High Voltage Lateral 4H-SiC JFETs on a Semi-insulating Substrate

Chih-Fang Huang, Cheng-Li Kan, Tian-Li Wu, Meng-Chia Lee, Yo-Zthu Liu

Institute of Electronics Engineering, National Tsing Hua University, Hsinchu, Taiwan, R. O. C.

Kung-Yen Lee

Department of Electrical Engineering, National Chung Cheng University, Chiayi, Taiwan, R. O. C.

Feng Zhao

Department of Electrical Engineering, University of South Carolina, Columbia, SC, U. S. A.

Outline

- Introduction
- Concept and Design
- Fabrication Process
- Results
- Summary

Introduction

- 4H-SiC power devices have shown promising performance due to superior material properties (E_g = 3.24 eV, E_c= 2-4E6 V/cm, k = 4.9 W/cmK).
- Lateral devices have the advantage of being integrated with other devices.
- 4H-SiC lateral devices have broken through the limit of Si vertical devices.
 - > 1000 V, 9.2 m Ω -cm² 4H-SiC lateral JFET

(Y. Zhang et al., IEEE Electron Device Letters, 28, 404-407, 2007)

> 1380 V, 66 m Ω - cm² 4H-SiC lateral MOSFET

(M. Noborio et al., IEEE Trans. Electron Devices, 54, 1216-1223, 2007)

Conventional vs. Proposed Approach

- <u>REduced</u> <u>SUR</u>face <u>Field</u>
- Breakdown in the bulk
- Thick and lightly doped p-layer

- Semi-insulating substrate
- Charge compensation of nand p-type epi-layers

Effects of Field Plates on Proposed Structure

- Field plates reduce electric field crowding at the junction corners.

High Voltage Lateral SiC Diodes

Schematic cross-section of the lateral diode Forward and reverse IVs

 BV = 3130 V has been demonstrated on a Ld = 80 µm lateral diode.

C. -F. Huang et al., IEEE Electron Device Letters, 29, 83-85 (2008)

4H-SiC Lateral JFET Design

- $Q_n = 7E12 \text{ cm}^{-2} < Q_c = 1.1E13 \text{ cm}^{-2}$
- $Q_p = 6E12 \text{ cm}^{-2} < Q_c$
- L_d = 25, 50, 80, 100 μm

Fabrication of 4H-SiC Lateral JFETs (1)

- 0.12 µm RIE for P+ sinker
- Aluminum implantation at 650 °C for P+ gate and P+ sinker
- Nitrogen implantation at room temperature for source and drain

Implant activation at 1650 °C for 30 min in Ar

Fabrication of 4H-SiC Lateral JFETs (2)

- **RIE** 1.9 μ m in SF₆/O₂ to form isolation trenches
- Thermal oxidation at 1180 °C for 6 hrs to passivate the surface

Fabrication of 4H-SiC Lateral JFETs (3)

Lateral out-diffusion of AI was observed during high temperature anneal in a test run

- E-beam evaporate Ti/Ni as both n- and p-type contact metals
- Anneal both contacts at 1100 °C for 3 mins in vacuum

Fabrication of 4H-SiC Lateral JFETs (4)

- Deposit 0.5 µm of PECVD oxide as field oxide
- Open windows
- E-beam evaporate 0.8 µm of Al/Ti as pads and field plates

Forward and Reverse Characteristics

Transfer Characteristics

I_g < 1E-8 A until gate junction turns on at V_{gs} = 3 V.

The pinch-off voltage is about -11 V. Peak g_m is 1.21 mS at V_{gs} = 2.5 V.

$R_{drift} \ and \ R_{channel}$

In a Lg = 9 μ m, Ld = 100 μ m device, R_{drift} is about 61% of R_{total} and R_{ch} is about 18.6%.

Temperature Characterization

R_{on,sp} increases with temperature following a T^{2.2} relationship ($\mu_n \sim T^{-2.4}$ in 4H-SiC).

Drain Current Drift

Drain current drift is observed as in 4H-SiC MESFETs.

The reduction of drain current is less than 8% at $V_{qs} = 0$ V.

C. F. Huang DRC 2009

Trapping Effects

The trapped electrons deplete the channel and the n-type layer.

The trapped electron density is less than 8% of Q_n . Its effects on charge balance and BV are not clear at this point.

Comparison of 4H-SiC Lateral Devices

Summary

- High voltage SiC lateral JFETs are demonstrated on a semi-insulating substrate.
- R_{on,sp} = 390 mΩ-cm², BV = 3510 V for a Lg = 9 μm, Ld = 100 μm device.
- R_{drift} contributes about 61 % of R_{total} in a Lg = 9 µm, Ld = 100 µm device. R_{channel} contributes about 18.6 %.
- Drain current drift was observed and attributed to trapping effects.

