CHAPTER 4

Circuit Characterization and Performance Estimation I
Outline

1. Delay Estimation
2. Logical Effort and Transistor Sizing
3. Power Dissipation
4. Interconnect
5. Wire Engineering
6. Design Margin
7. Reliability
8. Scaling
Transient Response

• DC analysis tells us V_{out} if V_{in} is constant
• Transient analysis tells us $V_{out}(t)$ if $V_{in}(t)$ changes
 – Requires solving differential equations
• Input is usually considered to be a step or ramp
 – From 0 to V_{DD} or vice versa
Inverter Step Response

- Find step response of inverter driving load cap

\[V_{in}(t) = u(t - t_0)V_{DD} \]

\[V_{out}(t < t_0) = V_{DD} \]

\[\frac{dV_{out}(t)}{dt} = - \frac{I_{dsn}(t)}{C_{load}} \]

\[I_{dsn}(t) = \begin{cases}
0 & t \leq t_0 \\
\frac{\beta}{2} \left(V_{DD} - V_t \right)^2 & V_{out} > V_{DD} - V_t \\
\beta \left(V_{DD} - V_t - \frac{V_{out}(t)}{2} \right) V_{out}(t) & V_{out} < V_{DD} - V_t
\end{cases} \]
Delay Definitions (1/3)

• t_{pdr}: maximum rising propagation delay
 – From input to rising output crossing $V_{DD}/2$

• t_{pdf}: maximum falling propagation delay
 – From input to falling output crossing $V_{DD}/2$

• t_{pd}: average propagation delay
 – $t_{pd} = (t_{pdr} + t_{pdf})/2$

• t_r: rise time
 – From output crossing 0.2 V_{DD} to 0.8 V_{DD}

• t_f: fall time
 – From output crossing 0.8 V_{DD} to 0.2 V_{DD}
Delay Definitions (2/3)
Delay Definitions (3/3)

- \(t_{cdr} \): *minimum rising contamination delay*
 - From input to rising output crossing \(V_{DD}/2 \)
- \(t_{cdf} \): *minimum falling contamination delay*
 - From input to falling output crossing \(V_{DD}/2 \)
- \(t_{cd} \): *average contamination delay*
 - \(t_{cd} = \frac{t_{cdr} + t_{cdf}}{2} \)

![Diagram of the circuit](image-url)
Simulated Inverter Delay

- Solving differential equations by hand is too difficult
- SPICE simulator solves the equations numerically
 - Use more accurate I-V models too
- But accurate simulations take time

![Graph showing inverter delay with t_{pdf} = 66ps and t_{pdr} = 83ps]
Delay Estimation I

- Estimate delay easily
 - Not as accurate as simulation
 - Easier to ask “What if?”
- The step response usually looks like a 1st order RC response with a decaying exponential
- Use RC delay models to estimate delay
 - C = total capacitance on output node
 - Use effective resistance R
 - So that $t_{pd} = RC$
- Characterize transistors by finding their effective R
 - Depends on average current as gate switches
Delay Estimation II

- **Critical path**: the signal path with the slowest (most critical) timing, it can be affected at 4 main levels.
 - **The architectural/micro-architectural level**
 - Tradeoff of pipeline stages, number of execution units, and size of memory, it’s the level with the most impact factor.
 - **The logic level**
 - Tradeoff of functional block types, number of gate in the cycle, fan-in and fan-out number.
 - **The circuit level**
 - Choosing transistor size and CMOS logic styles.
 - **The layout level**
 - Determine floor plan, wire length, and check parasitic
Critical Path

\[a_0 = 20 \]
\[a_1 = 30 \]
\[a_2 = 50 \]
\[a_3 = 20 \]
\[a_4 = 20 \]
\[a_5 = 20 \]
\[a_6 = 20 \]
\[a_7 = 60 \]
\[a_8 = 80 \]
\[a_9 = 110 \]
\[o_9 \]
\[a_{10} = 90 \]
\[a_{11} = 60 \]
\[a_{12} = 140 \]
\[o_{12} \]
RC Delay Models

- Use equivalent circuits for MOS transistors
 - Ideal switch + capacitance and ON resistance
 - Unit nMOS has resistance R, capacitance C
 - Unit pMOS has resistance $2R$, capacitance C
- Capacitance proportional to width
- Resistance inversely proportional to width
Example: Inverter

\[C_{\text{out}} = C_{\text{dbn1}} + C_{\text{dbp1}} + C_{\text{wire}} + C_{\text{gsn2}} + C_{\text{gsp2}} \]
Example: Inverter

(a) Inverter Circuit

(b) Expanded View

(c) Output Capacitances

Nonswitching capacitances: irrelevant

Output capacitances

VLSI Design
Chih-Cheng Hsieh
Example: 3-input NAND

• Sketch a 3-input NAND with transistor widths chosen to achieve effective rise and fall resistances equal to a unit inverter (R)
3-input NAND Caps

• Annotate the 3-input NAND gate with gate and diffusion capacitance.
3-input NAND Caps

- Annotate the 3-input NAND gate with gate and diffusion capacitance.
• Annotate the 3-input NAND gate with gate and diffusion capacitance.
Delay of 3-input NAND
Elmore Delay Model

- On transistors look like resistors
- Pullup or pulldown network can be modeled as RC ladder
- Elmore delay model of an RC ladder

\[t_{pd} = \sum_{i} R_{n-i} C_i = \sum_{i=1}^{N} C_i \sum_{j=1}^{N} R_j \]
Example: 2-input NAND

- Estimate worst-case rising and falling delay of 2-input NAND driving h identical gates

\[
\begin{align*}
\text{rising delay} & \quad (A=1, \ B=1 \rightarrow 0 \text{ only } 1 \text{ pMOS ON}) \\
t_{pdr} &= \left(6 + 4h\right)RC \\
R/2 & \quad \text{(6+4h)C}
\end{align*}
\]

\[
\begin{align*}
\text{falling delay} & \quad (A=1, \ B=0 \rightarrow 1, \ X,Y=1 \rightarrow 0) \\
t_{pdf} &= \left(2C\right)\left(\frac{R}{2}\right) + \left[(6 + 4h)C\right]\left(\frac{R}{2} + \frac{R}{2}\right) = \left(7 + 4h\right)RC \\
\end{align*}
\]
Contamination Delay

- Best-case (contamination) delay can be substantially less than propagation delay
- Example: If both inputs fall simultaneously

\[t_{cdr} = (3 + 2h)RC \]

\[t_{cdf} = (6 + 4h)RC \]

Latest input should be connected to transistor closest to the output
Diffusion Capacitance

- Good layout minimizes diffusion area
- Example: NAND3 layout shares diffusion contact
 - Reduce output capacitance by 2C
 - Merged un-contacted diffusion might help too
Layout Comparison

- Which layout is better
Delay Components

- Parasitic delay
 - 6 or 7 RC
 - Independent of load

- Effort delay
 - 4h RC
 - Proportional to load capacitance

\[
t_{pdr} = (6 + 4h) \, RC \\
\]
\[
t_{pdf} = (7 + 4h) \, RC \\
\]
Outline

1. Delay Estimation
2. Logical Effort and Transistor Sizing
3. Power Dissipation
4. Interconnect
5. Wire Engineering
6. Design Margin
7. Reliability
8. Scaling
Introduction

• Chip designers face a bewildering array of choices
 – What is the best circuit topology for a function?
 – How many stages of logic give least delay?
 – How wide should the transistors be?

• Logical effort is a method to make these decisions
 – Uses a simple model of delay
 – Allows back-of-the-envelope calculations
 – Helps make rapid comparisons between alternatives
 – Emphasizes remarkable symmetries
Example

• Ben Bitdiddle is the memory designer for the Motoroil 68W86, an embedded automotive processor. Help Ben design the decoder for a register file.

• Decoder specifications:
 – 16 word register file
 – Each word is 32 bits wide
 – Each bit presents load of 3 unit-sized transistors
 – True and complementary address inputs A[3:0]
 – Each input may drive 10 unit-sized transistors

• Ben needs to decide:
 – How many stages to use?
 – How large should each gate be?
 – How fast can decoder operate?
Delay in a Logic Gate

- Express delays in process-independent unit

\[d = \frac{d_{abs}}{\tau} \]

\[\tau = 3RC \]

\approx 12 \text{ ps in 180 nm process} \\
40 \text{ ps in 0.6 \mu m process} \]
Delay in a Logic Gate

- Express delays in process-independent unit
 \[d = \frac{d_{\text{abs}}}{\tau} \]
- Delay has two components
 \[d = f + p \]
Delay in a Logic Gate

• Express delays in process-independent unit
 \[d = \frac{d_{\text{abs}}}{\tau} \]

• Delay has two components
 \[d = f + p \]

• Effort delay \(f = gh \) (or stage effort)
 – Again has two components
Propagation Delay in a Logic Gate

• Express delays in process-independent unit
 \[d = \frac{d_{\text{abs}}}{\tau} \]

• Delay has two components
 \[d = f + p \]

• Effort delay \(f = gh \) (or stage effort)
 – Again has two components

• \(g \): logical effort
 – Measures relative ability of gate to deliver current
 – \(g \equiv 1 \) for inverter
Delay in a Logic Gate

• Express delays in process-independent unit
 \[d = \frac{d_{\text{abs}}}{\tau} \]

• Delay has two components
 \[d = f + p \]

• Effort delay \(f = gh \) (a.k.a. stage effort)
 – Again has two components

• \(h \): electrical effort = \(\frac{C_{\text{out}}}{C_{\text{in}}} \)
 – Ratio of output to input capacitance
 – Sometimes called fanout
Delay in a Logic Gate

- Express delays in process-independent unit
 \[d = \frac{d_{\text{abs}}}{\tau} \]
- Delay has two components
 \[d = f + p \]
- Parasitic delay \(p \)
 - Represents delay of gate driving no load
 - Set by internal parasitic capacitance
Computing Logical Effort

- The ratio of the input capacitance of a gate to the input capacitance of an inverter delivering the same output current
- Measure from delay vs. fanout plots or
- Estimate by counting transistor widths

\[C_{in} = 3, \quad g = 3/3 \]
\[C_{in} = 4, \quad g = 4/3 \]
\[C_{in} = 5, \quad g = 5/3 \]
Delay Plots

\[d = f + p = gh + p \]

Normalized Delay: \(d \)

Electrical Effort:

\[h = \frac{C_{\text{out}}}{C_{\text{in}}} \]

Normalized Delay: \(d \)

2-input NAND

Inverter

\[g = \]

\[p = \]

\[d = \]

0 1 2 3 4 5

0

1

2

3

4

5

6
\[d = f + p \]
\[= gh + p \]

- What about NOR2?

Normalized Delay: \(d \)

Effort Delay: \(f \)

Parasitic Delay: \(p \)

Electrical Effort:
\[h = \frac{C_{out}}{C_{in}} \]
Catalog of Gates

- **Logic effort of common gates**

\[
g_i = \frac{C_{in-i}}{C_{in-inv}} = \frac{C_{in-i}}{3C}
\]

<table>
<thead>
<tr>
<th>Gate type</th>
<th>Number of inputs</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Inverter</td>
<td>1</td>
</tr>
<tr>
<td>NAND</td>
<td>4/3</td>
</tr>
<tr>
<td>NOR</td>
<td>5/3</td>
</tr>
<tr>
<td>Tristate / mux</td>
<td>2</td>
</tr>
<tr>
<td>XOR, XNOR</td>
<td>4, 4</td>
</tr>
</tbody>
</table>
Catalog of Gates

- Parasitic delay of common gates
 - In multiples of $P_{inv}(\sim 1)$

\[
p_i = \frac{C_{p-i}}{C_{p-inv}} = \frac{C_{p-i}}{3C}
\]

<table>
<thead>
<tr>
<th>Gate type</th>
<th>Number of inputs</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Inverter</td>
<td>1</td>
</tr>
<tr>
<td>NAND</td>
<td>2</td>
</tr>
<tr>
<td>NOR</td>
<td>2</td>
</tr>
<tr>
<td>Tristate / mux</td>
<td>2</td>
</tr>
<tr>
<td>XOR, XNOR</td>
<td>4</td>
</tr>
</tbody>
</table>
Example: Ring Oscillator

• Estimate the frequency of an N-stage ring oscillator

Logic Effort: \(g = 1 \)
Electrical Effort: \(h = 1 \)
Parasitic Delay: \(p = 1 \)
Stage Delay: \(d = 2 \)
Frequency:

\[
 f_{osc} = \frac{1}{2Nd} = \frac{1}{4N}
\]
Example: FO4 Inverter

- Estimate the delay of a fanout-of-4 (FO4) inverter

 FO4 delay for a process (ps) is $\frac{1}{3}$ to $\frac{1}{2}$ of the channel length (nm). Ex. 180nm: FO4 = 60~90ps → highly sensitive to process, voltage, temperature variation.

 Logic Effort: $g = 1$
 Electrical Effort: $h = 4$
 Parasitic Delay: $p = 1$
 Stage Delay: $d = 5$
Multistage Logic Networks

- Logic effort generalizes to multistage networks
- Path logical effort
 \[G = \prod g_i \]
- Path electrical effort
 \[H = \frac{C_{out-path}}{C_{in-path}} \]
- Path effort
 \[F = \prod f_i = \prod g_i h_i \]

F=GH?
Paths that Branch

• No! Consider paths that branch

\[G = 1 \]
\[H = \frac{90}{5} = 18 \]
\[GH = 18 \]
\[h_1 = \frac{(15+15)}{5} = 6 \]
\[h_2 = \frac{90}{15} = 6 \]
\[F = g_1g_2h_1h_2 = 36 = 2GH \]
Branching Effort

- Accounts for branching between stages in path

 - Branching effort

 \[b = \frac{C_{\text{on path}} + C_{\text{off path}}}{C_{\text{on path}}} \]

 - Path ranching effort

 \[B = \prod b_i \]
 \[\prod h_i = BH \]

- Now we compute path effort

 \[F = GBH \]
Multistage Delays

- Path effort delay
 \[D_F = \sum f_i \]

- Path parasitic delay
 \[P = \sum p_i \]

- Path delay
 \[D = \sum d_i = D_F + P \]
Designing Fast Circuits

\[D = \sum d_i = D_F + P \]

- Delay is smallest when each stage bears same effort

\[\hat{f} = g_i h_i = F^{\frac{1}{N}} \]

- Thus minimum delay of N stage path is

\[D = NF^{\frac{1}{N}} + P \]

- This is a key result of logic effort
 - Find fastest possible delay
 - Doesn’t require calculating gate size
Gate Size

• How wide should the gates be for least delay?

\[
\hat{f} = gh = g \frac{C_{out}}{C_{in}}
\]

\[
\Rightarrow C_{in_i} = \frac{g_i C_{out_i}}{\hat{f}}
\]

• Working backward, apply capacitance transformation to find input capacitance of each gate with given load it drives

• Check work by verifying input cap spec is met
Example: 3-stage path

- Select gate size x and y for least delay from A to B
Example: 3-stage path

Logical effort \(G = \frac{4}{3} \cdot \frac{5}{3} \cdot \frac{5}{3} = \frac{100}{27} \)

Electrical effort \(H = \frac{45}{8} \)

Branching effort \(B = 3 \times 2 = 6 \)

Path effort \(F = GBH = 125 \)

Best stage effort \(\hat{f} = \sqrt[3]{F} = 5 \)

Parasitic delay \(P = 2 + 3 + 2 = 7 \)

Delay \(D = 3 \times 5 + 7 = 22 = 4.4 \text{ FO4} \)
Example: 3-stage path

- Work backward for sizes
 - $y = 45 \times \frac{5}{3} / 5 = 15$
 - $x = (15 \times 2) \times \frac{5}{3} / 5 = 10$
Best Number of Stages

• How many stages should a path use?
 – Minimizing number of stages is not always fast
• Example: Drive 64-bit datapath with unit inverter

$$D =$$
Best Number of Stages

• How many stages should a path use?
 – Minimizing number of stages is not always fast

• Example: Drive 64-bit datapath with unit inverter

\[D = NF^{1/N} + P \]
\[= N(64)^{1/N} + N \]
• Consider adding inverters to end of path
 – How many give least delay?

\[D = NF^{\frac{1}{N}} + \sum_{i=1}^{n_1} p_i + (N - n_1) p_{inv} \]

\[\frac{\partial D}{\partial N} = -F^{\frac{1}{N}} \ln F^{\frac{1}{N}} + F^{\frac{1}{N}} + p_{inv} = 0 \]

• Define best stage effort \(\rho = F^{\frac{1}{N}} \)

\[p_{inv} + \rho(1 - \ln \rho) = 0 \]
Best Stage Effort

- $p_{inv} + \rho \left(1 - \ln \rho\right) = 0$ has no closed-form solution

- Neglecting parasitics ($p_{inv} = 0$), we define
 \[
 \rho = 2.718 \ (e)
 \]

- For $p_{inv} = 1$, solve numerically for $\rho = 3.59$
Sensitivity Analysis

• How sensitive is delay to using exactly the best number of stages?

• $2.4 < \rho < 6$ gives delay with 15% of optimal
 – 4 is a convenient choice
Example, Revisited

• Ben Bitdiddle is the memory designer for the Motoroil 68W86, an embedded automotive processor. Help Ben design the decoder for a register file.

• Decoder specifications:
 – 16 word register file
 – Each word is 32 bits wide
 – Each bit presents load of 3 unit-sized transistors
 – True and complementary address inputs A[3:0]
 – Each input may drive 10 unit-sized transistors

• Ben needs to decide:
 – How many stages to use?
 – How large should each gate be?
 – How fast can decoder operate?
Number of Stages

• Decoder effort is mainly electrical and branching

Electrical Effort: \(H = \)
Branching Effort: \(B = \)

• If we neglect logical effort (assume \(G = 1 \))

Path Effort: \(F = \)
Number of Stages: \(N = \)
Number of Stages

• Decoder effort is mainly electrical and branching

 Electrical Effort: \(H = \frac{32 \times 3}{10} = 9.6 \)

 Branching Effort: \(B = 8 \)

• If we neglect logical effort (assume \(G = 1 \))

 Path Effort: \(F = GBH = 76.8 \)

 Number of Stages: \(N = \log_4 F = 3.1 \)

• Try a 3-stage design
3 Stage 4:16 Decoder

10 10 10 10 10 10 10 10

word[0]

96 units of wordline capacitance

y

z

word[15]
Gate Sizes & Delay

Logical Effort: \(G = \)

Path Effort: \(F = \)

Stage Effort: \(\hat{f} = \)

Path Delay: \(D = \)

Gate sizes: \(z = \) \(y = \)

96 units of wordline capacitance
Gate Sizes & Delay

Logical Effort: \(G = 1 \times \frac{6}{3} \times 1 = 2 \)

Path Effort: \(F = GBH = 154 \)

Stage Effort: \(\hat{f} = F^{1/3} = 5.36 \)

Path Delay: \(D = 3\hat{f} + 1 + 4 + 1 = 22.1 \)

Gate sizes: \(z = 96 	imes \frac{1}{5.36} = 18 \quad y = 18 \times \frac{2}{5.36} = 6.7 \)
Comparison

- Compare many alternatives with a spreadsheet

<table>
<thead>
<tr>
<th>Design</th>
<th>N</th>
<th>G</th>
<th>P</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>NAND4-INV</td>
<td>2</td>
<td>2</td>
<td>5</td>
<td>29.8</td>
</tr>
<tr>
<td>NAND2-NOR2</td>
<td>2</td>
<td>20/9</td>
<td>4</td>
<td>30.1</td>
</tr>
<tr>
<td>INV-NAND4-INV</td>
<td>3</td>
<td>2</td>
<td>6</td>
<td>22.1</td>
</tr>
<tr>
<td>NAND4-INV-NAND4-INV</td>
<td>4</td>
<td>2</td>
<td>7</td>
<td>21.1</td>
</tr>
<tr>
<td>NAND2-NOR2-NAND2-INV-INV</td>
<td>4</td>
<td>20/9</td>
<td>6</td>
<td>20.5</td>
</tr>
<tr>
<td>NAND2-INV-NAND2-INV</td>
<td>4</td>
<td>16/9</td>
<td>6</td>
<td>19.7</td>
</tr>
<tr>
<td>INV-NAND2-INV-NAND2-INV</td>
<td>5</td>
<td>16/9</td>
<td>7</td>
<td>20.4</td>
</tr>
<tr>
<td>NAND2-INV-NAND2-INV-INV</td>
<td>6</td>
<td>16/9</td>
<td>8</td>
<td>21.6</td>
</tr>
</tbody>
</table>
Review of Definitions

<table>
<thead>
<tr>
<th>Term</th>
<th>Stage</th>
<th>Path</th>
</tr>
</thead>
<tbody>
<tr>
<td>number of stages</td>
<td>1</td>
<td>N</td>
</tr>
<tr>
<td>logical effort</td>
<td>g</td>
<td>$G = \prod g_i$</td>
</tr>
<tr>
<td>electrical effort</td>
<td>$h = \frac{C_{out}}{C_{in}}$</td>
<td>$H = \frac{C_{out-path}}{C_{in-path}}$</td>
</tr>
<tr>
<td>branching effort</td>
<td>$b = \frac{C_{on-path} + C_{off-path}}{C_{on-path}}$</td>
<td>$B = \prod b_i$</td>
</tr>
<tr>
<td>effort</td>
<td>$f = gh$</td>
<td>$F = GBH$</td>
</tr>
<tr>
<td>effort delay</td>
<td>f</td>
<td>$D_F = \sum f_i$</td>
</tr>
<tr>
<td>parasitic delay</td>
<td>p</td>
<td>$P = \sum p_i$</td>
</tr>
<tr>
<td>delay</td>
<td>$d = f + p$</td>
<td>$D = \sum d_i = D_F + P$</td>
</tr>
</tbody>
</table>
Method of Logical Effort

1) Compute path effort

2) Estimate best number of stages

3) Sketch path with N stages

4) Estimate least delay

5) Determine best stage effort

6) Find gate sizes

\[F = GBH \]

\[N = \log_4 F \]

\[D = NF^{\frac{1}{N}} + P \]

\[\hat{f} = F^{\frac{1}{N}} \]

\[C_{in_i} = \frac{g_i C_{out_i}}{\hat{f}} \]
Limits of Logical Effort

- Chicken and egg problem
 - Need path to compute G
 - But don’t know number of stages without G

- Simplistic delay model
 - Neglects input rise time effects, velocity saturation & body effect ...

- No Interconnect account
 - Iteration required in designs with wire

- Maximum speed only
 - Not minimum area/power for constrained delay
Summary

• Logical effort is useful for thinking of delay in circuits
 – Numeric logical effort characterizes gates
 – NANDs are faster than NORs in CMOS
 – Paths are fastest when effort delays are ~4
 – Path delay is weakly sensitive to stages, sizes
 – But using fewer stages doesn’t mean faster paths
 – Delay of path is about $\log_4 F$ FO4 inverter delays
 – Inverters and NAND2 best for driving large caps

• Provides language for discussing fast circuits
 – But requires practice to master