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Abstract. This paper proposes a continuous stochastic generative model
that offers an improved ability to model analogue data, with a simple and
reliable learning algorithm. The architecture forms a continous restricted
Boltzmann Machine, with a novel learning algorithm. The capabilities of
the model are demonstrated with both artificial and real data.

1 Introduction

Probabilistic generative models offer a flexible route to improved data modelling,
wherein the stochasticity represents the natural variability of real data. Our
primary interest is in processing and modelling analogue data close to a sensor
interface. It is therefore important that such models are amenable to analogue
or mixed-mode VLSI implementation.

The Product of Experts (PoE) has been shown to be a flexible architecture
and “Minimising Contrastive Divergence” (MCD) can underpin a simple learning
rule [1]. The Restricted Boltzmann Machine (RBM) [2] with an MCD rule has
been shown to be amenable to further simplification and use in real applications
[3]. The RBM has one hidden and one visible layer with only inter-layer connec-
tions. Let si and sj represent the states of the stochastic units i, j, and wij be
the interconnect weights. The MCD rule for RBM replaces the computationally-
expensive relaxation search of the Boltzmann Machine with:

∆wij = η(< sisj >0 − < ŝiŝj >1) (1)

ŝi and ŝj correspond to one-step Gibbs sampled “reconstruction” states, and <>
denotes expectation value over the training data. By approximating the proba-
bilities of visible units as analogue-valued states, the RBM can model analogue
data [1][3]. However, the binary nature of the hidden unit causes the RBM to
tend to reconstruct symmetric analogue data only, as will be shown in Sect. 3.

The rate-coded RBM (RBMrate) [4] removes this limitation by sampling
each stochastic unit for m times. The RBMrate unit thus has discrete-valued
states, while retaining the simple learning algorithm of (1). RBMrate offers an
improved ability to model analogue image [4], but the repetitive sampling will
cause more spiking noise in the power supplies of a VLSI implementation, placing
the circuits in danger of synchronisation [5].



2 The Continuous Restricted Boltzmann Machine

2.1 A Continuous Stochastic Unit

Adding a zero-mean Gaussian with variance σ2 to the input of a sampled sig-
moidal unit produces a continuous stochastic unit as follows:

sj = ϕj

(

∑

i

wijsi + σ ·Nj(0, 1)

)

, (2)

with ϕj(xj) = θL + (θH − θL) ·
1

1 + exp(−ajxj)
(3)

where Nj(0, 1) represents a unit Gaussian, and ϕj(x) is a sigmoid function with
lower and upper asymptotes at θL and θH , respectively. Parameter aj controls
the steepness of the sigmoid function, and thus the nature of the unit’s stochastic
behaviour. A small value of aj renders input noise negligible and leads to a
near-deterministic unit, while a large value of aj leads to a binary stochastic
unit. If the value of aj renders the sigmoid linear over the range of the added
noise, the probability of sj remains Gaussian with mean

∑

i wijsi and variance
σ2. Replacing the binary stochastic unit in RBM by this continuous form of
stochastic unit leads to a continuous RBM (CRBM).

2.2 CRBM and Diffusion Network

The model and learning algorithms of the Diffusion Network (DN) [6][7] arise
from its continuous stochastic behaviour, as described by a stochastic differential
equation. A DN consists of n fully-connected units and an n × n real-valued
matrix W , defining the connection-weights. Let xj(t) be the state of neuron j in
a DN. The dynamical diffusion process is described by the Langevin equation:

dxj(t) = κj

(

∑

i

wijϕi(xi(t)) − ρjxj(t)

)

· dt + σ · dBj(t) (4)

where 1/κj > 0 and 1/ρj > 0 represent the input capacitance and resistance of
neuron j. dBj(t) is the Brownian motion differential [7]. The increment, Bj(t +
dt) − Bj(t) , is thus a zero-mean Gaussian random variable with variance dt.
The discrete-time diffusion process for a finite time increment ∆t is:

xj(t + ∆t) = xj(t) + κj

∑

i

wijϕi(xi(t))∆t− κjρjxj(t)∆t + σzj(t)
√

∆t (5)

where zj(t) is a Gaussian random variable with zero mean and unit variance. If

κjρj∆t = 1, the terms in xj(t) cancel and writing σ
√

∆t = σ′, this becomes:

xj(t + ∆t) = κj

∑

i

wijϕi(xi(t))∆t + σ′zj(t) (6)



If wij = wji and κj is constant over the network, the RHS of (6) is equivalent
to the total input of a CRBM as given by (2). As sj = ϕj(xj), the CRBM is
simply a symmetric restricted DN (RDN), and the learning algorithm of the DN
is thus a useful candidate for the CRBM.

2.3 M.C.D. learning algorithms for the CRBM

The learning rule for the parameter λj of the DN is [6]:

∆λj =< Sλj
>0 − < Sλj

>∞ (7)

where <>0 refers to the expectation value over the training data with visible
states clamped, and <>∞ to that in free-running equilibrium. Sλj

is the system-
covariate [6], the negative derivative of the DN’s energy function w.r.t. parameter
λj . The restricted DN can be shown to be a PoE [8] and we choose to simplify
(7) by once again minimising contrastive divergence [1].

∆λ̂j =< Sλj
>0 − < Ŝλj

>1 (8)

where <>1 indicates the expectation values over one-step sampled data. Let
ϕ(s) represent ϕj(s) with aj = 1. The energy function of CRBM can be shown
to be similar to that of the continuous Hopfield model [9][6].

U = −
1

2

∑

i6=j

wijsisj +
∑

i

ρi

ai

∫ si

0

ϕ−1(s)ds (9)

(8) and (9) then lead to the MCD learning rule for the CRBM’s parameters:

∆ŵij = ηw(< sisj >0 − < ŝiŝj >1) (10)

∆âj = ηa

(

ρj

a2
j

〈

∫ sj

ŝj

ϕ−1(s)ds

〉)

(11)

where ŝj denotes the one-step sampled state of unit j, and <> in (11) refers to
the expextation value over the training data. To simplify the hardware design,
we approximate the integral term in (11) as

∫ sj

ŝj

ϕ−1(s)ds ∝ (sj + ŝj)(sj − ŝj) (12)

The training rules for wij and aj thus require only adding and multiplying
calculation of local units’ states.

3 Demonstration : Artificial Data

Two-dimensional data were generated to probe and to compare the performance
of RBM and CRBM on analogue data (Fig.1(a)). The data include two clusters
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Fig. 1. (a)Artificial-generated analogue training data. (b)Reconstruction by the trained
RBM (c)Reconstruction by the trained CRBM (d)Learning trace of aj .

of 200 data. Figure 1(b) shows points reconstructed from 400 random input data
after 20 steps of Gibbs’ sampling by an RBM with 6 hidden units, after 4000
training epochs. The RBM’s tendancy to generate data in symmetric patterns
is clear. Figure 1(c) shows the same result for a CRBM with four hidden units,
ηw = 1.5 , ηa = 1 and σ = 0.2 for all units. The evolution of the gain factor
aj of one visible unit is shown in Fig.1(d) and displays a form of ‘autonomous
annealing’, driven by (11), indicating that the approximation in (12) leads to
sensible training behaviour in this stylised, but non-trivial example.

4 Demonstration : Real Heart-beat (ECG) Data:

To highlight the improved modelling richness of the CRBM and to give these
results credence, a CRBM with four hidden units was trained to model the ECG
data used in [3] and [10]. The ECG trace was divided into one training dataset
of 500 heartbeats and one test dataset of 1700 heartbeats, each of 65 samples.
The 500 training data contain six Ventricular Ectopic Beats (VEB), while the
1700 test data contain 27 VEBs. The CRBM was trained for 4000 epochs with
ηw = 1.5, ηa = 1, σ = 0.2 for visible units and σ = 0.5 for hidden units.

Figure 2 shows the reconstruction by the trained CRBM, from initial visible
states as 2(a) an observed normal QRS complex 2(b) an observed typical VEB,
after 20 subsequent steps of unclamped Gibbs’ sampling. The CRBM models
both forms of heartbeat successfully, although VEBs represent only 1% of the
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Fig. 2. Reconstruction by the trained CRBM with input of (a) a normal QRS and (b)
a typical VEB. (c)The receptive fields of the hidden bias and the four hidden units

training data. Following [3], Fig.2(c) shows the receptive fields of the hidden
bias unit and the four hidden units. The Bias unit codes an “average” normal
QRS complex, and H3 adds to the P- and T- waves. H1 and H2 drive a small
horizontal shift and a magnitude variation of the QRS complex. Finally, H4
encodes the significant dip found in a VEB. The most principled detector of
VEBs in test data is the log-likelihood under the trained CRBM. However, log-
likelihood requires complicated hardware. Figure 2(c) suggests that the activities
of hidden units may be usable as the basis of a simple novelty detector. For
example, the activities of H4 corresponding to 1700 test data are shown in Fig.3,
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Fig. 3. The activities of H4 corresponding to 1700 test data.



with the noise source in equation (2) removed. The peaks indicate the VEBs
clearly. VL in Fig.3 indicates the minimum H4 activity for a VEB and QH
marks the datum with maximum H4 activity for a normal heartbeat. Therefore,
even a simple linear classifier with threshold set between the two dashed line
will detect the VEBs with an accuracy of 100%. The margin for threshold is
more than 0.5, equivalent to 25% of the total value range. A single hidden unit
activity in a CRBM is, therefore, potentially a reliable novelty detector and it is
expected that layering a supervised classifier on the CRBM, to “fuse” the hidden
unit activities, will lead to improved results.

5 Conclusion

The CRBM can model analogue data successfully with a simplified MCD rule.
Experiments with real ECG data further show that the activities of the CRBM’s
hidden units may function as a simple but reliable novelty detector. Component
circuits of the RBM with the MCD rule have been successfully implemented
[5][11]. Therefore, the CRBM is a potential continuous stochastic model for VLSI
implementation and embedded intelligent systems.
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