Problems

12.1

12.2
12.3

124

In Figure 12.4, it is assumed that an array of 80 64-bit words is available to store the val-
ues of W, so that they can be precomputed at the beginning of the processing of a block.
Now assume that space is at a premium. As an alternative, consider the use of a 16-word
circular buffer that is initially loaded with W, through W, s. Design an algorithm that, for
each step 7, computes the required input value W,.

For SHA-512, show the equations for the values of W,s, W,7, W, Wio.

Suppose a, a, a3 a, are the 4 bytes in a 32-bit word. Each a; can be viewed as an inte-
ger in the range 0 to 255, represented in binary. In a big-endian architecture, this word
represents the integer

31224 + 322'6 + 3328 4 dy
In a little-endian architecture, this word represents the integer
342.24 o 332]6 + 3228 + a;

a. Some hash functions, such as MDS3, assume a little-endian architecture. It is impor-
tant that the message digest be independent of the underlying architecture. There-
fore, to perform the modulo 2 addition operation of MD35 or RIPEMD-160 on a
big-endian architecture, an adjustment must be made. Suppose X = x; X; X3 X4 and
Y = ¥1 Y2 ¥3 V4. Show how the MDS5 addition operation (X + Y) would be carried
out on a big-endian machine.

b. SHA assumes a big-endian architecture. Show how the operation (X +Y) for
SHA would be carried out on a little-endian machine.

This problem introduces a hash function similar in spirit to SHA that operates
on letters instead of binary data. It is called the toy tetragraph hash (tth).? Given a
message consisting of a sequence of letters, tth produces a hash value consisting of
four letters. First, tth divides the message into blocks of 16 letters, ignoring spaces,
punctuation, and capitalization. If the message length is not divisible by 16, it is
padded out with nulls. A four-number running total is maintained that starts out
with the value (0,0, 0, 0); this is input to the compression function for processing the
first block. The compression function consists of two rounds. Round 1: Get the next
block of text and arrange it as a row-wise 4 X 4 block of text and convert it to
numbers (A =0, B = 1, etc.). For example, for the block ABCDEFGHIJKLMNOP,
we have:

A B L& D 1 3
E F G H 4 5 6 7
I J K L 8 9 10 11
M N O P 12 13 14 15

31 thank William K. Mason, of the magazine staff of The Cryptogram, for providing this example.
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Then, add each column mod 26 and add the result to the running total, mod 26. In this
example, the running total is (24, 2, 6, 10). Round 2: Using the matrix from round 1,
rotate the first row left by 1, second row left by 2, third row left by 3 , and reverse the
order of the fourth row. In our example:

B C D A 1 2 3 0
G H E I 6 7 4 5
I I J K 11 8 9 10
P O N M 15 14 13 12

Now, add each column mod 26 and add the result to the running total. The new

running total is (5, 7,9, 11). This running total is now the input into the first round of

the compression function for the next block of text. After the final block is

processed, convert the final running total to letters. For example, if the message is

ABCDEFGHIJKLMNOP, then the hash is FHJL.

a. Draw figures comparable to Figures 12.1 and 12.2 to depict the overall tth logic
and the compression function logic.

b. Calculate the hash function for the 48-letter message “I leave twenty million dol-
lars to my friendly cousin Bill.”

¢. To demonstrate the weakness of tth, find a 48-letter block that produces the same
hash as that just derived. Hint: Use lots of A’s,

Develop a table similar to Table 4.8 for GF(2%) with m(x) = x* + x* + x> + x? + 1.

Show the E and E™' mini-boxes in Table 12.3 in the traditional S-box square matrix
format, such as that of Table 5.4.

Verify that Figure 12.9 is a valid implementation of the S-box shown in Table 12.3a.
Do this by showing the calculations involved for three input values: 00, 55, 1E.
Provide a Boolean expression that defines the S-box functionality of Figure 12.9.
Whirlpool makes use of the construction H; = E(H,_,, M) ® H;; ® M, Another con-
struction that was shown by Preneel to be secure is H; = E(H,_,, M;) @ M,. Now notice
that the key schedule for Whirlpool resembles encryption of the cipher key under a
pseudo-key defined by the round constants, so that the core of the hashing process
could be formally viewed as two interacting encryption lines. Consider the encryption
E(H,-,, M;). We could write the final round key for this block as Kip = E(RC, H._)).
Now show that the two hash constructions are essentially equivalent because of the way
that the key schedule is defined.

At the beginning of Section 12.4, it was noted that given the CBC MAC of a one-block
message X, say 7 = MAC(K, X), the adversary immediately knows the CBC MAC
for the two-block message X||(X @ T') since this is once again T. Justify this statement.
In this problem, we demonstrate that for CMAC, a variant that XORs the second
key after applying the final encryption doesn’t work. Let us consider this for the case
of the message being an integer multiple of the block size. Then the variant can be
expressed as VMAC(K, M) = CBC(K, M) @ K;. Now suppose an adversary is able
to ask for the MACs of three messages: the message 0 = 0", where 7 is the cipher
block size; the message 1 = 1", and the message 1/0. As a result of these three
queries the adversary gets T, = CBC(K,0)® K;; T, = CBC(K,1) @ K;, and
T, = CBC(K, [CBC(K, 1)]) ® K. Show that the adversary can compute the correct
MAC for the (unqueried) message 0|(7, @ 7).

In the discussion of subkey generation in CMAG, it states that the block cipher is
applied to the block that consists entirely of 0 bits. The first subkey is derived from the
resulting string by a left shift of one bit, and, conditionally, by XORing a constant that
depends on the block size. The second subkey is derived in the same manner from the
first subkey.

a. What constants are needed for block sizes of 64 and 128 bits?

b. Explain how the left shift and XOR accomplishes the desired result.




