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Nonadaptive Deterministic Asynchronous Conflict
Resolution
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Abstract—In this letter, we consider the conflict resolution
problem in a discrete-time multiple access channel. Our focus is
the duration of achieving the first successful transmission, called
the conflict resolution time. Assume that each device has a unique
ID. Our proposed nonadaptive deterministic algorithms can
guarantee deterministic upper bounds on the conflict resolution
time even when the clocks of the devices in the channel are not
synchronized. Furthermore, on average, our proposed algorithms
achieve short conflict resolution time on par with existing
randomized algorithms (e.g. independent fair coin-flipping) in
the literature.

Index Terms—multiple access, nonadaptive algorithms, worst
case analysis.

I. INTRODUCTION

We consider the Asynchronous Conflict Resolution (ACR)
problem in a multiple access channel. Assume there are (at
most) N devices in a multiple access channel and each
device has a unique ID, an integer in [0, N − 1] [1]–[3].
Time is assumed to be discrete and partitioned into time
slots. If two or more active devices transmit in the same
time slot, a collision happens. Collision causes the transmitted
messages to be corrupted. On the other hand, if none of
the active devices transmit in a time slot, then this time
slot is simply wasted. A message can only be successfully
transmitted only when exactly one active device transmits
it in one time slot. The objective of the conflict resolution
problem is to schedule these active devices so that messages
can be transmitted successfully. In practice, conflict resolution
is typically dealt with by random access methods, such as
ALOHA, CSMA and Ethernet [4], [5]. In the literature, tree
algorithms using channel feedback and coordinating active
devices can resolve conflicts within O

(
n + log2(N/n)

)
time

slots (where 2 ≤ n ≤ N ) [6], [7]. If n is known, then
there exist non-adaptive algorithms (i.e. they do not depend
on the feedback information) with the same performance
guarantee [8]. However, the key assumptions in these deter-
ministic conflict resolution algorithms is that all clocks of these
active devices are perfectly synchronized. Clearly, the above
deterministic conflict resolution algorithms in the literature
usualy cannot be directly applied. One can only apply random
access algorithms instead, but the biggest drawback is the
lack of a deterministic lower bound for the number of time
slots achieving a successful broadcast. Our objective is to
propose deterministic conflict resolution algorithms with a
guaranteed lower bound on the number of time slots to achieve
a successful broadcast. Our result may be useful in upcoming
5G networks [9].
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II. ACR WITHOUT UNIQUE IDS

A unique identifier (ID) refers to a string associated to a
device. If each device has a different ID, then this ID can be
used to derive a number related to the transmission time in
the design of conflict resolution. Therefore, the assumption of
unique IDs can greatly simplify the design of asynchronoous
conflict resolution. Now we first consider the general case
where there are any number of active devices without unique
IDs. Suppose that there are n active, unsynchonized devices
among all N devices. For simplicity, the transmission schedule
of the jth device can be represented as a sequence of binary
variables {sj(t), t ≥ 1} for j = 1, 2, . . . , N , in which the jth

device transmits a message at its local time t if it is active
and sj(t) = 1. The transmission schedule is nonadaptive if it
does not depend on the feedback of the channel. First we are
to show that the conflict resolution time of n devices cannot
be (upper) bounded by a constant if they both follow the
same (randomized) conflict resolution algorithm. This result
is presented in Theorem 1. We need to make some definitions
in order to facilitate the presentation of Theorem 1.

Definition 1: A stationary sequence is a random sequence
whose joint probability distribution is invariant over time. If
there is an algorithm that generates a stationary binary random
sequence {s(t), t ≥ 1}.Such an algorithm is called a stationary
algorithm.

Definition 2: Suppose n active devices then independently
generate their transmission schedules using such a stationary
algorithm. Let dj , i = 1, 2, . . . , n, be the clock drift of the jth

device to the global clock. Then the conflict resolution time
Tsyn is defined as

Tsyn = min{t ≥ 1|there exists 1 ≤ j ≤ n, such that
sj(t + dj) = 1, sk(t + dk) = 0,∀k 6= j}. (1)

Now we introduce our first result.
Theorem 1: If n unsynchronized devices with clock drifts

dj (j = 1, 2, . . . , n) independently generate their transmission
schedules using a stationary algorithm, then the tail distribu-
tion of the conflict resolution time Tsyn in (1) has the following
lower bound:

P(Tsyn ≥ t + 1) ≥ 1

2t
. (2)

As a result, Theorem 1 clearly shows that it not even possible
to find a stationary algorithm such that the conflict resolution
time of the two active devices is bounded by a constant (since
(2) implied that P(Tsyn ≥ c) 6= 0 for any constant c > 0), let
alone n ≥ 3.
Proof. Let Yj(t) =

(
sj(1), sj(2), . . . , sj(t)

)
, j = 1, 2, . . . , n,

and Γ(t) = {0, 1}t. Since all devices use the same algorithm
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independently, these transmission schedules {sj(t), t ≥ 1},
j = 1, 2, . . . , n are independent and have the same stationary
joint distribution. If Y1(t + d1) = Y2(t + d2) = . . . = Yn(t +
dn), then the conflict resolution time T in (1) must be at least
t + 1, which implies that P(Tsyn ≥ t + 1) ≥ P

(
Y1(t + d1) =

Y2(t + d2) = . . . = Yn(t + dn)
)
.

P(Tsyn ≥ t + 1)

≥ P
(
Y1(t + d1) = Y2(t + d2) = . . . = Yn(t + dn)

)
=

∑
y∈Γ(t)

P
(
Y1(t + d1) = y, . . . , Yn(t + dn) = y

)
=

∑
y∈Γ(t)

P
(
Y1(t + d1) = y

)
· · ·P

(
Yn(t + dn) = y

)
=

∑
y∈Γ(t)

P
(
Y1(t) = y

)
· · ·P

(
Yn(t) = y

)
=

∑
y∈Γ(t)

P
(
Y1(t) = y

)n
. (3)

Note that |Γ(t)| = 2t. Using the Jensen inequality in (3) yields

P(Tsyn ≥ t + 1) ≥ (2t)
∑

y∈Γ(t)

1

2t
P
(
Y1(t) = y

)n
≥ (2t)

( ∑
y∈Γ(t)

1

2t
P
(
Y1(t) = y

))n

=
1

2(n−1)t
. (4)

Note that the lower bound in (2) is in fact achieved by
flipping independent fair coins at each time. This result shows
that flipping independent fair coins is the best strategy for
these devices to resolve their conflict if they follow the same
stationary algorithm independently.

Theorem 1 shows that the conflict resolution time of any
number of devices cannot be bounded by a constant if they all
follow the same conflict resolution algorithm. However, since
each device has a unique ID, if we take advantage of that the
conflict resolution time can be bounded. More precisely, if we
can use this unique ID as an input to the stationary algorithm
to generate dependent transmission schedules, the conflict
resolution time may be upper bounded by a constant. In fact,
our proposed method (Algorithm 1, to be introduced later)
is the first deterministic asynchronous conflict resolution
algorithm with a theoretically proven upper bound.

III. ACR WITH UNIQUE IDS

In order to establish an upper bound for the conflict resolu-
tion time, we make use of the unique ID property and propose
a nonadaptive deterministic conflict resolution algorithm. For
simplicy, we focus on a special type of algorithms such that
each device transmits exactly twice with a predefined time
gap between these two transmissions as follows. Assume that
the jth device has ID j − 1, j = 1, 2, . . . , N . For the jth

device with ID j − 1, it is also given two positive integers:
the gap between two transmissions uj and the period p. The
transmission schedule of the jth device according to its own
local time tj is given by

sj(tj) =

{
1, if if tj ≡ 0, or tj ≡ uj(mod p)
0, otherwise. (5)

Clearly, for any p consecutive time slots, an active device j
transmits exactly twice during that time period, and the gap
between these two transmissions in that time period is either
uj or p − uj . Now we define the concept of an effective set
of gaps as follows.

Definition 3: Let there be n unsynchornized devices and
each device j transmits exactly twice with gaps uj (1 ≤ j ≤ n)
according to Algorithm 1. Let tj denote the jth local time.
Then the local time tj is equivalent to the global time tj + dj ,
where dj is the clock drift of the jth device. (Note that the jth

device has no information about dj .) Then {uj |1 ≤ j ≤ n} is
an effective set of gaps with respect to p if, for any {dj |1 ≤
j ≤ N}, there exists 1 ≤ j′ ≤ N ; 1 ≤ tj′ ≤ p such that

sj′(tj′) = 1, si(tj′ + dj′ − di) = 0, ∀i 6= j′. (6)

Example: Choose N = 4. There are only a few combina-
tions and we observe that {1, 2, 4, 6} is an effective set of gaps
with respect to p = 7.

Given any number of devices N . The largest element in
the effective set of gaps corresponds to the maximum time
to resolve the conflict. In other words, N is an upper bound
for the conflict resolution time. We present our nonadaptive
deterministic conflict resolution algorithm in Algorithm 1.

Algorithm 1 The nonadaptive deterministic conflict resolution
algorithm for any arbitrary number of active devices

Input: N ∈ N number of devices. Each device has a unique
ID. An effective set of gaps U = {uj |1 ≤ j ≤ N}.

Output: A local transmission schedule sj(tj) for each device
j = 1, 2, . . . , N with its local time tj .

1:
Define sj(tj) =

{
1, if tj ≡ 0, or tj ≡ uj(mod p)
0, otherwise.

2: Schedule the jth device to transmit at its local time tj if
it is active and sj(tj) = 1.

The correctness of Algorithm 1 is presented in the following
theorem.

Theorem 2: If U is an effective set of gaps with respect
to p, then Algorithm 1 produces a conflict-resolving schedule
with a guaranteed conflict resolution time p− 1.
Proof. Since U = {uj |1 ≤ j ≤ N} is an effective set of
gaps, there exists j′ such that, for any {dj |1 ≤ j ≤ N},
there exists 1 ≤ j′ ≤ N ; 1 ≤ tj′ ≤ p such that sj′(tj′) =
1, si(tj′ +dj′−di) = 0, ∀i 6= j′. Since sj′(tj′) = 1, device j′

transmits at locat time tj′ . According to the definition of dj′ ,
device j′ actually transmits at global time tj′ +dj′ . Moreover,
none of the devices transmits at global time dj′ since si(tj′ +
dj′−di) = 0, ∀i 6= j′. Conflict is thus resolved at global time
dj′ . Now since every active device transmits exactly twice in
a period p, it is impossible to have exactly one successful
transmission within a period p. Thus, we conclude that there
are at least two successful transmissions within a period p. This
then implies that the conflict resolution time of Algorithm 1
is upper bounded by p− 1.
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Algorithm 1 is nonconstructive since its correctness depends
on the selection of effective sets of gaps. In fact, it is very
difficult to find such a set. However, the following theorem
guarantees the existence as it provides a method to construct
one.

Theorem 3: If we choose U = {u1, . . . , uN} such that

u1 = 1, uj >

j−1∑
k=1

uk ∀ 2 ≤ j ≤ N, p = uN + 1, (7)

Then U is an effective set of gaps with respect to p. In
particular, {1, 2, 4, . . . , 2n} is an effective set of gaps for any
n ∈ N.
Proof. We first show that there is at least one successful
transmission within a period p for any number of active
devices 2 ≤ n ≤ N . We prove this by contradiction. Suppose
there is no successful transmission within a period p. Since
each device transmits twice in a period, these transmissions
must collide with others. Specifically, if we start from some
device j1, then its two transmissions in the period must
collide with the transmissions from other devices. Suppose
the first transmission of the jth

1 device in the period is at
some global time T0, i.e., sj0(T0 − dj1) = 1. According
to the transmission policy, its second transmission is time
T1 ≡ T0 +uj1(mod p), i.e., sj0(T0−dj1 +uj1) = 1. As there
is no successful transmission within this period, there must
be another device j2 that also transmits at global time T1.
Since the transmission gap for device j2 is uj2 , we know that
device j2 transmits another message at global time T2. Either
T2 ≡ T1+uj2(mod p) or T2 ≡ T1−uj2(mod p) in this period.
In either case, we can represent T2 ≡ T1 +(−1)k2uj2(mod p)
for some binary variable k2. Again, at global time T2, there
must be another device j3 that also transmits a message.
Once again, device j3 transmits another message at time T3

with T3 ≡ T2 + (−1)k3uj3(mod p) for some binary variable
k3. Since there are only a finite number of active devices,
if we repeat this process there must be a repetition in the
set {Tj |j = 1, . . . , N} for the following reason. If there
exists j′ ≤ N such that Tj′ 6≡ Ti(mod p) for any i. Let
tj′ = Tj′−dj′ Then we have sj′(tj′) = 1, sj(tj′ +dj′−di) = 0
for all i. This leads to a contradition. Therefore, let i < i′ ≤ N
be the first repetition such that Ti ≡ Ti′(mod p). Therefore,
we have{

Ti ≡ T0 + (−1)k1uj1 + · · ·+ (−1)kiuji(mod p).
Ti′ ≡ T0 + (−1)k1uj1 + · · ·+ (−1)ki′uji′ (mod p).

(8)

Ti′ ≡ Ti + (−1)kiuji + · · ·+ (−1)ki′uji′ (mod p). (9)

Since Ti ≡ Ti′(mod p), we have

(−1)ki+1uji+1 + · · ·+ (−1)ki′uji′ ≡ 0 (mod p). (10)

Let J = max{jl|i < l ≤ i′} be the largest ID of these devices.
We have

uJ ≡
∑

i<l≤i′,jl 6=J

(−1)kJ+klujl (mod p). (11)

p > uJ >
∑

i<l≤i′
ujl >

∑
i<l≤i′,jl 6=J

(−1)kJ+klujl (12)

−p < −uJ < −
∑

i<l≤i′
ujl <

∑
i<l≤i′,jl 6=J

(−1)kJ+klujl (13)

0 < uJ < p (14)

(11),(12),(13),(14) together imply

uJ =
∑

i<l≤i′,jl 6=J

(−1)kJ+klujl , (15)

which contradicts to (7). Thus we know that U is an effective
set of gaps with respect to p.
The condition (7) is vital as it provides a constructive method

for finding an effective set of gaps, which guarantees a
deterministic upper bound for the n-party conflict resolution
problem. The problem of finding the optimal effecitve set of
gaps is quite complicated. We now show some partial results.
We need to make the following definition to facilitate our
discussions.

Definition 4: in a set of gaps U , a subset H =
{u1, . . . , un} ⊂ U forms a collision subset if H can be
partitioned into two subsets H1,H2 such that

∑
u∈H1

u =∑
u∈H2

u.
We introduce the following result.
Theorem 4: Let U be a set of gaps. If there exists two

subsets H1,H2 of U , such that H1 ∩H2 = ∅, H1 ∪H2 ⊂ U ,
and H1,H2 both form collision subsets. Then U is not an
effective set of gaps with respect to any p > 0.
Proof. Let H1,H2 be two disjoint collision subsets.
Without loss of generality, we may assume H1 =
{v1, . . . , vh, vh+1, . . . , vh′} such that v1 + · · ·+ vh = vh+1 +
· · · + vh′ , and H2 = {v′1, . . . , v′l, v′l+1, . . . , v

′
l′} such that

v′1 + · · · + v′l = v′l+1 + · · · + v′l′ . We divide into two cases
(1) U − H1 ∪ H2 6= ∅ (2) U − H1 ∪ H2 = ∅. For case (1),
we sort U as U = {v1, . . . , vh′ , v′1, . . . , v

′
l′ , w1, . . . , wq}. More

precisely, U = {uj}j∈I
(
I = [1, h′ + l′ + q]

)
such that

uj =


vj , if 1 ≤ j ≤ h′

v′j−h′ , if h′ + 1 ≤ j ≤ h′ + l′

wj−h′−l′ , otherwise.
(16)

Moreover, we define {dj}j∈I such that

dj =



0, if j = 1, h + 1, h′ + 1, h′ + l + 1∑j−1
i=1 ui, if 2 ≤ j ≤ h∑j−1

i=h+1 ui, if h + 2 ≤ j ≤ h′∑j−1
i=h′+1 ui, if h′ + 2 ≤ j ≤ h′ + l′∑j−1

i=h′+l′+2 ui, if h′ + l′ + 2 ≤ j ≤ h′ + l′ + q.
(17)

Now we show the following property. For any j, if sj(tj) = 1,
then there exists i such that si(tj +dj−di) = 1, implying that
U is not an effective set of gaps. According to (16) and (17),
device #0 collides with device #1 at global time u1. Device
#1 collides with device #2 at global time u1 + u2. Device #j
collides with device #j + 1 at global time u1 + · · ·+uj for all
j = 1, . . . , h−1. Moreover, device #h+1 collides with device
#0 at global time 0. Device #j collides with device #j + 1 at
global time uj for j = h + 1, . . . , h′ − 1. Device #h collides
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with device #h′ at global time
∑h

j=1 uj since
∑h

j=1 uj =∑h′

j=h+1 uj . Note that this result holds for any p > 0 as x = y
implies x ≡ y(mod p) in all equations above. Similarly, all
transmissions are collided. The second case can be proved
in a similar way. We omit the details due to similarity and
repetition.

IV. EMPIRICAL STUDY OF AVERAGE SYNC TIME

Here we empirically study the average conflict resolution
time. We consider the scenario with N active devices. The
clock drift of each device is uniformly chosen from [0, 2N−1].
In Figure 1, we simulate the average conflict resolution time,
referred to as Alg 1 in the legend, by averaging over 10,000
experiments for each N . We compare this curve with the
average conflict resolution time of the random conflict resolu-
tion algorithm (in which each device flips an independent fair
coin at each time). This curve of random conflict resolution
is referred to as Rand in the legend. The average conflict
resolution time of the random conflict resolution algorithm
is simply 2N/N . In Figure 1(a), Alg 1’s average conflict
resolution time is almost identical to Rand’s when N is large.
In Figure 1(b), we plot the average conflict resolution times of
these two algorithms for N ≤ 10. Alg 1 is even slightly better
for 5 ≤ N ≤ 10. According to our experiments, the average
conflict resolution time of both algorithms are roughly the
same for a wide range of N . Nevertheless, our algorithm has
a guaranteed worst-case bound for the conflict resolution time,
whereas there is no such guarantee for the random conflict
resolution algorithm.

V. CONCLUSION

In this letter, we proposed nonadaptive deterministic al-
gorithms that establishes a guaranteed deterministic upper
bound on the conflict resolution time even when the clocks of
the devices are not synchronized in a discrete-time multiple
access channel. In comparison to coin-flipping random access
algorithms, our proposed method provides an upper bound
for the worst case and has a comparable performance for the
average case. For channels with n ≤ N devices (where n is
arbitrary), our worst-case bound is 2N − 1. We have shown
that our proposed method is equivalent to finding effective sets
of gaps, which is a very complicated problem. We present
theoretical results regarding explict conditions to construct
them.
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