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Abstract

In this paper, we introduce a hand gesture recognition system to recognize continuous gesture before stationary background. The system

consists of four modules: a real time hand tracking and extraction, feature extraction, hidden Markov model (HMM) training, and gesture

recognition. First, we apply a real-time hand tracking and extraction algorithm to trace the moving hand and extract the hand region, then we

use the Fourier descriptor (FD) to characterize spatial features and the motion analysis to characterize the temporal features. We combine the

spatial and temporal features of the input image sequence as our feature vector. After having extracted the feature vectors, we apply HMMs to

recognize the input gesture. The gesture to be recognized is separately scored against different HMMs. The model with the highest score

indicates the corresponding gesture. In the experiments, we have tested our system to recognize 20 different gestures, and the recognizing rate

is above 90%.

q 2003 Published by Elsevier Science B.V.
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1. Introduction

Hand gesture has been one of the most common and

natural communication media among human being. Hand

gesture recognition research has gained a lot of attentions

because of its applications for interactive human-machine

interface and virtual environments. Most of the recent works

related to hand gesture interface techniques [1] has been

categorized as: glove-based method [2,3] and vision-based

method. Glove-based gesture interfaces require the user to

wear a cumbersome device, and generally carry a load of

cables that connect the device to a computer. There are

many vision-based techniques, such as model-based [4] and

state-based [5] which have been proposed for locating

objects and recognizing gesturers. Recently, there have been

an increasing number of gesture recognition researches

using vision-based methods Table 1.

Huang et al. [6] use 3D neural network method to

develop a Taiwanese Sign Language(TSL) recognition

system to recognize 15 different gestures. David and Shah

[7] propose a model-based approach by using a finite state

machine to model four qualitatively distinct phases of a

generic gesture. Hand shapes are described by a list of

vectors and then matched with the stored vector models.

Darrell and Pentland [8] propose space-time gesture

recognition method. Signs are represented by using sets of

view models, and then are matched to stored gesture

patterns using dynamic time warping.

Starner et al. [9] describe an extensible system which

uses one color camera to track hands in real time and

interprets American sign language (ASL). They use hidden

Markov models (HMMs) to recognize a full sentence and

demonstrate the feasibility of recognizing a series of

complicated series of gesture. Instead of using instrumented

glove, they use vision-based approach to capture the hand

shape, orientation and trajectory. The vision-based method

selects the 3-D input data as the feature vectors for the

HMM input, other HMM-based [10,11] hand gesture

recognition systems have also been development. Liang

et al. [12] develop a gesture recognition of TSL by using

Data-Glove to capture the flexion of 10 finger joints, the roll

of palm and other 3-D motion information Table 2.

Cui and Weng [13] develop a non-HMM-based system

which can recognize 28 different gestures in front of
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complex backgrounds. The recognition of this system is

93.1% but it relies on a slowly segmentation scheme which

takes 58.3 sec for each image. Nishikawa et al. [14] propose

a new technique for description and recognition of human

gestures. The proposed method is based on the rate of

change of gesture motion direction that is estimated using

optical flow from monocular motion images.

Nagaya et al. [15] propose a method to recognize

gestures using an approximate shape of gesture trajec-

tories in a pattern space defined by the inner-product

between patterns on continuous frame images. Heap and

Hogg [16] present a method for tracking of a hand using

a deformable model, which also works in the presence of

complex backgrounds. The deformable model describes

one hand posture and certain variations of it and is not

aimed at recognizing different postures. Zhu and Yuille

[17] develop a statistical framework using principal

component analysis and stochastic shape grammars to

represent and recognize the shapes of animated objects. It

is called flexible object recognition and modeling system

(FORMS). Lockton et al. [18] propose a real-time gesture

recognition system which can recognize 46 ASL letter

spelling alphabet and digits. The gestures that are

recognized by [18] are ‘static gestures’ of which the

hand gestures do not move.

Different from [18], this paper introduces a hand gesture

recognition system to recognize ‘dynamic gesture’ of which

a gesture in performed singly in complex background.

Different from previous HMM-based gesture recognition

systems, our system do not use instrumented glove, nor any

markers, but use 2D video input. Our system tracks the

moving hand and analyzes the hand-shape variation and

motion information as the input to the HMM-based

recognition system. The system consists of three modules:

a real-time hand tracking, feature extraction, HMM training,

and HMM-based gesture recognition. First, we introduce a

real time hand gesture tracking technique which can track

the moving hand and then extract the hand shape from

complex background. It is a simple and reliable method

developed as a real-time image processing subsystem which

consists of five basic complementary image processes:

motion detection, skin color extraction, edge detection,

movement justification, and background subtraction.

We apply the FD to characterize the spatial information

and the optical flow method for motion analysis to

characterize the temporal information. We combine FD

and motion information of the input image sequence as our

feature vector. With these extracted feature vectors, we can

train our system using HMM approach which is used to

recognize the input gesture. In training phase, we apply

HMM to describe the gestures in term of model parameters

for each different gesture. The gesture to be recognized in

separately scored against different HMMs. The model with

the highest score is selected as the recognized gesture. Our

system consists of 20 different HMMs which are used to test

20 different hand gestures. The experimental results show

that the average recognition rate is above 90%.

Fig. 1 shows the flow diagram of our hand gesture

recognition system consisting of three phases: the feature

extraction phase, the training phase, and the recognition

Table 1

The error rate of the gesture recognition system using only FD

Gesture 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20

Error (%) 6 1 2 12 15 6 12 10 19 5 12 17 1 0 11 3 23 25 0 0

Table 2

The recognition rate of one-hand gesture

Two Methods Training data

(%)

(1200 sequences)

Testing data

(%)

(1200 sequences)

FD only 97 90.5

FD and motion 98.5 93.5
Fig. 1. The flow diagram of hand gesture recognition system.
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phase. We combine FD and motion features as the feature

vector to describe the moving object. Each feature vector is

represented by a symbol. Each symbol corresponds to the

designated partition generated through the vector quantiza-

tion of the feature vectors of all possible hand-shapes of the

training gestures. For each feature vector, a symbol is

assigned. In our system, we represent the input image

sequence by a sequence of symbols. In training phase, we

need to build a HMM for each gesture. In the recognition

phase, a given input gesture is tested by every HMM with

different model parameters. The outcome of the HMM with

the maximum likelihood function is identified to recognize

the gesture.

2. Hand tracking and handshape extraction

Here, we develop a real-time hand tracking method

which is robust and reliable in complex background. To

track the moving hand and then extract the hand shape fast

and accurately, we need to consider the trade-off between

the computation complexity and robustness.

2.1. Feature extraction

In our system, the motion of the object provides

important and useful information for object localization

and extraction. To find the movement information, we

assume that the input gesture is non-stationary. When

objects move in the spatial-time space (an image sequence),

motion detector is able to track the moving objects by

examining the local gray-level changes. Let Fiðx; yÞ be the

ith frame of the sequence and Diðx; yÞ be the difference

image between the ith and the ði þ 1Þth frame defined as

Diðx; yÞ ¼ Ti lFiðx; yÞ2 Fiþ1ðx; yÞl
� �

ð1Þ

where Ti is a thresholding function, Fiðx; yÞ and Diðx; yÞ are

all 160 £ 120 images, and Diðx; yÞ is binary image defined as

follows

Diðx; yÞ ¼
1; lFiðx; yÞ2 Fiþ1ðx; yÞl $ threshold

0; otherwise:

(
ð2Þ

(1) Thresholding. Having extracted the moving object

region, we can apply the thresholding on the frame

difference (i.e. Eq. (2)) to extract the possible moving

region in complex background. We find that conventional

thresholding methods, such as Ostu thresholding [27], are

not suitable for the case of detecting motion difference.

Instead, we use a simple thresholding technique to extract

moving regions. The threshold for motion detection is

determined as tM ¼ 0:2m; where m is the average luminous

of captured image Fiðx; yÞ: Fig. 2 shows that if there is no

significant movement, Ostu thresholding method will

generate a lot of noise. We choose the weighting factor

0.2 because we do not need highly precise segmented

image. Our thresholding technique is not very sensitive to

the speed of the hand movement, so that our method more

stable than the Ostu method.

Fig. 2. (a) The origin frame, (b) apply our threshold, (c) apply Ostu thresholding.

Fig. 3. (a) The origin frame, (b) extracted skin regions satisfying R . G . B, and (c) compare the colors of the extracted skin regions with the sample skin

color.
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(2) Skin color detection. Skin can be easily detected by

using the color information. First, we use the constraint, i.e.

R . G . B, to find the skin color regions which may

include a wide range of colors, such as red, pink, brown, and

orange color. Therefore, we will find many regions other

than the skin regions. However, those non-skin regions

satisfy our constraint will be excluded due to there is no

motion information, e.g. a region in orange color will not be

misidentified as the hand region. Second, we may obtain

some sample colors from the hand region. To find the skin

regions, we compare the colors in the regions with the pre-

stored sample color. If they are similar, then the region must

be skin region. The hand region is obtained by the hand

tracking process in the previous frame. Fig. 3 shows our skin

detection results. The rectangular region is the hand region

in the previous frame. Finally, we may eliminate some skin-

similar colors, e.g. the orange color, and denote the skin

color image as Siðx; yÞ:

(3) Edge detection. Edge detection is applied to separate

the arm region from the hand region. It is easy to find that

there are fewer edges on the arm region than on the palm

region. Here, we use a simple edge detection technique (e.g.

Kirsch edge operator) to obtain different direction edges,

and then choose the absolute maximum value of each pixel

to form the edge image of ith frame as Eiðx; yÞ: Fig. 4 shows

that the edges on the arm region are less than those on

the palm region. We combine edge, motion, skin color

region information to allocate the hand region.

(4) Combination of motion, skin color, and edge. The

hand gestures information consists of movement, skin color

and edge feature. We use the logic ‘AND’ to combine these

three types of information, that is

Ciðx; yÞ ¼ Diðx; yÞ ^ Siðx; yÞ ^ Eiðx; yÞ ð3Þ

where Diðx; yÞ; Siðx; yÞ and Eiðx; yÞ indicate the movement,

skin color and edge images. The combined image Ciðx; yÞ as

many features that can be extracted. Because the different

image processing methods have extracted different kind of

information. Each image consists of different

characteristic regions such as motion regions, skin color

regions and edge regions as shown in Fig. 5. Fig. 6 shows

the combined region Ciðx; yÞ: The combined image consists

of a large region in the palm area and some small regions in

the arm area. We may separate these two regions to allocate

the hand region.

(5) Region identification. A simple method for region

identification is to label each region with a unique integer

number which is called the labeling process. After labeling,

the largest integer label indicates the number of regions in

the image. After the labeling process, the small regions can

be treated as noise and then be removed. Fig. 7(a) shows that

the labeling results and Fig. 7(b) shows the center position

pcðiÞ of the hand region. We use Liðx; yÞ to indicate the

largest labeled region in Frame i:

Fig. 4. (a) The origin frame, (b) the edge detection result.

Fig. 5. The hand gesture information. (a) Original image Fiðx; yÞ, (b) motion

region DiSðx; yÞ, (c) skin color region Siðx; yÞ, (d) edge region Eiðx; yÞ:

Fig. 6. The combined region Ciðx; yÞ:

Fig. 7. (a) The labeling results Liðx; yÞ; (b) the correct center position.
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2.2. Robustness and low complexity

Using motion and color information is not sufficient, and

hand-shape is not always the largest labeled region. If there

are other skin-color objects moving rapidly, the tracking

process may fail. We need to take advantage of the motion

smoothness constraint for trajectory justification, then use

background subtraction to find the foreground object, and

finally identify the hand region.

2.2.1. Hand gesture trajectory justification

Based on the assumption that the hand object move

smoothly between two connected frames, we develop a

trajectory justification algorithm. We assume that the

movement of the hand is in a constant speed. For current

frame Fi; we get the center point pCðiÞ of the extracted hand

region. We assume smooth trajectory so that the variation of

pCðiÞ is constrained in a certain range. If the variation of

pCðiÞ is out of a certain range (i.e.lpCðiÞ2 pRði 2 1Þl . dÞ;

we increase the wrong (or bumpy) position counter, i.e.

WC ¼ WC þ 1, else we set pRðiÞ ¼ pCðiÞ: To avoid the

trajectory of pCðiÞ being bumpy for while, we check if

WC . 3. If it is not, then the hand gesture is suppose to be at

a right position, and we may set pRðiÞ ¼ pRði 2 1Þ: If

WC . 3, then the hand gesture may be identified at a wrong

position, therefore, we change the right position pRðiÞ ¼

pCðiÞ; reset WC ¼ 0, and go to next frame Fiþ1:

2.2.2. Processing ROI

Fig. 8 shows the flow diagram of our hand gesture

tracking system. In previous section, we have mentioned

how to generate five image frames: Diðx; yÞ; Siðx; yÞ; Eiðx; yÞ;

Ciðx; yÞ and Liðx; yÞ: The three function blocks indicate

motion detection, edge detection, skin color detection,

which can operate in parallel. To reduce the computation

complexity, we do not process the entire image frame but

concentrate on the region of interest (ROI). For instance,

one ROI is a part of Fiðx; yÞ; where the corresponding

Diðx; yÞ – 0: We deal with the first ROI to obtain Siðx; yÞ:

The other ROI is also part of the Fiðx; yÞ; where the

corresponding Siðx; yÞ – 0: Similarly, we process the

second ROI to obtain Eiðx; yÞ: Fig. 9 shows the step-by-

step processing of motion detection, skin color detection,

and edge detection. We can dramatically reduce the

computation complexity of our system.

2.2.3. Background subtraction

For gesture recognition process, we need more hand

gesture information. We use a simple background subtrac-

tion technique to obtain the hand gesture shape. We create

the background model BGi by using the first frame F1ðx; yÞ:

Fig. 10 shows the foreground region, and Fig. 11 shows the

procedure to obtain the foreground.

To update our background model, we adapt our back-

ground model by using current frame Fi and foreground

region FGi: We have generated two different types of

foreground regions, one is FG1i ¼ FGi; which is used to

obtain the hand gesture region; and the other is FG2i; ðFG2i

is obtained by dilating FG1iÞ; which is applied for

background updating process. FG1i has a compact shape,

so that it can be used to obtain the hand region. Because

there are small errors on the boundary of foreground and

background, we do not use FG1i to update the background.

Fig. 8. The flow diagram of hand gesture tracking system.

Fig. 9. The three function blocks: (a) motion detection, (b) skin color detection, (c) edge detection.
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We generate FG2i for background updating. We only

update the background region where FG2i – 0: Fig. 12

shows the difference of these foreground regions. The

background update equation is

BGiþ1 ¼ ð1 2 wÞBGi þ wFi ð4Þ

We update background gradually, and the weighting

factor w is 0.1. The updating process is more reliable for a

smaller w: Finally, we have the foreground region which

does not really indicate the human hand. We need to apply

the skin color analysis and the hand region position tracking

to correctly extract the hand region. Fig. 13 shows the

results of hand gesture region extraction process.

2.2.4. Local tracking of the hand gesture region

To find a more precise hand region, we use the

foreground region information. The hand position has

been found by using motion, skin color and edge

information. Sometime, the identified locations will not at

the center of the real hand region. This is because the

extracted information are located on the boundary of the

moving object. Therefore, the local refinement is necessary.

The overall system for hand region tracking has two stages:

the first stage is focus on the motion information, whereas

the second stage is focus on the foreground information. The

local tracking processing is mentioned as follows: (a) select

the foreground and skin color region near the inaccurate

center; (b) select the boundary points in the foreground

region; and (c) find the center of the boundary points as a

new center. We may formulate the process as

pC2ðiÞ ¼ TC{TRðpCðiÞ;FGi ^ Ei ^ SiÞ} ð5Þ

Where pC2ðiÞ is the new center at the second stage. TC{†} is

a center finding operator, and TRðA;BÞ is an operator to find

a region in B that is near the point A: Fig. 14 shows the

difference between those two stages.

After refining the hand gesture center point, we may find

the bounding box of hand region. We find the bounding box

by using the foreground, the skin color information, and the

center point located in the second stage. We search the

boundary of hand region from center to top, bottom, left,

and right. We use four parameters to describe the width and

the height of the extracted hand region, e.g. LW,RW,TH,

and BH shown in Fig. 15(a).

Since the arm region is not the target region, we develop

a simple criterion to obtain a more precise hand region. The

bounding box is determined by the following criteria: (1) If

RW . LW then RW ¼ 1.1LW else LW ¼ 1.1RW; and (2)

If TH . BH then TH ¼ 1.1BH else BH ¼ 1.1TH. In the

Fig. 15(a), the length TH is shorter than BH, we let

BH ¼ 1.1TH, and similarly RW ¼ 1.1LW. Fig. 15(b)

Fig. 10. The result of background subtraction.

Fig. 11. Background subtraction process.

Fig. 12. Different type of foreground: (a) original image, (b) foreground FG1 for gesture tracking, (c) foreground FG2 for updating the background.
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shows the updated bounding box. The new bounding box

does not include the arm region. The method is effective for

the following gesture recognition process.

2.3. Illustrations and discussion

Here, we illustrate some experimental results of the hand

tracking process. The tracked hand-shape includes different

types of gestures and the gestures made by different persons.

We assume no camera panning nor zooming, and there is

only one hand needs to be tracked. We allow the other

moving objects in the background, but there is only one

moving hand in the foreground. For each frame of the video

sequence, the bounding box tracked automatically is

compared to a bounding box selected manually to measure

the error in width w and height h: There are two

performance measurements; one is the gesture location

missed percentage

em ¼
numberoftimesthecentersarenotlocated

totalframenumber
ð6Þ

The other is the normalize error in bounding box size

defined as below

ewðiÞ ¼ 1 2
wðiÞ

waðiÞ
and ehðiÞ ¼ 1 2

hðiÞ

haðiÞ
ð7Þ

where wðiÞ and hðiÞ are the correct dimensions of the

bounding box of ith frame selected manually, and

waðiÞ ¼ LWðiÞ þ RWðiÞ; haðiÞ ¼ THðiÞ þ BHðiÞ are the

dimensions of the bounding box of ith frame selected

by our system. The image size is 160 £ 120. Fig. 16

shows some input image sequences and the extracted

hand shapes. In the experiments, we have tested about

200 video sequences, and the accuracy percentage is

measured in terms of em; ew and eh which are shown in

Fig. 17.

3. Feature selection for object description

Features are obtained from the input image sequence of

hand gestures, they are further converted to symbols which

are the basic elements of the HMM. Effective and accurate

feature vectors play a crucial role in model generation of the

HMM. For selecting good features, the following criteria are

considered useful: (1) Features should be preferably

independent on rotation, translation and scaling. (2)

Features should be easily computable. (3) Features should

be chosen so that they do not replicate each other. This

criterion ensures efficient utilization of information content

of the feature vector. The features obtainable from the image

Fig. 13. Foreground region combining skin color and hand gesture position.

Fig. 14. Difference between the first stage center and the local tracking

center. The solid line is the trajectory of the first stage center, and dotted

line is the trajectory of the second stage center.

Fig. 15. (a) Four parameter of hand gesture bounding box, (b) new hand

gesture bounding box.
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sequence of hand gesture are spatial and temporal features.

To extract the shape features, we choose the FD to describe

the hand shape, and to extract the temporal features, we use

motion analysis to obtain the non-rigid motion character-

istics of the gesture. These features should be invariant to

the small hand shape and trajectory variations and it is also

tolerant to small different gesture-speed.

3.1. Fourier descriptor

We may describe the objects by their features in the

frequency domain, rather than those in the spatial domain.

The local feature property of the node is represented by its

Fourier Descriptors (FD) [19,20]. Assume the hand-shape is

described by external boundary points, {xðmÞ; yðmÞ}; then

we may use the FD representation for boundary description.

To extract the external boundary points of a hand shape, we

may use the contour following algorithm. To represent the

boundary points, we may find the Fourier series of xðmÞ and

yðmÞ; which are defined as aðnÞ and bðnÞ: For a closed

boundary, this representation is called FD. The elements of

the vector are derived as SðnÞ ¼ rðnÞ=rð1Þ where, rðnÞ ¼

½ðaðnÞÞ2 þ ðbðnÞÞ2�1=2; n ¼ 1; 2;… Using of FD vectors of

dimension 10 for hand written digit recognition is sufficient

[20]. Here we assume that the local variation of hand-shape

is smooth so that the high order terms of its FD are not

necessary, so using 22 harmonics of the FD’s is enough to

describe the macroscopic information of the hand figures.

The advantage of using the FD is due to its size-invariant

properties. For different scaled objects, only the magnitudes

of their FD coefficients are changed by the same factor.

Furthermore, from Fig. 18, we may find that rotating the

object only causes a phase change. The magnitude SðnÞ is

independent of the phase, and it is unaffected by rotation. If

the magnitude of the FD coefficients is normalized, the FD

representation is invariant to object size. Finally, we

consider the effect of noise and quantization errors on the

boundary. This will cause local variation of high frequency,

Fig. 16. Some image sequence in our database and processing result.
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and it will not change to low frequencies. Hence, if the high

frequency components of the spectrum are ignored, the rest

of the spectrum is unaffected by noise.

3.2. Motion analysis

In the image sequence of hand gesture, there are local

motion and global motion. The global motion is the

translation of the hand and the local motion is non-rigid

motion of the fingers or rotation of the hands. Therefore, we

need to estimate the entire motion field of the two

consecutive image frames. The motion estimation is based

on the space-temporal image intensity gradients called the

optical flow Equation [21]. The optical flow equation is

developed in conjunction with an appropriate space-

temporal smoothness constraint, which requires that the

neighboring displacement vectors very smooth. The magni-

tude and phase of the motion vector field indicates the speed

and moving direction of the moving object. The histogram

distribution of the magnitude and phase of the motion vector

field are extracted as the motion features.

Here, we partition the magnitude distribution of the

motion vectors into ten intervals. Let PeðiÞ denote the

number of motion vectors belonging to magnitude interval i;

then we have feðiÞ ¼ PeðiÞ/ (total pixels of a frame), where

1 # i # 10 and feðiÞ denotes the features extracted from the

magnitude of the motion vector. We also partition the phase

distribution of the motion vector field into 8 intervals. Let

PpðiÞ denote the number motion vectors belong direction

interval I; we have fpðiÞ ¼ PpðiÞ/(total pixels of a frame),

where 1 # i # 8 and fpðiÞ denote the features extracted

from the direction of the motion vector.

From motion analyzing of two consecutive image

frames, we find that the motion vectors are pointing in

different directions. The motion of different fingers creates

the motion vectors in various directions. From the phase

histogram, we find that the peaks of some intervals represent

the major directions of different local motions. From the

magnitude histogram, we can also find the only peak of the

first interval that indicates the global motion (see Fig. 19).

Besides the above analysis of the motion direction and

magnitude distribution, we can find other features related to

the distribution of the motion vector field. We can assume

that the motion vector field is an intensity of motion in 2D

space X ¼ {ðx; yÞ}: We apply the vector field vðx; y; tÞ to

characterize the motion distribution. A suitable feature for

the characterization of the motion distribution at time

instance t is the center of gravity ~mðtÞT ¼ ½mxðtÞ;myðtÞ� as

mxðtÞ ¼

X
x;y

x:vðx; y; tÞX
x;y

vðx; y; tÞ
myðtÞ ¼

X
x;y

y:vðx; y; tÞX
x;y

vðx; y; tÞ
ð8Þ

Fig. 17. The percentage error in bounding box size and location loss rate.

Fig. 18. Illustration the invariant properties of Fourier descriptor.
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The vector ~mðtÞ can also be interpreted as the ‘center of

motion’ of the image. vðx; y; tÞ denotes the magnitude of the

motion vector at position ðx; yÞ at time t: To increase

the modeling capacity of the HMMs for the movements of

the center, we include the delta features D ~mðtÞ of ~mðtÞ for the

‘center of motion’ into the feature vector. The delta features

are defined as DmxðtÞ ¼ mxðtÞ2 mxðt 2 1Þ and DmyðtÞ ¼

myðtÞ2 myðt 2 1Þ: Another useful feature is the average

absolute deviation of the motion in all points of the images

from the center of motion sxðtÞT ¼ ½sxðtÞ;syðtÞ�; which is

defined as

sxðtÞ ¼

X
x;y

vðx; y; tÞlx 2 mxðtÞlX
x;y

vðx; y; tÞ
syðtÞ

¼

X
x;y

vðx; y; tÞly 2 myðtÞlX
x;y

vðx; y; tÞ
ð9Þ

This feature is very similar to the second translation

invariant moment of the distribution, but it is more robust

against noise in the image sequence. It can also be

considered as ’wideness of the movement’. In motion

analysis, we have created 24 features, they are 10 motion

magnitude features, 8 motion direction features,

mx;my;Dmx;Dmy;sx; and sy.

4. Gesture recognition using HMMs

HMMs have been widely and successfully used in speech

recognition and handwriting recognition [22]. Conse-

quently, they seem to be effective for visual recognition of

complex, structured hand gestures such as sign language

recognition [23,24]. A HMM can be employed to represent

the statistical behavior of an observable symbol sequence in

terms of a network of states. For each observable symbol, it

can be modeled as one of the states of the HMM, and then

the HMM either stays in the same state or moves to another

state based on a set of state transition probability associated

with the state. The variety of the observable symbols for

which the HMM uses a particular state is described in terms

of the distribution of probability that each observable

symbol will occur from that state. Thus, an HMM is a

doubly (observable and hidden) stochastic model where the

observable symbol probability distribution for each state

captures the intra-state variability of the observable

symbols, and the state transition probability describe the

underling dynamic structure of the observable symbols.

We use HMMs to recognize different gestures because of

their simplicity and reliability. The HMM uses only three

parameters: the initial state probability vector, the state-

transition probability matrix, and the observable symbol

probability matrix. Analysis of dynamic images naturally

will yield more accurate recognition than that of a single

static image. Gestures are recognized in the context of entire

image sequences of non-constant lengths. Using an HMM

for gesture recognition is advantageous because it is

analogous to human performance which is a doubly

stochastic process, involving a hidden immeasurable

human mental state and a measurable, observable human

action.

4.1. Vector quantization for symbol generation

To model various gesture expressions, we train different

HMMs to model different hand gestures. First, we must

convert multi-dimensional vector sequences to one-dimen-

sional symbol sequences. The preprocessing algorithm is

the vector quantization (VQ) [25,26]. In an HMM-based

approach, we need to quantize each multi-dimensional

feature vector sequence into a finite symbol sequence for

HMMs. The purpose of designing an M-level VQ (called a

codebook with size M) is to partition all k-dimensional

training feature vectors into M clusters, whose centroid is

the k-dimensional vector ci; with a quantized value named

Fig. 19. (a) Phase distribution and (b) magnitude distribution of the motion vectors.
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codeword (symbol) oi: VQ will cause a quantization error

between each training feature vector x and ci: As the size of

the codebook increases, the quantization error decreases,

however, the required storage for the codebook entries

increases. There is a trade-off to define the size of the

codebook.

To have a good recognition performance in using

HMMs, we design a codebook for vector quantizing each

k-dimensional training feature vector x into a symbol oi with

minimum quantization error. According to our experimental

result, the recognition system has high performance when

the size M ¼ 64 of the codebook. This VQ algorithm uses

iterative method, splits the training vectors from assuming

whole data to be one cluster to 2; 4; 8;…;MðM ¼ 2nÞ

clusters, and determines the centroid for each cluster. The

centroid of each cluster is refined iteratively by k-means

clustering. Once the final codebook is obtained, it is used to

quantize each training and testing feature vector into a

symbol. A symbol is assigned to each partition of the k-

dimensional VQ space. The symbol generation process is

illustrated in Fig. 20.

4.2. Hidden Markov models

In the Markov model, the state sequence is observable.

The output observable event in any given state is

deterministic, not random. This will be too constraining

when we use it to model the stochastic nature of the human

performance, which is related to doubly stochastic pro-

cesses, namely human mental states (hidden) and human

actions (observable). It is necessary that the observable

event is a probabilistic function of the state. HMM is a

representation of a Markov process and is a doubly

embedded stochastic process with an underlying stochastic

process that cannot be directly observed, but can only be

observed through another set of stochastic processes that

produce the sequence of observable symbols.

We define the elements of an HMM as follows. N is the

number of states in the model. The state of the model at time

t is qt, 1 % qt % N and 1 %t% T where T is the length of the

output observable symbol sequence. M is the size of the

codebook or the number of distinct observable symbols per

state. Assume ot is one of all possible observable symbols for

each state at time t; then 0 % ot % M 2 1 pN is an N-

element vector indicates the initial state probability. pN ¼�
pi

�
; where pi ¼ Pðqt ¼ iÞ; 1 % i % N: AN£N is an N £ N

matrix specifying the state-transition probability that the

state will transit from state i to state j: AN£N ¼ {aij} where �

aij ¼ Pðqt ¼ jlqt21 ¼ iÞ; 1 % i; j % N and a ^ 0;
PN

j¼1 �

aij ¼ 1: BM£N is an M £ N matrix specifying that the system

will generate the observable symbol ot at state j and at time t:

BM£N ¼ {bjðotÞ} where bjðotÞ ¼ PðOt ¼ ot

��qt ¼ jÞ; 1 % i %

N; 0 % ot % M 2 1; bjðoiÞ ^ 0; and
PM21

ot¼0 bjðotÞ ¼ 1:

The complete parameter set l of the discrete HMM is

represented by one vector p and two matrices A and B. To

accurately describe a real-world process such as gesture

with an HMM, we need to appropriately select the HMM

parameters. The parameter selection process is called the

HMM ‘training.’ This parameter set l can be used to

evaluate the probability PðOllÞ; that is to measure the

maximum likelihood performance of an output observable

symbol sequence O; where T is the number of frames for

each image sequence. For evaluating each PðOllÞ; we need

to select the number of states N; the number of observable

symbols M (the size of codebook), and then compute the

results of probability density vector p and matrices A and B

by training each HMM from a set of corresponding training

data after VQ.

There are three basic problems in HMM design: (1)

Probability evaluation: How do we efficiently evaluate

PðOllÞ; the probability (or likelihood) of an output

observable symbol sequence O given an HMM parameter

set l: (2) Optimal state sequence. How do we determine an

optimal state sequence q ¼ {q1; q2;…qT }; which is associ-

ated with the given output observable symbol sequence O;

by given an HMM parameter set l: (3) Parameter

Estimation. How do we regulate an HMM parameter set l

to maximize the output probability PðOllÞ of generating the

output observable symbol sequence.

(1) Probability evaluation using the forward-backward

procedure. We compute the output probability PðOllÞ with

which the HMM will generate an output observable symbol

sequence O ¼ {o1; o2;…oT } given the parameter set l ¼

ðp;A;BÞ: The most straightforward way to compute this is

by enumerating every possible state sequence of length T ;

so there will be NT possible combinations of state sequence

where N is the total number of states. Suppose there is one

state sequence q ¼ {q1; q2;…qT }: Fortunately, we can use a

more efficient procedure called the Forward-Backward

procedure [29] to overcome this limitation.

(2) Optimal state sequence using the viterbi algorithm.

We use a dynamic programming method called the

Viterbi algorithm [28] to find the single best state sequenceFig. 20. Preprocessing of the hand gesture recognition system.
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q ¼ ðq1; q2;…qTÞ (or the most likely path) given the

observable symbol sequence O ¼ ðo1; o2;…oT Þ and the

HMM parameter set l in order to maximize PðqlO;lÞ: Since

Pðq O;lj Þ ¼
Pðq;O lj Þ

PðO lj Þ
ð10Þ

Maximizing PðqlO;lÞ is equivalent to maximizing

Pðq;OllÞ using the Viterbi algorithm.

(3) Parameter estimation using the baum-welch method.

We can use a set of training observable symbol sequences to

adjust the model parameters in order to build a signal model

that can be used to identify or recognize other sequences of

observable symbols. There is, however, no efficient way to

optimize the model parameter set that globally maximizes

the probability of the symbol sequence. Therefore, the

Baum-Welch method [29] is used to choose the maximum

likelihood model parameter set l ¼ ðp;A;BÞ such that its

likelihood function PðOllÞ is locally maximized using an

iterative procedure.

5. Experimental results

In the experiments, the subject, who uses a single hand to

make hand gesture, is standing before any stationary

background with normal lighting. The proposed real-time

tracking system can track and identify the moving objects in

front of a stationary background. We may allow some small

objects moving in the background which will not be

extracted and mistreated as a moving hand. We have tested

twenty different hand gestures selected from TSL. Each

hand gesture consists of a sequence of image frames

capturing a single hand moving in different directions with

constant or time-varying hand shape.

Each hand gesture is performed 3 times by 20 different

individuals. There are 60 different image sequences

captured for each hand gesture. There are twenty different

gestures, and 1200 image sequences are used for training.

The size of each gray-level image frame is 256 £ 256, its

frame rate is 30 frames/sec, and each gesture-making takes

about one second. The input image sequence is divided into

three different time intervals: in the first (begin) period, the

sign language speaker remains silent (no gesture), then in

the second (action) period, the speaker starts making one

simple hand gesture, and finally, in the last (end) period, the

speaker remains silent again.

In the experiments, six gestures have constant hand

shape, whereas fourteen gestures have time-varying hand

shape. They may have similar or different moving

trajectories. The simply single hand gestures can be

completed in less than one second. The host computer was

equipped with a Pentium IV 1.2 GHz CPU and 128 MB

main memory. In the experiments, the hand tracking and the

handshape extraction are operating in real-time. The

following feature extraction processes includes FD and

motion analysis may finish in less than one second. Totally,

the recognition system about one second from image

sequence capturing to gesture recognizing. In the training

stage, for each gesture, we have asked 20 different

individuals to make the gestures three times, and for each

gesture, we have 60 different training image sequences to

generate the corresponding HMM.

Each input image sequence is pre-processed by hand

region extraction process for contour information and

coding. 1200 image sequences are used in training phase,

and 1200 image sequences are used in testing phase. Our

system consists of two methods: (1) using only contour

information and (2) using combined contour information

Fig. 21. The experimental results of recognizing the 1st gesture from a sequence of frames.
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and motion information. The extracted information is

converted to vector sequences and then quantized into

symbol sequences for both of the training and recognition

processes.

The same gesture made by different individuals may

looks different because of different hand-shapes and gesture

speed. To design a robust recognition system, the training

data are selected to cover all possible hand-shapes for each

individual. Before using HMMs for training or recognition

process, any vector sequence is preprocessed by VQ to an

observable symbol sequence O. The codebooks are created

based on their corresponding training data. The codebook

size M, which is power of 2, is chosen by experiments. We

have tried different codebook sizes, and find that M ¼ 64 is

the best choose because the recognition rate does not have

any significant improvement for M . 64. Based on these

training symbol sequences, we can effectively generate the

1st-order 4-state HMM for modeling the gesture. We have

tested our system by using three different state number

HMMs (3-state, 4-state and 5-state), and we found that the

4-state HMM has proved to generate the best performance.

(1) Fourier descriptor (FD) only. Totally 1200 image

sequences are collected for 20 different gestures, thus each

kind of gesture with 60 sequences in average, in training

phase and other 1200 sequences are collected for test. The

recognition rate of using training data for testing is 97%, and

the recognition rate of using testing data is 90.5%. The error

rates of recognizing gesture 9, 12, 17 and 18 are among the

highest. This is because the extracted hand shape may be not

precise and the hand-shapes of these gestures are similar to

one another. Thus, we may combine the FD and motion

vector as the feature vector for a better performance.

(2) FD and motion vector. We add motion information to

the feature vector for our HMM modeling. We find that the

recognition rate of using training data for testing is 98.5%

and the recognition rate of using testing data rises to 93.5%.

This method gains 3% improvement of the recognition rate

using the testing data. The reason is that adding the motion

vector improves the recognition rate for the 9th, 12th, 17th

and 18th gestures in our vocabulary. However, for some

gestures, there may be a slightly performance decrement

due to the different experimental environments.

Fig. 21 shows the results of the gesture recognition of the

1st gesture in our vocabulary. Fig. 21(a) shows the sequence

of observation symbols which is input to the hmm. Fig.

20(b) shows the output of the maximum likelihood of each

HMM applied to the testing sequence. there are totally 20

HMMS in the recognition system of which first HMM

generate the largest maximum likelihood. In our exper-

iments, we have tested 20 different gestures from different

signers, some gestures are not precise, and the recognition

rate drops to 85% (see Table 3). We find that our recognition

system is size and rotation insensitive, for small objects and

for large objects, it can still effectively identify the correct

gesture. We also find that when the symbol sequence has an

error at frame 30 (symbol 35 is obtained instead of symbol

21), and the score of the HMM modeling gesture 10 is very

close to the score of the HMM modeling gesture 13. Our

system can still recognize the gesture correctly. However, if

in the beginning, the system makes many error observations

and generates wrong symbols, then the HMM models will

not justify the correct recognition. Another reason for error

recognition is that we don’t have enough training data to

make a good estimate of the HMM model parameters.

6. Conclusions

We have developed a method to recognize the unknown

input gestures by using HMMs. Since the variation of the

hand gestures is usually large, the transition between states

is necessary in each gesture for an effective hand tracking.

We apply this system to recognize the single gesture. In the

experiments, we assume stationary background so that our

system will have smaller search region for tracking. With a

larger training set and context modeling, lower error rates

are expected and generalization to user independent gesture

recognition system should be developable. Once we add a

new gesture into the system, we only need to re-train

another HMM for the new gesture, since the relationships

between new model and the original models are

independent.
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