High Voltage Lateral 4H-SiC JFETs on a Semi-insulating Substrate

Chih-Fang Huang, Cheng-Li Kan, Tian-Li Wu, Meng-Chia Lee, Yo-Zthu Liu
Institute of Electronics Engineering, National Tsing Hua University, Hsinchu, Taiwan, R. O. C.

Kung-Yen Lee
Department of Electrical Engineering, National Chung Cheng University, Chiayi, Taiwan, R. O. C.

Feng Zhao
Department of Electrical Engineering, University of South Carolina, Columbia, SC, U. S. A.
Outline

- Introduction
- Concept and Design
- Fabrication Process
- Results
- Summary
Introduction

- 4H-SiC power devices have shown promising performance due to superior material properties ($E_g = 3.24$ eV, $E_c = 2-4E6$ V/cm, $k = 4.9$ W/cmK).

- Lateral devices have the advantage of being integrated with other devices.

- 4H-SiC lateral devices have broken through the limit of Si vertical devices.
 - 1000 V, 9.2 mΩ-cm2 4H-SiC lateral JFET
 - 1380 V, 66 mΩ-cm2 4H-SiC lateral MOSFET
Conventional vs. Proposed Approach

- REduced SURface Field
- Breakdown in the bulk
- Thick and lightly doped p-layer

- Semi-insulating substrate
- Charge compensation of n- and p-type epi-layers
Effects of Field Plates on Proposed Structure

- Field plates reduce electric field crowding at the junction corners.

- BV = 1280 V Without FP
- BV = 5200 V With FP

Junction depth = 0.5 μm
Ld = 80 μm

C. F. Huang DRC 2009
High Voltage Lateral SiC Diodes

- BV = 3130 V has been demonstrated on a Ld = 80 μm lateral diode.

4H-SiC Lateral JFET Design

- \(Q_n = 7 \times 10^{12} \text{ cm}^{-2} < Q_c = 1.1 \times 10^{13} \text{ cm}^{-2} \)
- \(Q_p = 6 \times 10^{12} \text{ cm}^{-2} < Q_c \)
- \(L_d = 25, 50, 80, 100 \mu\text{m} \)
- \(L_g = 9, 15 \mu\text{m} \)
Fabrication of 4H-SiC Lateral JFETs (1)

- 0.12 μm RIE for P+ sinker
- Aluminum implantation at 650 °C for P+ gate and P+ sinker
- Nitrogen implantation at room temperature for source and drain
- Implant activation at 1650 °C for 30 min in Ar
Fabrication of 4H-SiC Lateral JFETs (2)

- RIE 1.9 μm in SF$_6$/O$_2$ to form isolation trenches
- Thermal oxidation at 1180 °C for 6 hrs to passivate the surface
Fabrication of 4H-SiC Lateral JFETs (3)

- Lateral out-diffusion of Al was observed during high temperature anneal in a test run
- E-beam evaporate Ti/Ni as both n- and p-type contact metals
- Anneal both contacts at 1100 °C for 3 mins in vacuum

C. F. Huang DRC 2009
Fabrication of 4H-SiC Lateral JFETs (4)

- Deposit 0.5 μm of PECVD oxide as field oxide
- Open windows
- E-beam evaporate 0.8 μm of Al/Ti as pads and field plates

C. F. Huang DRC 2009
Forward and Reverse Characteristics

- $V_{gs} = -16.7 \text{ V}$
- $BV = 3510 \text{ V}$ and $R_{on,sp} = 390 \text{ m} \Omega \cdot \text{cm}^2$ were achieved on a $L_g = 9 \mu\text{m}$, $L_d = 100 \mu\text{m}$ device. ($L_{fpg} = 10 \mu\text{m}$, $L_{fpd} = 25 \mu\text{m}$)
- The active area is 0.0228 mm^2.
- $I_{on}/I_{off} > 1000$
Transfer Characteristics

- $I_g < 1\text{E-8 A}$ until gate junction turns on at $V_{gs} = 3 \text{ V}$.
- The pinch-off voltage is about -11 V. Peak g_m is 1.21 mS at $V_{gs} = 2.5 \text{ V}$.

$V_{ds} = 25\text{V}$

$g_m = 1.21 \text{ mS}$
In a Lg = 9 μm, Ld = 100 μm device, R_{drift} is about 61% of R_{total} and R_{channel} is about 18.6%.
Temperature Characterization

- $R_{on,sp}$ increases with temperature following a $T^{2.2}$ relationship ($\mu_n \sim T^{-2.4}$ in 4H-SiC).

C. F. Huang DRC 2009
Drain Current Drift

- Drain current drift is observed as in 4H-SiC MESFETs.
- The reduction of drain current is less than 8% at $V_{gs} = 0$ V.
The trapped electrons deplete the channel and the n-type layer.

The trapped electron density is less than 8\% of Q_n. Its effects on charge balance and BV are not clear at this point.
Comparison of 4H-SiC Lateral Devices

<table>
<thead>
<tr>
<th>L_d (μm)</th>
<th>BV (kV)</th>
<th>R_{on,sp} (mΩ-cm²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>25</td>
<td>1.27</td>
<td>66</td>
</tr>
<tr>
<td>50</td>
<td>1.51</td>
<td>145</td>
</tr>
<tr>
<td>80</td>
<td>2.32</td>
<td>291</td>
</tr>
<tr>
<td>100</td>
<td>3.51</td>
<td>390</td>
</tr>
</tbody>
</table>

BV²/R_{on} = 32 MW/cm²
Summary

- High voltage SiC lateral JFETs are demonstrated on a semi-insulating substrate.

- $R_{\text{on,sp}} = 390 \text{ m}\Omega\cdot\text{cm}^2$, $BV = 3510 \text{ V}$ for a $L_g = 9 \mu\text{m}$, $L_d = 100 \mu\text{m}$ device.

- R_{drift} contributes about 61% of R_{total} in a $L_g = 9 \mu\text{m}$, $L_d = 100 \mu\text{m}$ device. R_{channel} contributes about 18.6%.

- Drain current drift was observed and attributed to trapping effects.