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Fig. 1-1: Post-CMOS fabrication: (a) Completion of CMQOS; (b) Sacrificial metal etch; (c) etchant holes
sealed by silicon dioxide or parylene. (d) un-sealed and sealed sensing devices. () Measured maximum
peak-to-peak output values with respect to membrane dc biases. (f) Micrograph of the 4 x 4 capacitive
ultrasonic sensor array. (g) Produced 3D photoacoustic image of a hair by the CMOS MEMS sensors.
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Fig. 1-2: (a) Architecture of the 8 x 32 capacitive fingerprint sensor array. (b) SEM of the sensing
membranes. (¢) Photo of the fingerprint sensor chip. (d) Detected capacitance changes corresponding
to the ridges and valleys of a finger tip.
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Figure 1-3: The three oscillator schemes using direct feedback (a), direct feedback consisting of a PLL
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Figure 2-1: (g) and (h): operating principle of magnetic microbead-based manipulation and capacitive
detection. (g) Electromagnetic actuation of streptavidin-coated magnetic microbeads toward the
capacitive sensor with functionalized anti-streptavidin antibody. (h) Capacitive detection of the
remaining microbead after specific binding. (i) Schematic of the CMOS micro-manipulation and
biosensing array. The tunable current source for driving microcoils is also illustrated. (j) Micrograph of
the CMOS chip and scanning electron micrograph of one of the microcoils containing a capacitive
sensor. (k) and (I): measured output frequencies of capacitive sensors with (k) and without () a captured
microbead.
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Figure 2-3: (a) and (b): operating principle of polystyrene microbead-based dielectrophoretic
manipulation and optical detection. (a) DEP actuation of polystyrene microbeads with target molecules
toward the target ITO electrode; (b) Detection of microbeads by the p-i-n photodiode under the 1TO
electrode. (c) Cross-sectional view of the chip. (d) Schematic of the photo-detector circuit. (e)
Remaining PSA antibody microbeads on top of target microelectrodes after DEP actuation by 3 V., at
10 MHz. (f) Measured photo-detector waveforms with and without PSA antibody microbeads on
electrode surface.
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Figure 2-4: (a) SEM of the fabricated sub-um interdigitated electrodes. (b) Measured output waveforms
of the CMOS sensing circuit for dopamine concentrations from 0.3 to 1 uM. (c) Schematic of the
sensing circuit. (f) Micrograph of the CMOS chip containing 8x8 microelectrode array. (d) One set of
the measured output waveforms due to oxidation and reduction currents at DA concentration of 10 uM.
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Figure 2-5: (a) Micrograph of the 16x16 thermal sensor array. (b) Schematic of the sensing circuit. (c)
Measured temperature changes of the 16x16 sensor array under glucose concentration of 0.5 M. (d) The
measured sensor signal with respect to the 1-kHz square-wave heater signal. The estimated thermal

time constant is 25 ps.
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