arrival rate vector Λ is said to be
admissible if ρ < 1. The capacity region (with the maximum
power allocation) is the union of the admissible arrival rate
vectors. For the admissible traffic with the arrival rate vector
Λ, we define a stable service rate vector µ = (µ1, µ2, . . . , µN )
with

µi =

∑
g∈H∗ t∗g · ri(g,pmax)

ρ
, i = 1, 2, . . . , N. (9)

In view of (6), we have for ρ < 1 that

µi ≥
λi

ρ
> λi, i = 1, 2, . . . , N. (10)

Thus, if the arrival rates λi, i = 1, 2, . . . , N , are known, one
can stabilize the queues by providing stable service rates. In
fact, there are many scheduling policies in the literature that
can be used for stabilizing each queue in the network (see
e.g., the rate proportional processor sharing (RPPS) scheme
in [25] and the service curve earliest deadline first (SCED)
scheme in [26]). On the other hand, if the arrival rates are not
known, the maximum weighted matching (MWM) algorithm
in [1] and the dynamic frame sizing algorithm in [13]–[15]
can be used for stabilizing each queue in the network with
the maximum power allocation. One of the main objectives
of this paper is to take power allocation into consideration
and propose power-saving algorithms that not only achieve
maximum throughput but also have better energy efficiency
for transmitting data.

III. GENERIC DYNAMIC FRAME SIZING ALGORITHM WITH
POWER SAVING

In [13]–[15], the dynamic frame sizing (DFS) algorithm has
been used for stabilizing various queueing networks without
knowing the arrival rates. In this section, we incorporate power
saving into the DFS algorithm.

A. Determining the frame size

The basic idea of the DFS algorithm in [13]–[15] is quite
simple. In such an algorithm, time is partitioned into frames,
where the frame size is not fixed and is determined at the
beginning of each frame. The frame size in [13]–[15] is set to
be the minimum time to empty all the backlogs observed at the
beginning of the frame. As long as the expected size of each
frame is finite, the expected backlog at each queue remains
finite. To incorporate power saving into the DFS algorithm,
our idea is to use maximum power allocation when the
backlogs are large and switch to a power-saving mode when
the backlogs are small. The question is then how to determine
whether the backlogs are large or small. Our approach is to
set a threshold Tmax for the minimum clearance time (which
is defined as the minimum time to empty the backlogs with
maximum power allocation).

Now we present the method for determining the frame size
at the beginning of each frame in the generic DFS algorithm
with power saving. Let Tn be the length of the nth frame
and τn =

∑n−1
ℓ=1 Tℓ be the beginning time epoch of the nth

frame. The backlog at τn at link i is denoted by yi(n). Let
Y (n) = (y1(n), y2(n), . . . , yN (n)) be the backlog vector at
the beginning of the nth frame.

If there is no backlog at the beginning of the nth frame, i.e.,
yi(n) = 0 for all i = 1, 2, . . . , N , then we simply set the size
of the nth frame, denoted by Tn, to be some constant Tmin.
The constant Tmin, called the minimum frame length for empty
queues in this paper, is also known as the server vacation time
in the queueing context [23]. Intuitively, the backlogs could be
very large when a server takes a long vacation. On the other
hand, if there are backlogs at the beginning of the nth frame,
we first consider the minimum-time scheduling problem that
minimizes the clearance time with maximum power allocation:

min
tg

∑
g∈H

tg (11)

s.t. yi(n) ≤
∑
g∈H

tg · ri(g,pmax), i = 1, 2, . . . , N.(12)

tg ≥ 0, g ∈ H. (13)

Let {t′g, g ∈ H} be an optimal solution of this linear pro-
gramming problem and H′ be the set of nonzero elements of
{t′g, g ∈ H}. As discussed for the minimum-time scheduling
problem in (5), we know that |H′| ≤ N . Now let

T ′
n =

∑
g∈H′

t′g (14)

be the minimum time to clear the backlogs at the beginning of
the nth frame with the maximum power allocation. If T ′

n is not
less than the threshold Tmax, then we consider the backlogs
are large and we do not go into the power-saving mode. In
this case, we simply set

Tn = T ′
n. (15)

Otherwise, we conclude the backlogs are small and we switch
to the power-saving mode. In the power-saving mode, we
consider another minimum-energy scheduling problem that
was previously addressed in [22]:

min
tg,pg

∑
g∈H

tg(
∑
i∈g

pg,i) (16)

s.t. yi(n) ≤
∑
g∈H

tg · ri(g,pg), i = 1, 2, . . . , N, (17)∑
g∈H

tg ≤ Tmax, (18)

tg ≥ 0, g ∈ H, (19)
pg = (pg,1, . . . , pg,N ) ≤ pmax. (20)

Since T ′
n < Tmax, we know from (A1) that there is a

feasible solution of this minimum-energy scheduling problem.
Let {t′′g , g ∈ H} be an optimal solution of this optimization
problem and

T ′′
n =

∑
g

t′′g (21)
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be the time to clear the backlogs not later than Tmax with
minimum energy. In this case, we set Tn = T ′′

n .
The algorithm for determining the frame size at the begin-

ning of the nth frame is summarized in Algorithm 1.

Algorithm 1 The generic dynamic frame sizing algorithm with
power saving

Input: The backlog vector at the beginning of the nth frame
Y (n) = (y1(n), y2(n), . . . , yN (n))

Output: The length of the nth frame Tn

1: If there is no backlog at the beginning of the nth frame,
then set Tn = Tmin.

2: Otherwise, solve the minimum-time scheduling problem
in (11). If T ′

n ≥ Tmax, then set Tn = T ′
n.

3: Otherwise, go to the power-saving mode and solve the
minimum-energy scheduling problem in (16). Set Tn =
T ′′
n .

Though the idea of the generic DFS algorithm with power
saving in Algorithm 1 is quite simple, its computational com-
plexity might be high. This is because the minimum-energy
scheduling problem is not a linear programming problem (as
ri(g,pg) is not linear in pg). As discussed in [22], finding an
optimal solution of the minimum-energy scheduling problem
may be difficult. In the next section, we will propose a much
simplified version of the dynamic frame sizing algorithm with
power saving.

IV. THE GREENPUT ALGORITHM

A. The existence of an optimal simple TDMA schedule

For the minimum-energy scheduling problem, it was shown
in [22] that time division multiple access (TDMA) scheduling
(which avoids simultaneous transmissions) is optimal for some
cases. In particular, if the constraint in (18) is removed,
i.e., Tmax = ∞, then it was shown in Theorem 1 of [22]
that TDMA is optimal for the Shannon formula model. The
intuition behind this is that there is no interference in a TDMA
schedule and thus power can be saved to maintain the same
level of SINR. In Theorem 1 below, we further extend such
a result to a more general setting. For a TDMA schedule, the
transmit rate for link i only depends on the power allocated
to link i. For ease of presentation, we simplify the notation
for ri({i},p) in a TDMA schedule by ri(pi). Also, we will
call a TDMA schedule simple if each link is selected for
transmission at most once in the schedule.

Theorem 1: Consider the minimum-energy scheduling prob-
lem in (16) with the constraint in (18) being removed, i.e.,
Tmax = ∞. Suppose that the assumption (A2) holds and for
each link i, the transmit rate ri(pi) is concave in the allocated
power pi. Then there is an optimal simple TDMA schedule.

The proof of Theorem 1 is given in Appendix A, available
in the online supplemental material.

B. A greedy allocation algorithm for generating a simple
TDMA schedule

The results in [22] and Theorem 1 motivate us to consider
using simple TDMA schedules in the power-saving mode.

Instead of solving the minimum-energy scheduling problem in
(16), we propose a greedy allocation algorithm in Algorithm 2
to find a simple TDMA schedule with the length (frame size)
not greater than Tmax.

Algorithm 2 Greedy allocation algorithm for finding a simple
TDMA schedule in the power-saving mode

Input: The backlog vector at the beginning of the nth frame
Y (n) = (y1(n), y2(n), . . . , yN (n))

Output: A simple TDMA schedule with
∑N

i=1 ti ≤ Tmax (if
it exists)

1: Compute T =
∑N

i=1 yi(n)/ri(pi,max). If T > Tmax, then
there does not exist a feasible TDMA schedule.

2: Otherwise, Set ti = yi(n)/ri(pi,max), i = 1, 2, . . . , N .
3: Let R = Tmax−T and ∆ = R/K, where K is a constant.
4: For each ∆, allocate it sequentially to the link that results

in the largest energy reduction for transmitting the data
on its link.

Now we explain how Algorithm 2 works. In Step 1, we first
check whether there exists a simple TDMA schedule that can
clear the backlogs before Tmax by allocating maximum power
to each link. If such a simple TDMA schedule exists, we know
from (A1) that we can allocate the remaining time to the links
in the TDMA schedule so that the transmit power at each link
of this TDMA schedule can be further reduced to save energy.
In Step 2, we set the (minimum) transmission time of each
link to be the time to empty its backlog with maximum power
allocation. In Step 3, we calculate the remaining time that we
can allocate before exceeding Tmax. We then divide it into
K time units for further allocation. It is well-known (see e.g.,
[24]) that for a discrete resource allocation problem, the greedy
(or marginal allocation) algorithm that assigns each available
time unit sequentially to the link that results in the largest
energy reduction from an additional allocation among all links
is optimal if the objective of the total energy consumption
is separable concave in the allocation of time units (such
a concave condition can be shown to be satisfied under an
appropriate assumption for ri(pi), i = 1, 2, . . . , N ). In Step 4,
we carry out the greedy allocation of time units. We note that
the frame size is exactly Tmax when the sequential allocation
in Step 4 is completed. Also, increasing K further increases
the saving of energy. But this is at the cost of increasing
computational complexity.

C. The proposed algorithm

In view of the generic DFS algorithm in Algorithm 1 and
the greedy allocation algorithm for finding a feasible TDMA
schedule in Algorithm 2, there is still one more case that needs
to be resolved. It is the case when the following two conditions
hold: (i) there does not exist a feasible TDMA schedule (with
the schedule length not greater than Tmax) and (ii) the schedule
that uses the maximum power allocation yields a schedule
length shorter than Tmax. In this case, there must be group
transmission(s) with group size larger than 1 (as otherwise
there should be a feasible TDMA schedule). As such, we can
separate the schedule that uses the maximum power allocation
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into two subschedules: (i) group transmission(s) with group
size larger than 1 and (ii) group transmission(s) with group size
equal to 1. For the group transmission(s) with group size equal
to 1, we can further reduce the transmit power by allocating
more time as in Algorithm 2. Specifically, as in Section III-A,
we let {t′g, g ∈ H′} be an optimal solution of the minimum-
time scheduling problem in (11). Also, let

H′
+ = {g : g ∈ H′, |g| > 1|} (22)

be the set of group transmission(s) with group size large than 1
in H′. Since the schedule with the maximum power allocation
yields a schedule length shorter than Tmax, we must have∑

g∈H′
+

t′g ≤
∑
g∈H′

t′g < Tmax. (23)

Now let

ỹi(n) = yi(n)−
∑

g∈H′
+

t′g · ri(g,pmax) (24)

be the remaining backlog for link i after the subschedule for
group transmission(s) with group size large than 1. Similarly,
let

T̃max = Tmax −
∑

g∈H′
+

t′g (25)

be the remaining time that we can allocate for the simple
TDMA schedule (after the subschedule for group transmis-
sion(s) with group size large than 1). Then we can use
Algorithm 2 to find a feasible TDMA schedule by using T̃max

and ỹi(n)’s as its inputs.
Now we are ready to describe our Greenput algorithm. The

details are outlined in Algorithm 3. The algorithm has the
following four modes: (i) empty queue mode, (ii) power-saving
mode, (iii) maximum power mode, and (iv) mixed power-
saving mode. The empty queue mode is chosen when there is
no backlog at the beginning of a frame, and its frame length
is Tmin. The power-saving mode is used when the backlogs
can be cleared before Tmax by a simple TDMA schedule, and
its frame length is exactly Tmax. The maximum power mode
is used when the backlogs cannot be cleared before Tmax by
using the maximum power allocation. In this mode, its frame
length is not smaller than Tmax. Finally, the mixed power-
saving mode is used when the backlogs can be cleared before
Tmax by using the maximum power allocation but they cannot
be cleared before Tmax by a simple TDMA schedule. Note that
the mixed power-saving mode consists of two subschedules:
one with the maximum power allocation and the other with a
simple TDMA schedule. The sum of the lengths of these two
subschedules is Tmax and thus the frame length in the mixed
power-saving mode is also Tmax.

V. PERFORMANCE ANALYSIS

A. Stability for Admissible Traffic

In this section, we show that for any admissible Poisson
arrival traffic, the expected frame sizes under both the generic
DFS algorithm in Algorithm 1 and the Greenput algorithm in

Algorithm 3 The Greenput algorithm

Input: The backlog vector at the beginning of the nth frame
Y (n) = (y1(n), y2(n), . . . , yN (n))

Output: The length of the nth frame Tn

1: (Empty queue mode) If there is no backlog at the
beginning of the nth frame, then set Tn = Tmin.

2: Otherwise, run Algorithm 2.
3: (Power-saving mode) If Algorithm 2 returns a feasi-

ble TDMA schedule {ti, i = 1, 2, . . . , N}, set Tn =∑N
i=1 ti = Tmax and run this TDMA schedule for this

frame.
4: Otherwise, solve the minimum-time scheduling problem

in (11).
5: (Maximum power mode) Suppose that we obtain an

optimal minimum-time schedule {t′g, g ∈ H′} and∑
g∈H′ t′g ≥ Tmax. Set Tn =

∑
g∈H′ t′g and run the

minimum-time schedule for this frame.
6: Otherwise, separate the minimum-time schedule into two

subschedules: the subschedule with group size larger than
1 and the subschedule with group size equal to 1.

7: (Mixed power-saving mode) Keep the subschedule with
group size larger than 1 and replace the other subschedule
by the TDMA schedule from Algorithm 2 by using ỹi(n),
i = 1, 2, . . . , n in (24) and T̃max in (25) as its inputs. Set
Tn = Tmax to be the sum of the length of the subschedule
with group size larger than 1 and the length of the new
TDMA subschedule.

Algorithm 3 are finite. Thus, all the queues are stable for such
Poisson traffic.

Here we make three specific assumptions on the input
traffic.

(A3) All the arrivals are independent Poisson processes.
Specifically, the amount of data that arrives at link i during the
time interval [s, t], denoted by Ai(s, t), is a Poisson random
variable with mean λi(t − s). Without loss of generality, we
assume that λi > 0 for all i = 1, 2, . . . , N .

(A4) Assume that the arrival rates λi, 1 ≤ i ≤ N , are
unknown to the network.

(A5) The input traffic is admissible, i.e., the intensity ρ
defined in (8) is strictly smaller than 1.

Theorem 2: Assume that (A1-5) hold. Let µmin =
min1≤i≤N µi with µi being the stable service rate in (9) and
C = max[Tmin, Tmax]. Then, under either the generic DFS
algorithm in Algorithm 1 or the Greenput algorithm in 3, we
have for n > 1

logE[eθ
∗Tn ] ≤ 2 logN + 2Cθ∗

(1− ρ)
(26)

where θ∗ is the unique positive solution of

eθ/µmin − 1

θ/µmin
=

1 + ρ

2ρ
. (27)

As a result, the expectation of the frame size E[Tn] is bounded
by 2 logN+2Cθ∗

θ∗(1−ρ) .
As a direct consequence of Theorem 2, the expected backlog

in each queue is also finite. The proof of Theorem 2 is given
in Appendix B, available in the online supplemental material.
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B. Approximation analysis for energy efficiency and average
packet delay

In this section, we perform a fluid approximation analysis
for energy efficiency and average packet delay in the Greenput
algorithm under the condition that Tmax is large.

As shown in Algorithm 3, there are four operation modes.
Let us also assume that Tmin << Tmax and thus the effect
of the empty queue mode can be neglected. For the other
three modes, only the maximum power mode can lead to a
frame with frame size larger than Tmax. We claim that this
cannot happen very often for any admissible traffic. To see
this, note from the law of large numbers that the backlog at
link i during a time interval of length Tmax is concentrated on
λiTmax with high probability. For any admissible traffic (with
ρ =

∑
g∈H∗ t∗g < 1 in (8)), the backlog will be cleared before

Tmax with the maximum power allocation. As such, there is
a “drift” that pushes the frame size below Tmax. In fact, the
stability result in the previous section provides a formal proof
for that. With this in mind, we only have two operation modes
left when Tmax is very large: the power-saving mode and the
mixed power-saving mode. For both modes, the frame sizes
are exactly Tmax.

Now consider the following two cases:
Case 1.

∑N
i=1 λi/ri(pi,max) ≤ 1:

In this case, we claim that Algorithm 3 is in the power-
saving mode with high probability. To see this, note that
the backlog at link i during a time interval of length
Tmax is concentrated on λiTmax with high probability. Since∑N

i=1 λi/ri(pi,max) ≤ 1, this backlog can then be cleared by
using a simple TDMA schedule with the length Tmax from Al-
gorithm 2. As Tmax is assumed to be very large, we may nor-
malize the backlog at each link by Tmax and consider the fluid
approximation that views backlogs as fluids. Specifically, we
let t̂i, i = 1, 2, . . . , n be the output schedule from Algorithm
2 with the input backlog vector Λ = (λ1, λ2, . . . , λn) and
Tmax = 1. It is clear from Algorithm 2 that t̂i ≥ λi/ri(pi,max)
and

∑n
i=1 t̂i = 1. The power selected by link i, denoted by p̂i,

is r−1
i (λi/t̂i), where r−1

i (·) is the inverse function of ri(·).
Thus, the total energy consumed by such a TDMA schedule
with a unit length is

∑N
i=1 t̂i · p̂i and the energy efficiency in

this case is then ∑N
i=1 λi∑N

i=1 t̂i · p̂i
. (28)

Case 2.
∑N

i=1 λi/ri(pi,max) > 1:
In this case, Algorithm 3 is in the mixed power-saving

mode with high probability. There are two subschedules for
this case: the first subschedule uses the maximum power
allocation for groups with group size larger than 1 and the
second subschedule uses a TDMA schedule. Analogous to
the argument in Case 1, we can normalize the backlog at
each link by Tmax and consider the fluid approximation that
views backlogs as fluids. The remaining fluid after the first
subschedule is

λ̌i = λi −
∑

g∈H∗,|g|>1

t∗g · ri(g,pmax),

where {t∗g > 0, g ∈ H∗} is an optimal solution in (5).
Similarly, the remaining time for the second subschedule is

1−
∑

g∈H∗,|g|>1

t∗g.

Let ťi, i = 1, 2, . . . , n be the output schedule from Algorithm
2 with the input backlog vector Λ̌ = (λ̌1, λ̌2, . . . , λ̌n) and
Tmax = 1 −

∑
g∈H∗,|g|>1 t

∗
g. It is clear from Algorithm 2

that ťi ≥ λ̌i/ri(pi,max) and
∑n

i=1 ťi = 1 −
∑

g∈H∗,|g|>1 t
∗
g .

The power selected by link i, denoted by p̌i, is r−1
i (λ̌i/ťi).

Thus, the total energy consumed by such a TDMA subschedule
is

∑n
i=1 ťi · p̌i. By adding the energy consumed by the first

subschedule, the energy efficiency in this case is then∑N
i=1 λi∑

g∈H∗,|g|>1 t
∗
g · (

∑
i∈g pg,i) +

∑N
i=1 ťi · p̌i

. (29)

Now we turn our attention to the fluid approximation
analysis of average packet delay. When a packet arrives at the
network in the nth frame, it can only be served in the (n+1)th

frame. Thus, the delay of a packet arriving in the nth frame
consists of two parts: the waiting time in the nth frame and the
completion time in the (n+ 1)th frame. Since the frame size
is Tmax with high probability when Tmax is large, the average
waiting time in the nth frame is roughly Tmax/2 as Poisson
arrivals are uniformly distributed in that frame. On the other
hand, the average completion time in the (n+1)th frame is also
roughly Tmax/2 in a TDMA schedule that randomly selects
the order to serve a large number of packets in the TDMA
schedule. Thus, we conclude that the average packet delay
is roughly Tmax when Tmax is large. This approximation for
the average packet delay will be further verified by computer
simulations in Section VI.

VI. SIMULATIONS

In this section, we use computer simulations to test the
performance of the Greenput algorithm in Algorithm 3. There
are two key performance metrics: energy efficiency (measured
by the average amount of transmitted bits to consume a unit of
energy in joules) and average packet delay. In the following
simulations, we vary the threshold Tmax and the minimum
frame size for empty queues Tmin to see their effects on these
two performance metrics under various traffic loads. Each data
point in the simulation results for energy efficiency and packet
delay is obtained from averaging over 10,000 frames. Also, the
constant K in the greedy allocation algorithm (Algorithm 2)
is set to 10.

A. Simulation settings

We consider an area of two adjacent rectangles, each with
500m×500m. Within each rectangle, we place a base station
at the center of the rectangle, i.e., the coordinates of the first
base station is (250, 250) and the coordinates of the second
base station is (750, 250). We then randomly place N = 3
users in the area of 1000m × 500m. In our simulation, the
coordinates of these three users are (743,255), (721,222) and
(247,245), respectively. Each user is then connected to the base
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Fig. 1: The mapping between the Poisson arrival rate λ and
the traffic intensity ρ.

station that is closer to her/him. Each user then sets up a link
to its base station and thus there are three links. The channels
for these links are modelled by the Shannon formula in (3)
with the channel gain

hi,j ∝ (di,j)
−β ,

where di,j is the distance between the transmitter of link i
and the receiver of link j, and β = 4. In our simulations,
we also assume the network is stationary, i.e., all the users
and the base stations stay in fixed locations and thus di,j’s do
not change over time. Moreover, for the ease of coordinated
transmissions, we only consider down links, i.e., transmitters
are the two base stations and receivers are the three users. The
arrival processes of all the three links are independent Poisson
processes with the same rate.

The maximum power of all the links are the same and they
are all set to be 1W (0dbW). The noise spectral density is set
to be -204 dBW/Hz. These parameter settings are similar to
those in [28]. Also, we set the packet size to be 1500 bytes
(12000bits), which is roughly the maximum size of an Ethernet
packet. In Table II, we show the transmit rates of the three links
computed from the Shannon formula in (3) when the links in
a group g are allowed to transmit with the maximum power
allocation. We then use (8) to compute the traffic intensity ρ.
In Figure 1, we plot the traffic intensity ρ as a function of the
arrival rate (Mbits/sec). The function is linear as we assume
that all the Poisson processes have the same rate and all the
packets are of the same size.

B. Energy efficiency

In our first simulation, we choose the minimum frame size
for empty queues Tmin to be 1ms. In Fig. 2, we show the
simulation results for energy efficiency (as a function of the
threshold Tmax) under various traffic loads. Clearly, when
Tmax is set to 0, the Greenput algorithm is always in the
maximum power mode when there are backlogs. As such, all
the data are transmitted with the maximum power allocation.
This corresponds to the first data point in Fig. 2. Thus, as
shown in Fig. 2, the energy efficiency for Tmax = 0 is
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Fig. 2: Energy efficiency as a function of Tmax for Tmin =
1ms.

the worst and it is basically the same under various traffic
loads, ranging from 0.1 to 0.9. As expected, increasing the
threshold Tmax increases energy efficiency as it increases
the chance for the algorithm to leave the maximum power
mode and enter either the power-saving mode or the mixed
power-saving mode. As such, more data are transmitted under
TDMA schedules and that increases energy efficiency. Another
interesting observation from Fig. 2 is that energy efficiency
of Algorithm 3 decreases when traffic load increases. This is
because the algorithm is operated in the power-saving mode
(that uses the simple TDMA schedules) most of the time when
the traffic load is very light. When the traffic load is further
increased, it then gradually migrates into the mixed power-
saving mode in which a subschedule uses the maximum power
allocation. Finally, there seems a limit for energy efficiency
when Tmax is large. In Table III, we show that this limit
indeed matches the fluid approximation in Section V-B under
various loads when we further increase Tmax to 0.1s, 0.3s and
0.5s. We remark that we intentionally choose large values
for Tmax to study the asymptotic behavior of the energy
efficiency metric. Normally, Tmax should be of the order of a
few milliseconds. Otherwise, it would be disruptive to certain
network applications.

In Fig. 3, we plot the energy efficiency computed by using
the fluid approximation in Section V-B as a function of traffic
intensity ρ. In light load, we see that the logarithm of the
energy needed to transmit a bit is almost linear in the traffic
intensity. To see the insight behind this, we note that most of
the frames in the Greenput algorithm are expected to be in the
power-saving mode under light load. As such, most packets
are transmitted under TDMA schedules with the same frame
length Tmax. In view of the Shannon formula in (3) and (1), the
transmit rate of a link is roughly proportional to the log of the
transmit power of that link (when there is no interference). As
such, in order to clear all the backlogs within Tmax, one needs
to increase the transmit rates in proportion to the increase of
the traffic intensity. This then implies that the logarithm of the
energy needed to transmit a bit is almost linear in the traffic
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TABLE II: The transmit rates of the three links when the links in a group g are allowed to transmit with the maximum power
allocation

Transmit rates (Mbits/sec)XXXXXXXXLink
Group {1} {2} {3} {1,2} {1,3} {2,3} {1,2,3}

1 165.48 0 0 5.00 116.81 0 5.00
2 0 120.91 0 5.00 0 70.97 5.00
3 0 0 176.70 0 128.62 128.62 123.61

TABLE III: Energy efficiency (bits/joule) measured for
Tmax = 0.1s, 0.3s and 0.5s and the fluid approximation in
Section V-B

ρ 0.1s 0.3s 0.5s Approximation
0.1 1.936e+14 1.956e+14 1.958e+14 1.965e+14
0.3 1.130e+13 1.199e+13 1.208e+13 1.230e+13
0.5 2.051e+11 2.188e+11 2.222e+11 2.274e+11
0.7 2.552e+09 2.789e+09 2.831e+09 2.915e+09
0.9 1.835e+08 1.850e+08 1.853e+08 1.856e+08

intensity.
Another interesting observation is when the traffic intensity

ρ exceeds 0.83, where we observe a change of operating
modes. For ρ ≥ 0.83, most of the frames in the Greenput
algorithm are expected to be in the mixed power-saving mode.
It might appear to be quite counterintuitive at the first look
to see that the transition from the power-saving mode into
the mixed power-saving mode near ρ = 0.83 results in
more energy efficient schedules. This is because the TDMA
schedule obtained from Algorithm 2 may not be the optimal
schedule for the minimum-energy scheduling problem (and it
is only shown to be optimal in Theorem 1 when the constraint
on Tmax is removed). A simultaneous transmission of two
links in the mixed power-saving mode could be more energy
efficient. To see this, note that user 1 placed at (743,255) is
in fact quite close to the second base station at (750,250) and
user 3 placed at (247,245) is also quite close to the first base
station at (250,250). Thus, the interference of a simultaneous
transmission of link 1 and link 3 is quite limited. As shown in
Table II, a simultaneous transmission of link 1 and link 3 (with
maximum power allocation) yields 116.81 Mbits/sec for link
1 and 128.62 Mbits/sec for link 3. This is only slightly smaller
than 165.48 Mbits/sec for link 1 to be transmitted alone and
176.70 Mbits/sec for link 3 to be transmitted alone. As such,
a simultaneous transmission of link 1 and link 3 can greatly
reduce the backlogs at links 1 and 3 in a short period of time
and thus leave more time for low energy TDMA transmissions
for the remaining backlogs in the same frame.

In Fig. 4 and 5, we report the numbers of frames in the four
modes among the 10,000 frames we simulated for ρ = 0.5
and 0.9, respectively. As predicted by the fluid approximation
in Section V-B, almost every frame should be operated in the
power-saving mode for ρ = 0.5 and in the mixed power-saving
mode for ρ = 0.9 when Tmax is very large. As shown in
Fig. 4, it is clear that almost every frame is operated in the
power-saving mode for Tmax ≥ 2.5ms. The “convergence”
for ρ = 0.5 to the fluid approximation is very fast in Fig. 4.
However, for ρ = 0.9, we can only see from Fig. 5 that the
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Fig. 3: Energy efficiency as a function of traffic intensity ρ
for Tmin = 1ms.
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Fig. 4: The numbers of frames in the four modes among the
10,000 frames for ρ = 0.5 and Tmin = 1ms.

number of frames in the mixed power-saving mode increases
as Tmax increases in the range of 0ms ≤ Tmax ≤ 5ms. On the
other hand, both the numbers of frames of the maximum power
mode and the power-saving mode decreases slowly as Tmax

increases (for Tmax ≥ 1ms). The “convergence” for ρ = 0.9
to the fluid approximation is very slow in Fig. 5. To verify
the “convergence” for ρ = 0.9, we further run simulations for
Tmax = 0.1s, 0, 3s and 0.5s. Among the 10,000 frames, only
the first two frames are not in the mixed power-saving mode
(as we start from an empty network).
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Fig. 5: The numbers of frames in the four modes among the
10,000 frames for ρ = 0.9 and Tmin = 1ms.

0 1 2 3 4 5
0

1

2

3

4

5

6

T
max

 (ms)

P
a

c
k
e

t 
D

e
la

y
 (

m
s
)

 

 
r=0.90

r=0.70

r=0.50

r=0.30

r=0.10

Original DFS

r=0.90

Original DFS

r=0.70

Original DFS

r=0.50

Original DFS

r=0.30

Original DFS

r=0.10

Fig. 6: Packet delay as a function of Tmax for Tmin = 1ms.

C. Packet delay

In Fig. 6, we show the average packet delay (as a function
of Tmax) for various traffic loads. As explained in Section V-B,
when Tmax is large, the average packet delay is roughly Tmax

for all the traffic loads in our simulations. Note that the average
packet delay for ρ = 0.1 is slightly larger than Tmax. This
might be due to the fact that there are only a small number of
packets served in a frame. For instance, if there are only two
packets served in a frame of length Tmax, then the first packet
is completed at Tmax/2 and the second packet is completed at
Tmax. Thus, the average completion time for these two packets
is 2Tmax/3, instead of being Tmax/2 predicted in Section V-B
for a large number of packets served in a frame.

One interesting phenomenon in Fig. 6 is the average packet
delay is not linear in Tmax in the range of 0 ≤ Tmax ≤
Tmin = 1ms. Moreover, the average packet delay is decreasing
in Tmax when Tmax is close to 0. This appears to be quite
counterintuitive at the first look. To see the insight of this,
we note that Algorithm 3 is always operated in the maximum
power mode when Tmax = 0. After carefully examining our

simulation results for Tmax = 0, we find that the frame sizes
for the frames in the maximum power mode are much shorter
than Tmin. As such, there might be no packet arrivals in a
frame operated in the maximum power mode and the next
frame is then operated in the empty queue mode with the frame
length Tmin = 1ms. Those packets that arrive in the next
frame now have to wait on average Tmin/2 = 0.5ms before
they can be served. By increasing Tmax slightly away from
0, we reduce the probability of getting into the empty queue
mode and thus reduce the packet delay induced by waiting in
a frame operated in the empty queue mode.

D. Comparison with the original DFS algorithm and the
MWM algorithm

In this section, we compare the Greenput algorithm with the
original DFS algorithm (without power saving) [13]–[16] and
the maximum weighted matching (MWM) algorithm [1]. The
MWM algorithm is a discrete-time algorithm. To select the
group to transmit in a time slot, the MWM algorithm solves
the following maximum weighted matching problem in (30)
at the beginning of each time slot:

max
g

arg
N∑
i=1

yi(t)ri(g,pmax). (30)

The length of a time slot for the MWM algorithm in
our simulation is set to be 0.1 ms. The setting for the
Greenput algorithm is the same as that in Section VI-A with
Tmin = 1ms. The traffic intensity ρ is set to be 0.5 in this
simulation (and the results for the other selections of ρ are
similar). As shown in Fig. 7, it is clear that both the energy
efficiency of the original DFS algorithm and that of the MWM
algorithm are much lower than that of our algorithm. This
is because both the original DFS algorithm and the MWM
algorithm are operated in the maximum power mode all the
time. On the other hand, the packet delay of the MWM
algorithm in Fig. 8 is smaller than the original DFS algorithm
and the Greenput algorithm. As the MWM algorithm solves
the maximum weighted matching problem in (30) in every
time slot, it is more effective in reducing packet delay (when
the length of a time slot is much smaller than the length of a
frame in the original DFS algorithm). From Fig. 7 and Fig. 8,
it is clear that the Greenput algorithm is capable of providing
the energy efficiency-delay tradeoff by adjusting the parameter
Tmax. As such, if a system can tolerate more delay, it can be
more energy efficient under the Greenput algorithm.

E. Delay-energy efficiency tradeoff

From Fig. 2 and Fig. 6, it seems reasonable to choose
Tmax = 1.5ms to obtain a good delay-energy efficiency
tradeoff (for Tmin = 1ms). As shown in Fig. 2, the energy
efficiency at Tmax = 1.5ms is quite close to its fluid limit
when the traffic load is moderate or high. On the other hand,
the average packet delay is also close to Tmax = 1.5ms for
various traffic loads. Increasing Tmax further beyond 1.5ms
increases the average packet delay linearly and it does not
increase energy efficiency very much.
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Fig. 7: Comparing energy efficiency with the original DFS
algorithm and the MWM algorithm.
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Fig. 8: Comparing packet delay with the original DFS algo-
rithm and the MWM algorithm.

F. The effect of Tmin

To understand the effect of Tmin, we increase Tmin from
1ms to 10ms in the next simulation. The simulation results
are shown in Fig. 9 for energy efficiency and Fig. 10 for packet
delay. Note that the energy efficiency curves in Fig. 2 and Fig.
9 are not that different when the load is moderate or high.
However, the energy efficiency curves for light loads are quite
different. In particular, for ρ = 0.1, the energy efficiency for
Tmin = 10ms is worse than that for Tmin = 1ms. This is
because it is quite likely to see an empty queue when the
load is extremely light. When there is an empty queue at the
beginning of a frame, a longer vacation time Tmin incurs a
larger backlog (after the vacation) and thus it is more likely to
enter the maximum power mode in the next frame when Tmax

is small. As such, when Tmin is large and Tmax is small, it
would not be energy efficient under light load.

To see the effect of Tmin on packet delay, we observe
from Fig. 2 and Fig. 9 that the average packet delay for
Tmin = 10ms is substantially larger than that for Tmin = 1ms
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Fig. 10: Packet delay as a function of Tmax for Tmin = 10ms.

when Tmax = 0. This is because the Greenput algorithm
is always in the maximum power mode when there is an
nonempty backlog at the beginning of a frame when Tmax = 0.
Now suppose that the nth frame is in the maximum power
mode. As observed from our simulation results, the frame size
in the maximum power mode, i.e., the time to clear the backlog
under the maximum power mode, is much smaller than Tmin.
Thus, it is quite likely that there are no arrivals during the nth

frame. As such, the next frame, i.e., the (n+1)th frame, is in
the empty queue mode and a large Tmin incurs large delay for
packets that arrive in the (n+1)th frame. This then increases
the average packet delay.

Finally, we note that in the range of 0 ≤ Tmax ≤ Tmin =
10ms in Fig. 10, the average packet delay is not linear in
Tmax. In fact, the average packet delay is decreasing in Tmax

when Tmax is close to 0. Such a phenomenon also appears in
Fig. 6 and it can be explained similarly as in Section VI-C.

G. The effect of a single persistent TCP flow

In this paper, we assume that the buffer for each link is
infinite so that it can be shown to be throughput optimal. How-
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Fig. 11: Energy efficiency in the presence of a TCP flow.

ever, in practice the buffer is finite, and the upper layer flows
usually run between TCP endpoints. To further understand the
effect of TCP flows to our Greenput algorithm, we add a single
persistent TCP to our simulation. For this, we assume that a
buffer with b bits is allocated to such a TCP flow. As TCP
flows are greedy by nature, we also assume that such a buffer
is persistently backlogged at the beginning of each frame. In
addition to the three users in the simulation, the TCP user (user
4) is placed at (497,119). The buffer size of the TCP flow b
is set to be 80k bits, 40k bits, 20k bits, respectively, in our
simulation. The arrival processes of the other three users are all
independent Poisson processes with λi = 67.56 packets/sec,
for i = 1, 2, 3. All the other parameters are the same as those
in Section VI-A with Tmin = 1ms.

In Fig. 11 and Fig. 12, we show the simulation results
for energy efficiency and packet delay of the Greenput al-
gorithm in the presence of a single TCP flow. One interesting
observation is that the presence of a single TCP flow with
a finite buffer b does not affect the stability of the system.
Its presence only affects energy efficiency and packet delay.
This is because the Greenput algorithm clears the backlogs
in every frame. As the buffer size of the TCP flow is b bits,
the number of bits that arrive during a frame from the TCP
flow is exactly b bits. Thus, the arrival rate of the TCP flow
is inversely proportional to the frame size and it approaches
0 when the frame size is increased to ∞. From Fig. 11, we
see that energy efficiency drops when b is increased. This is
because a larger b implies a larger arrival rate of the TCP flow
and that pushes the algorithm to be operated in the maximum
power mode more often. On the other hand, we see from Fig.
12 that packet delay is not greatly affected by the presence
of the TCP flow as the Greenput algorithm still clears the
backlogs of all the links in each frame with the frame size
roughly equal to Tmax in a stable system.

H. The effect of time-varying channel quality

In our simulation setting, we use the Shannon formula in
(3) to model the transmission rate in the AWGN channel.
There we assume that the channel quality is constant in time.
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Fig. 12: Packet delay in the presence of a TCP flow.

However, in reality, the channel quality can vary in time due
to many reasons. To further understand the effect of time-
varying channel quality to the performance of the Greenput
algorithm, we model the channel condition by a continuous-
time two-state Markov chain. Specifically, a channel has two
states: the ON state, and the OFF state. They correspond to
the good channel condition and the bad channel condition,
respectively. We assume that the expected sojourn time in the
ON (resp. OFF) state is equal to 1/µON (resp. 1/µOFF ). In
this simulation, we set 1/µON to be 8 ms, and consider three
choices of 1/µOFF : 0.25ms, 2ms and 8ms. The transmission
rate when the channel is in the ON state is determined by the
Shannon formula in (3). When the channel is in the OFF state,
we assume that the transmission rate is only 1/10 of that in
the ON state. We choose the intensity ρ = 0.1 so that even in
a bad channel condition, the overall system utilization is still
within the capacity region. The other parameters are the same
as those in Section VI-A with Tmin = 1ms.

In Fig. 13 and Fig. 14, we show the simulation results for
energy efficiency and packet delay of the Greenput algorithm
with a time-varying channel. It is clear that when we increase
the expected sojourn time in the OFF state, i.e., 1/µOFF , the
energy efficiency decreases and the expected delay increases.
This is because the system is operated at a point near the
capacity in the OFF state, and thus the system is in the
maximum power mode most of the time when the channel
is in the OFF state. On the other hand, we see from Fig. 14
that the expected delay increases moderately when 1/µOFF is
increased to 8ms. This is because the Greenput algorithm still
clears the backlogs of all the links in each frame even though
the transmission rate in the OFF state is only 1/10 of that in
the ON state.

VII. CONCLUSION

Motivated by the need of energy efficient communication
in wireless networks, in this paper we proposed the Greenput
algorithm that takes power allocation into account. As the
previous DFS algorithms in [13]–[16], the Greenput algorithm
is also throughput-optimal for any finite threshold Tmax and
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Fig. 13: Energy efficiency when channel quality varies.
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minimum frame length Tmin. In addition to the stability result,
we also performed a fluid approximation analysis for energy
efficiency and average packet delay when Tmax is very large.
To show the effects of Tmax and Tmin on the delay-energy
efficiency trade-off, we conducted extensive computer simula-
tions by using the Shannon formula as the channel model in
a wireless network. Our simulation results showed that both
energy efficiency and average packet delay are quite close to
the fluid approximations even when Tmax is moderately large.

There are several possible extensions of this work:
(i) Arrival process: here we assume that the arrival processes
are independent Poisson processes. Such an assumption can
be easily extended to the stochastic processes in [13]. Such
an extension includes finite state Markov arrival processes,
renewal processes, and autoregressive processes.
(ii) Multihop networks: here we only consider single-hop
wireless networks. To extend our work to a multihop network
with per flow queueing for multicast flows, one might consider
the hierarchical smooth schedule in [15] to provide guaranteed
rate services inside the network. By doing so, the number of
packets in any internal buffer is bounded by a deterministic
constant.

(iii) Traffic isolation: Like the previous DFS algorithms, the
Greenput algorithm does not provide traffic isolation. When
the traffic is not admissible, the expected frame size cannot be
bounded. As all the links are coupled through the minimum-
time scheduling problem that determines the frame size at the
beginning of each frame, the performance could be very bad
for all the links.
(iv) The tradeoff between energy efficiency and delay in
practical systems: in our analysis, we assume that (A1) and
(A2) hold. Though these two assumptions are valid for many
channel models, including the AWGN channel used in the
simulation setting, they may not be true for practical systems.
It would be of interest to study the tradeoff between energy
efficiency and delay in practical systems, such as the OFDMA
systems (see e.g., [29], [30]).
(v) Multiple TCP flows: in Section VI-G, we studied the effect
of a single persistent TCP flow. We observed that energy
efficiency drops when the buffer size b is increased. This is
because a larger TCP buffer pushes the Greenput algorithm
to be operated in the maximum power mode more often. For
the case that there are K persistent TCP flows with buffer
sizes b1, b2, . . . , bK , the effect of these K persistent TCP flows
to the Greenput algorithm is the same as a single persistent
TCP flow with buffer

∑K
k=1 bk (as there are

∑K
k=1 bk bits

backlogged at the beginning of each frame). However, if TCP
flows are not persistent, then the buffers may not be full at the
beginning of each frame. For such a more realistic scenario,
the performance of the Greenput algorithm requires further
study.

REFERENCES

[1] L. Tassiulas and A. Ephremides, “Stability properties of constrained
queueing systems and scheduling policies for maximum throughput in
multihop radio networks,” IEEE Transactions on Automatic Control, vol.
31, no. 12, pp. 1936–1948, 1992.

[2] N. McKeown, A. Mekkittikul, V. Anantharam, and J. Walrand, “Achieving
100% throughput in an input-queued switch,” IEEE Transactions on
Communications, vol. 47, no. 8, pp. 1260–1267, 1999.

[3] J. G. Dai and B. Prabhakar, “The throughput of data switches with and
without speedup,” Proceedings of IEEE INFOCOM 2000.

[4] M. Armony and N. Bambos, “Queueing dynamics and maximal through-
put scheduling in switched processing systems,” Queueing systems, vol.
44, no. 3, pp. 209–252, 2003.

[5] A. L. Stolyar, “Maxweight scheduling in a generalized switch: State space
collapse and workload minimization in heavy traffic,” Annals of Applied
Probability, vol. 14, no. 1, pp. 1–53, 2004.

[6] P. Chaporkar and S. Sarkar, “Stable scheduling policies for maximizing
throughput in generalized constrained queueing networks, ” Proceedings
of IEEE INFOCOM 2006.

[7] M. J. Neely, E. Modiano, and C. E. Rohrs. “Dynamic power allocation and
routing for time-varying wireless networks,” IEEE Journal on Selected
Areas in Communications, vol. 23, no. 1, pp. 89–103, 2005.

[8] M. J. Neely, “Energy optimal control for time-varying wireless networks,”
IEEE Transactions on Information Theory, vol. 52, no. 7, pp. 2915–2934,
2006.

[9] P. Giaccone, E. Leonardi, and D. Shah, “Throughput region of finite-
buffered networks,” IEEE Transaction on Parallel and Distributed Sys-
tems, vol. 18, no. 2, Feb. 2007.

[10] L. B. Le, E. Modiano, and N. B. Shroff, “Optimal control of wireless
networks with finite buffers, ” Proceedings of IEEE INFOCOM 2010.

[11] L. Jiang and J. Walrand, “A distributed CSMA algorithm for throughput
and utility maximization in wireless networks,” IEEE/ACM Transactions
on Networking, vol.18, no. 3, pp. 960–972, 2010.

[12] J. Ni, B. Tan, and R. Srikant, “Q-CSMA: Queue-length-based
CSMA/CA algorithms for achieving maximum throughput and low delay
in wireless networks,” IEEE/ACM Transactions on Networking, vol. 20,
no. 3, pp. 825–836, 2012.



IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. XX, NO. X, AUGUST 20XX 14

[13] C. -S. Chang, Y. -H. Hsu, J. Cheng, and D. -S. Lee, “A dynamic frame
sizing algorithm for CICQ switches with 100% throughput, ” Proceedings
of IEEE INFOCOM 2009.

[14] C. M. Lien and C. S. Chang, “Generalized dynamic frame sizing
algorithm for finite-internal-buffered networks, ” IEEE Communication
Letters, vol. 13, no. 9, Sep. 2009.

[15] C.-M. Lien, C.-S. Chang, J. Cheng, and D.-S. Lee, “Maximizing
throughput in wireless networks with finite internal buffers,” Proceedings
of IEEE INFOCOM 2011.

[16] C.-M. Lien, C.-S. Chang, and D.-S. Lee, “A universal stabilization
algorithm for multicast flows with network coding,” IEEE Transactions
on Communications, vol. 61, no. 2, pp. 712–721, 2013.

[17] S.-M. He, S.-T. Sun, H.-T. Guan, Q. Zheng, Y.-J. Zhao, and W.Gao, “On
guaranteed smooth switching for buffered crossbar switches,” IEEE/ACM
Transactions on Networking, vol. 16, no. 3, pp. 718-731, June 2008.

[18] Y. Chen, S. Zhang, S. Xu, and G. Y. Li, “Fundamental trade-offs on
green wireless networks,” IEEE Communications Magazine, vol. 49, no.
6, pp. 30–37, 2011.

[19] C. Han, T. Harrold, S. Armour, I. Krikidis, S. Videv, P. M. Grant, H.
Haas, et al. “Green radio: radio techniques to enable energy-efficient
wireless networks,” IEEE Communications Magazine, vol. 49, no. 6, pp.
46–54, 2011.

[20] R. Mahapatra, Y. Nijsure, G. Kaddoum, N. U. Hassan and C. Yuen,
“Energy efficiency tradeoff mechanism towards wireless green Commu-
nication: a survey,” IEEE Communacations Surveys & Tutorials, vol. 18,
no. 1, pp. 686–705, 2016.

[21] V. Angelakis, A. Ephremides, Q. He and D. Yuan, “Minimum-time link
scheduling for empty wireless systems: solutions characterization and
algorithmic framework,” IEEE Transactions on Information Theory, vol.
60, no. 2, pp. 1083–1100, 2014.

[22] G. D. Nguyen, S. Kompella, C. Kam, J. E. Wieselthier and A.
Ephremides, “Minimum-energy link scheduling for empty wireless ne-
towrks,” Proceedings of WiOpt 2015, pp. 207–212.

[23] S. W. Fuhrmann and R. B. Cooper, “Stochastic decompositions in the
M/G/1 queue with generalized vacations,” Operations Research, vol. 33,
no. 5, pp. 1117–1129, 1985.

[24] A. Federgruen and H. Groenevelt, “The greedy procedure for resource
allocation problems: Necessary and sufficient conditions for optimality,”
Operations Research, vol. 34, no. 6, pp.909-918, 1986.

[25] A. K. Parekh and R. G. Gallager, “A generalized processor sharing
approach to flow control in integrated service networks: the multiple node
case,” IEEE/ACM Transactions on Networking, vol. 2, pp. 137-150, 1994.

[26] H. Sariowan, R.L. Cruz and G.C. Polyzos, “Scheduling for Quality of
Service Guarantees via Service Curves,” Proceedings of the International
Conference on Computer Communications and Networks, 1995.

[27] C. S. Chang, Performance Guarantees in Communication Networks,
London: Springer-Verlag, 2000.

[28] G. Sharma, R. R. Mazumdar and N. B. Shroff, “On the complexity of
scheduling in wireless networks,” Proceedings of the 12th annual inter-
national conference on Mobile computing and networking(MOBICOM),
pp. 227–238, 2006.

[29] D. W. K. Ng, E. S. Lo, and R. Schober, “Wireless information and
power transfer: Energy efficiency optimization in OFDMA systems,”
IEEE Transactions on Wireless Communications, vol. 12, no. 12, pp.
6352–6370, 2013.

[30] L. Venturino, A. Zappone, C. Risi, S. and Buzzi, “Energy-efficient
scheduling and power allocation in downlink OFDMA networks with base
station coordination,” IEEE transactions on wireless communications, vol.
14, no. 1, pp. 1–14, 2015.

Cheng-Shang Chang (S’85-M’86-M’89-SM’93-
F’04) received the B.S. degree from National Taiwan
University, Taipei, Taiwan, in 1983, and the M.S.
and Ph.D. degrees from Columbia University, New
York, NY, USA, in 1986 and 1989, respectively, all
in electrical engineering.

From 1989 to 1993, he was employed as a
Research Staff Member with the IBM Thomas J.
Watson Research Center, Yorktown Heights, NY,
USA. Since 1993, he has been with the Department
of Electrical Engineering, National Tsing Hua Uni-

versity, Taiwan, where he is a Tsing Hua Distinguished Chair Professor. He is
the author of the book Performance Guarantees in Communication Networks
(Springer, 2000) and the coauthor of the book Principles, Architectures and
Mathematical Theory of High Performance Packet Switches (Ministry of
Education, R.O.C., 2006). His current research interests are concerned with
network science, high-speed switching, communication network theory, and
mathematical modeling of the Internet.

Dr. Chang served as an Editor for Operations Research from 1992 to
1999, an Editor for the IEEE/ACM TRANSACTIONS ON NETWORKING from
2007 to 2009, and an Editor for the IEEE TRANSACTIONS ON NETWORK
SCIENCE AND ENGINEERING from 2014 to 2017. He is currently serving as
an Editor-at-Large for the IEEE/ACM TRANSACTIONS ON NETWORKING.
He is a member of IFIP Working Group 7.3. He received an IBM Outstanding
Innovation Award in 1992, an IBM Faculty Partnership Award in 2001, and
Outstanding Research Awards from the National Science Council, Taiwan, in
1998, 2000, and 2002, respectively. He also received Outstanding Teaching
Awards from both the College of EECS and the university itself in 2003. He
was appointed as the first Y. Z. Hsu Scientific Chair Professor in 2002. He
received the Merit NSC Research Fellow Award from the National Science
Council, R.O.C. in 2011. He also received the Academic Award in 2011
and the National Chair Professorship in 2017 from the Ministry of Education,
R.O.C. He is the recipient of the 2017 IEEE INFOCOM Achievement Award.

Duan-Shin Lee (S’89-M’90-SM’98) received the
B.S. degree from National Tsing Hua University,
Taiwan, in 1983, and the MS and Ph.D. degrees
from Columbia University, New York, in 1987 and
1990, all in electrical engineering. He worked as a
research staff member at the C&C Research Labo-
ratory of NEC USA, Inc. in Princeton, New Jersey
from 1990 to 1998. He joined the Department of
Computer Science of National Tsing Hua University
in Hsinchu, Taiwan, in 1998. Since August 2003, he
has been a professor. He received a best paper award

from the Y.Z. Hsu Foundation in 2006. His current research interests are social
networks, network science, game theory and data science. He is a senior IEEE
member.

Chia-Kai Su received his B.S. degree in the Depart-
ment of Communications Engineering at Feng Chia
University, Taichung, Taiwan, in 2015. He is cur-
rently a MS student in the Institute of Communica-
tions Engineering at National Tsing Hua University,
Hsinchu, Taiwan.



IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. XX, NO. X, AUGUST 20XX 15

APPENDIX

APPENDIX A

In this section, we prove Theorem 1.
Suppose {(t0g,p0

g), g ∈ H} is an optimal schedule for
the minimum-energy scheduling problem in (16) with the
constraint in (18) being removed. We will construct an optimal
TDMA schedule from this schedule so that the amount of
energy consumed by this TDMA schedule is not greater
than that by the original optimal schedule. If the original
optimal schedule is not a TDMA schedule, then there exists
some group g with t0g > 0 and |g| > 1. Assume that the
group g contains links i1, i2, . . . , i|g| and the amount of data
transmitted during the time interval of length t0g for these links
are di1 , di2 , . . . , di|g| , respectively. Clearly, we have

dik ≤ t0g · rik(g,p0
g), k = 1, 2, . . . , |g|. (31)

Also, the amount of energy for the original optimal schedule
to transmit the amount of data dik on link ik is

t0g · p0g,ik . (32)

Now we consider another schedule that transmits
di1 , di2 , . . . , di|g| separately. Specifically, the amount of data
dik is transmitted by using rik({ik},p0

g) for k = 1, 2, . . . , |g|.
For this new schedule, the duration to transmit di,k is
di,k/rik({ik},p0

g) and the amount of energy to transmit di,k
is

di,k
rik({ik},p0

g)
· p0g,ik .

Note from (A2) and (31) that

di,k
rik({ik},p0

g)
· p0g,ik ≤ di,k

rik(g,p
0
g)

· p0g,ik ≤ t0g · p0g,ik . (33)

Thus, the amount of energy consumed by this new schedule
is not greater than that of the original schedule. Repeating the
same argument for every group with more than one link yields
a schedule that does not have simultaneous transmissions.

Note that in this new TDMA schedule there might be
several transmissions of a particular link with different power
allocations and time durations. As such, it may not be a simple
TDMA schedule. The last step is to replace multiple transmis-
sions of a particular link with different power allocations and
time durations by a single transmission with a fixed power. By
doing so, it becomes a simple TDMA schedule so that it can
be a feasible solution of the minimum-energy problem in (16).
Without loss of generality, suppose that for link i, there are
transmissions with power pi,ℓ and duration ti,ℓ, ℓ = 1, . . . , Li.
The amount of energy consumed by link i is

Li∑
ℓ=1

ti,ℓ · pi,ℓ,

and the amount of data transmitted by link i is

Li∑
ℓ=1

ti,ℓ · ri(pi,ℓ).

Now we replace these Li transmissions on link i by a single
transmission with power

p̄i =

∑Li

ℓ=1 ti,ℓ · pi,ℓ∑Li

ℓ=1 ti,ℓ
.

Since we assume that ri(pi) is concave in the allocated power
pi, it follows that

ri(p̄i) ≥
∑Li

ℓ=1 ti,ℓ · ri(pi,ℓ)∑Li

ℓ=1 ti,ℓ
.

This then implies that the time to transmit
∑Li

ℓ=1 ti,ℓ · ri(pi,ℓ)
on the link i by a single transmission with power p̄i is
not greater than

∑Li

ℓ=1 ti,ℓ. As such, the amount of energy
consumed by single transmission with power p̄i is also not
greater than before.

APPENDIX B
In this section, we prove Theorem 2.
For the proof of Theorem 2, we need the following upper

bound on the frame sizes.
Lemma 3: For both the generic DFS algorithm in Algorithm

1 and the Greenput algorithm in Algorithm 3, we have

Tn ≤ max
1≤i≤N

[yi(n)
µi

]
+ C, (34)

where µi is the stable service rate for link i in (9).
Proof. Let us first consider the generic DFS algorithm in
Algorithm 1. If yi(n) = 0 for all i = 1, 2, . . . , N , then we
know Tn = Tmin ≤ C and the bound in (34) holds trivially.
Now assume there exists some i such that yi(n) > 0. If
Tn = T ′′

n , then we also know that Tn ≤ Tmax ≤ C from the
constraint in (18) of the minimum-energy scheduling problem.
Thus, we only need to consider the case that Tn = T ′

n. In this
case, T ′

n is the minimum clearance time defined in (14). As
such, T ′

n is upper bounded by the time needed to empty all the
backlogs by a suboptimal way that uses the stable service rate
µi for each link i. Note from (10) and (A3) that µi > λi > 0.
In this case, we then have

Tn = T ′
n ≤ max

1≤i≤N

[yi(n)
µi

]
. (35)

For the Greenput algorithm, note that the length of a frame
cannot be larger than C for the empty queue mode, the power-
saving mode, and the mixed power-saving mode. For the
maximum power mode, the inequality in (35) also holds.

Now we prove Theorem 2. The proof of Theorem 2 is
basically the same as the proof for the large deviation bound
of the minimum clearance time in [15]. For θ > 0, we have
from (34) that

eθTn+1 ≤ max
1≤i≤N

exp

[
θ

(
yi(n+ 1)

µi
+ C

)]
≤

∑
1≤i≤N

exp

[
θ

(
yi(n+ 1)

µi
+ C

)]
.

In view of Algorithms 1 and 3, the backlog yi(n+1) for link
i is simply the arrivals in [τn, τn+1].

yi(n+ 1) = Ai(τn, τn+1), (36)
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where Ai(τn, τn+1) is a Poisson random variable with mean
λiTn. It then follows that

E[eθTn+1 |Tn] ≤
∑

1≤i≤N

eθC{
E

[
exp

(
θAi(τn, τn+1)

µi

) ∣∣∣Tn

]}
. (37)

Notice that

logE

[
exp

(
θAi(τn, τn+1)

µi

) ∣∣∣Tn

]
= λiTn(e

θ/µi − 1)

≤ ρµiTn(e
θ/µi − 1), (38)

where we use (10) in the last inequality.
Hence, we have that

E
[
eθTn+1 |Tn

]
≤ eθC

∑
1≤i≤N

exp
[
ρTnµi(e

θ/µi − 1)
]
. (39)

It was shown in [15] by Taylor’s expansion that for fixed θ >
0, µi(e

θ/µi − 1) decreases monotonically in µi. As such,

µi(e
θ/µi − 1) ≤ µmin(e

θ/µmin − 1) (40)

for all 1 ≤ i ≤ N . From (39) and (40), we have that

E
[
eθTn+1 |Tn

]
≤ eθCN exp

(
ρTnµmin(e

θ/µmin − 1)
)
. (41)

Taking expectation on both sides of (41) yields

E[eθTn+1 ] ≤ eθCNE
[
exp(ρTnµmin(e

θ/µmin − 1))
]
. (42)

According to (27), we have that

ρµmin(e
θ∗/µmin − 1) = θ∗(ρ+ 1)/2,

and (42) can be rewritten (with θ being replaced by θ∗) as

E[eθ
∗Tn+1 ] ≤ eθ

∗CNE[eθ
∗Tn(1+ρ)/2]. (43)

Since logE[eθTn ] is convex in θ (see e.g., [27, Proposition
7.1.8]) and ρ < 1, we have that

logE[eθ
∗Tn(1+ρ)/2] ≤ 1 + ρ

2
logE[eθ

∗Tn ]. (44)

Using (44) and (43) yields

logE[eθ
∗Tn+1 ] ≤ logN + Cθ∗ +

1 + ρ

2
logE[eθ

∗Tn ]. (45)

Since T1 = Tmin ≤ C (as the network is started from an
empty system), one can verify (26) from induction by using
(45). Finally, we use (26) to show the bound of the frame
size in Theorem 2. Since eθx is convex in x, it follows from
Jensen’s Inequality that

E[Tn] ≤
1

θ∗
logE[eθ

∗Tn ] ≤ 2 logN + 2Cθ∗

θ∗(1− ρ)
. (46)


