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Abstract—The Diffusion Network (DN) is a probabilistic ~ compared with those obtained in Matlab simulation to exam
model capable of recognising continuous-time, continuods the fidelity of the VLSI translation.
valued biomedical data. As the stochastic process of the DN
is described by stochastic differential equations, realiang the Il. THE DIFFUSION NETWORK

DN with analogue circuits is important to facilitate real-time h . f . . . lued
simulation of a large network. This paper presents the trans The DN consists of continuous-time, continuous-valued,

lation of the DN into analogue Very Large Scale Integration Stochastic units with fully recurrent connections, asshlu
(VLSI). With extensive simulation, the dynamic ranges of trated in Fig.la [1][2]. Letz;(¢) represent the state of the
parameters and their representation in VLSI are identified.  ynit; at timet, andw;; the coupling strength from the unit
The VLSI circuits realising the stochastic unit of the DN are i to the unitj. The stater; is a random variable whose

further designed and interconnected to form a stochastic stem . L . -
using noise to induce stochastic dynamics in VLSI. The cirdt ftOChaSt'C dynamics is governed by the following equation

simulation demonstrate that the VLSI translation of the DN is

satisfactory and the DN system is capable of using noise-inded dx;(t) = pi(t) - dt + o - dBy(t) (1)
stochastic dynamics to regenerate various types of contimws-
time sequences. where i;(t) is a deterministiadrift term given in (2),0 a

constant, andiB;(t) the Brownian motion. The Brownian
I. INTRODUCTION C . _—
motion introduces the stochasticity, enriching greatlg th

a stochastic recurrent network whose stochastic dynamics

can be trained to model the probability distributions of 1
continuous-time sequences by the Monte-Carlo Expectation pi(t) = C. Zwijsj (t) — xi(t)/ R 2
Maximisation (EM) algorithm [1], [2]. As stochasticity is "\
useful for generalising the natural variability in data[f3] ¢; > 0 andR; > 0 in (2) are adaptable parameters cailed
the DN is further shown suitable for recognising noisyput capacitance andtransmembrane resistance, respectively,
continuous-time biomedical data [5]. However, the stotibas gnd s;(t) = tanh(a; - ;) with parametew; controlling the
dynamics of the DN is defined by a set of continuous-timesiope of the hyperbolic tangent function.
stochastic differential equations. The speed of simufatin The stochastic units of the DN are divided inisible and
stochastic differential equations in a digital computer igjdden units (Fig.1a). By adapting parameters;, C;, and R;
inherently limited by the serial processing and numericajccording to the Monte-Carlo EM algorithm (Appendix), the
iterations of the computer. Translating the DN into analbgupN learns to regenerate the dynamics of training data as the
circuits is thus important for simulating a large DN instochastic dynamics of its visible units [2]. The stochaisti
real time. The hardware implementation of the DN coulgs useful for representing the variability of the training
further function as an intelligent embedded system capgynamics. Therefore, the number of visible units simply
ble of recognising multichannel, time-varying biomedicakquals the dimension of training data, while the minimum
signals in real time. Such a system would be useful fafumber of hidden units for satisfactory modelling is nor-
implantable biomedical microsystems, which aim to delivemally identified through experimental trials. After traigj
bio-feedbacks or to control prosthetic devices in real timg|| stochastic units of the DN are given their initial values
[6]. (normally zero) at = 0 and then sampled according to (1).
This paper presents the translation of the DN into &he agreement between the sampled (regenerated) dynamics

stochastic VLSI system using noise-induced stochasticityt visible neurons and the dynamics of training data then
Following a brief review on the DN model, the dynamicindicate how well the data are modelled.

ranges of parameters essential for modelling data satis-
factorily are first identified with Matlab simulation. The !ll. MAPPING THEDIFFUSION NETWORK INTO VLSI
representation of parameters in VLSI are then defined, aid Circuit architecture

the component circuits for realising the DN are designed. The stochastic unit of the DN can be translated into
Finally, the simulated dynamics of the VLSI system argne equivalent-circuit model in Fig.1b The resistor and the

Chen-Han Chien, Chih-Chen Lu, and Hsin Chen are with thetutst Capacitor correspond t; andC; in (2), respectively, and the
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Kuang-Fu Road, HsinChu, 30013, Taiwan (phone: +886 351B2@mail: 1Discrete-time approximation to the stochastic differ@intiquations was
hchen@ee.nthu.edu.tw). adopted in the numerical simulation
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Fig. 2. The four bifurcating training data (black dashede$inand 50
(a) sequences (grey curves) regenerated by the DN after 1G0nggagpochs.

a; = 3 ando = 0.1 for all units. The numerical values of the horizontal
axis correspond to the indexes of discrete-time sampled, the same
representation is employed in Fig.3-Fig.5
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Fig. 1. (a)The diagram of a DN with one visible (white-coledy and time
three hidden(grey-coloured) units. (b)The circuit amttiire of a stochastic
unit in the DN.

Fig. 3. 10 normal heartbeats (black curves) and 50 sequég@scurves)
regenerated by the DN after 100 training epoahis= 2 ando = 0.1 for
all units.

voltage at noder; represent the state of the stochastic unit.
The multipliers calculatev;; - s; and output a total current
I;,, proportional tozj w;js5(t). Ii, and the noise current
L.ise are then summed up and buffered & and C; by
the class Il current conveyor [7], producing the stochasti
dynamics atr; according to (1). Finally, passing through /
the sigmoid circuit gives; for the inputs of all stochastic >™ 0 \
units.
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B. Adapting w;; and R; only -
The simulation in [2] shows that adapting;; and C; et 9tz
is sufficient for modelling various types of data. However,

a variable resistor is easier to implement in VLSI than gig. 4. (a)The spiral curve and (b) the handwritietfblack dashed lines)
or training the DN. The gray curves in each subplot are 50useges

variable capacitor. Fig.1b indicates th@t and R; cooperate regenerated by the DN after 120 training epoahs= 0.8 and = 0.01
to determine the “time constant” of the stochastic dynamidsr modelling (a), whilea; = 0.5 ando = 0.04 for modelling (b).

of each unit. The feasibility of modelling different data by
adaptingw;; and R; only is thus investigated.

With C; = 1 and At = 0.05 for discrete-time iteration of r
(1) in Matlab, the DN was trained to model different types >~ o
of data with their dynamic ranges normalised ifte, 2]. A g
DN with one visible and one hidden units was first trainec
to model the bifurcating curves used in [2] (the black dashe _ 2
lines in Fig.2). After 100 training epochs, the DN was capa ~ 2 A'AA A . \ A A A W ‘
ble of regenerating the bifurcating curves at its visiblé un 0 50 100 tme 150 200 250
successfully, as shown by Fig.2. With two more hidden units,
the DN was further trained to model ten QRS segments of t - . .
real heartbeat data extracted from the MIT-BIH database (tﬁgd' ﬁ,‘loﬂiﬁﬁ ;fg;,dca:”\\l,vea:?ﬁ ézlfﬁ ';udt?jﬂfirl;”?é)s;”;‘fefﬁg rgZﬁerate
black lines in Fig.3). The reconstruction in Fig.3 indighte by the DN after 100 training epochs; = 1 ando = 0.05 for all units.
that the DN modelled not only the dynamics but also the




I . TABLE |
variability of the real heartbeat data. Moreover, the dpira  Tue byNAMIC RANGES OF PARAMETERS AND THEIR MAPPINGS

curve and the hand-writtenshown by the black dashed lines ~ BETWEENMATLAB SIMULATION AND VLS| IMPLEMENTATION
in Fig.4 were used to examine the DN’s capability to model

; . ) ; Parameter| Matlab VLSI
two-dimensional data. As shown by Fig.4, a DN with two . 33 TG
visible and five hidden units was able to regenerate thelspira
curve and the handwrittemas the stochastic dynamics of the Wij —30 ~ 30 —5puA ~5uA
visible unitsv; andwvs. These results demonstrate that the DN Iin —30~30 | —660nA ~ 660nA
gan (rjnod_el both a(rjtlﬂmal Iand biomedical data satisfagtoril At 0.05 Sus

y adaptingw;; and f; only. Ri 05~4 | 4.55MQ ~ 36.4MS
C. Dynamic ranges of parameters c, 1 11pF

As indicated by Fig.1b, a stochastic unit with a spedcitic s 11 oA~ 2uA

andC; needs to increase;; or s; to increase the maximum
changing rate of the dynamicsat To identify the dynamic ai 0.5~10 0.4pA ~ 11uA
ranges required by all parameters, a DN with one visible and o 0.1~0.5 | 29.5nA4 ~ 147.5nA
three hidden units is trained to model sinusoidal wavesfat di
ferent frequencies. Let the frequency of the sinusoidalevav
in Fig.5a bef,. The sinusoidal wave witd0f, in Fig.5b von
is selected as the fastest dynamics to be modelled by the A a

DN in VLSI. For data with even more faster dynamics, the

data can always be slowed down by over-sampling and then
expanding the samples along the time axis. After extensive
simulations, the dynamic ranges required for modelling the
sinusoidal waves with a frequency ranging frginto 10f,,

as well as the artificial and biomedical data in Sec.lll-B ar me
identified and summarised in Table.l. Fig.5 shows that the
DN can model the sinusoidal waves satisfactorily within the
parameter ranges. b1

M1

D. Mappings between numerical smulation and VLS im-
plementation

The 0.35um CMOS technology provided by the Taiwan -
Semiconductor Manufacturing Company(TSMC) is used to
realise the DN in VLSI. According to the architecture in

Fig.1b, the parameters of the DN are further represented as 08 .« ! ! ! R RV

currents or voltages in VLSI, as summarised by the third %[ ., /'-'/ B

column in Table.l. Although the rating supply voltage of the ] IR N S R R 2 S P A
. . w Y . ¢ y M

technology is 3V,z; is represented as a voltage between _ 02p " e et .

[0.9,2.1]V, in order to limit the maximuni;, required, as < ool ,,AAHA_‘_A_.?Ji'g.g;_klddd_‘_“ﬂ .

well as to ease the design of the variable resistor and the§ o2l ./,/,./V‘ wiijw ]

sigmoid circuit. As extensive simulation indicates tha; = 04l ./f /./” 7\» 7 .’\. f*w ]

requires not only a dynamic range pf30, 30] but also a : pran. : : \,\

resolution to the first floating numbet;; is represented LT Bl R N B A

as a current ranging from-5uA to 5uA to avoid noise —0.8_6 . o 3 4 &

interferencesAt = 0.05 is further set to b&us in VLSI, Ix (LA)

corresponding to a reasonable sampling rate (200kHz) at

which most instruments can sample multiple channels(units

simultaneously. Fig. 6. (a)The four-quadrant multiplier and its (b)simetDC character-
Moreover, the mappings af; and R; depend on the unit stics.

values ofz;, I;,, and At. According to (2),R; = 1 and

x; = 1 resultinz;/R; = 1, corresponding to a unit current of

Lunit = 660n.A4/30 = 22nA at noder; in Fig.1b. As the unit 11pF, with t,,;; = 5us/0.05 = 100us. Multiplying the

voltage forz; is Vyni = 0.6V/3 = 0.2 (Table.l), the unit Unit capacitance with numerical ranges(@f then gives its

value of R; simply equalsRunit = Vinit/Tunie ~ 9.1MQ.  dynamic ranges in VLSI.

Multiplying the unit resistance with the numerical ranges For o, the noise term in (1) introduces a change of

of R; gives its dynamic range required in VLSI. Similarly,dz; = o - z-v/dt in discrete-time simulationz(represents an

the unit value ofC; is calculated ad,,i: - Atunit/Vunit =  UNit Gaussian). The noise current required to cause the same
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Fig. 7. (a)The tunable active resistor (b)The simulatedti@iship betweern /R; and Itune.
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Fig. 8. (a)The current-to-voltage converter. (b)The sighrarcuit.
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Fig. 9. (a)The simulated output of the sigmoid circuit and Yl converter (b)The simulated; versus/iune.



amount ofdz; is given as

. Ci-dx; Chi-0-z 3) 18 _I\V/ll;tslib et e
Iy = = or T .
dt Vdt Ve
Substituting the maximum of = 3, dt = 0.05 andC; = 16k
1 then gives the numerical relationship betwegnand o.
Multiplying 4,, with I,,,;; then gives the mapping of.

v, (V)

1.4+
IV. VLSI DESIGN OF THESTOCHASTIC UNIT

The current-mode, four-quadrant multiplier proposed in [8
is employed to calculate;; - s;. Fig.6a shows the multiplier ) ) ) ) )
basing on the current squarers formed by M1-M1{. I3, 0 200 400 600 800 1000
andl, are proportional to the square @f, +I,,), I, and[,, time (us)
respectively [8]. The current mirrors M11-M20 then cald¢eala (@)

I + I — Is — I4, resulting inl,y = I - I,/415. The
relationship holds as long 48, + I,,| < 41;;. Fig.6b shows ) S~

the simulation result, indicating that the dynamic ranges e ol
defined in Table.l are met with negligible nonlinearity. 18h |
As shown in Fig.7a, the active resistor proposed in [9]

1.2}

is adopted to implemenk;. Let R represent the resistance 1.7+
between ground and; or V;. The resistance is tunable

v, (V)

through Itune. Transistors Mn1-Mn8 and Mp1-Mp8 form 16k _
four cascode current mirrors, resulting in an effectivasres ’
tance of2R between the nodel, andV,,. Fig.7b shows the 15 < _

simulated relationship betwedhn,,. and1/R;, demonstrat-
ing the required dynamic range is achieved.

For the sigmoid function, the voltage is first converted
by the voltage-to-current(V1) converter in Fig.8a, andrthe (b)
delivered to the inputs of the current-mode sigmoid CIFCUILiy 10, (a)The bifurcating data and (b)The handwritieneconstructed
in Fig.8b [10]. The VI conversion is simply achieved bypy the DN system (black) and the Matlab simulation (grey).
operating M1 in triode region, and the operating mode is set
by V. which defines the drain voltage of M1. The converted
current is then replicated by current mirrors and subtdhctesame noise sequence is employed in both simulations during
from a reference current to produce differential input ents the generation of specific stochastic dynamics. With one vis
(Iy+andI,_) for the sigmoid circuit. Letl,,. = kIp and ible and one hidden neurons, the DN system can regenerate
Iy —1I,_ =aWlIgwithW = (I, +1I, )~ inthe sigmoid the bifurcating dynamics as shown by the black curves in
circuit. Transistors Ms1-Ms4 operate in the subthresholfig.10a, agreeing with the Matlab simulation (grey curves)
region, forming a translinear loop that produces a difféeén satisfactorily. With two visible and five hidden neurons,
current I, — Iy = xW2kIp. Transistors Ms12-M21 and the DN system can be further programmed to generate the
M25-M26 further form translinear loops by operating in thehand-writtenp, as shown by Fig.10c. The promising results

1.5 1.6 1.7 1.8
v, (V)

subthreshold region, resulting in demonstrate the satisfactory mapping of the DN model into
7 I ] VLSI circuits. A chip containing a DN of seven neurons is
s+~ ls— =Ip - f(2) Wi thus fabricated with the TSMC 0.3%n CMOS technology.
z ) )
—In- WE)?2 + 4 4 The measurement results will be presented in the conference
B GwhEgeYEWRT e @)

where f(x) approximatesanh(a; - z;) in (2) and k cor-
responds toe;, adapting the slope of (x). Fig.9a shows
the simulated input-output relationship of the sigmoiduait With extensive simulation, the dynamic ranges of the
connected with the V-l converter. The relationship betweeparameters of the DN have been identified and mapped into
Liune anda; is further derived and shown in F|ggb F|na||y,VLS| This Underpins the realisation of the DN with analogue

the noise generator is implemented by the analogue randdfkS! circuits. A DN system in VLSI has thus been designed

VI. CONCLUSION

vector generator basing on cellular automata [11] and fabricated. The circuit simulation demonstrates that t
DN model has been mapped into a stochastic VLSI system
V. THE DIFFUSIONNETWORK IN VLSI satisfactorily. Based on the DN theory, the VLS| system

The designed VLSI stochastic units are interconnected toith noise-induced stochasticity will be able to adapt its
form a DN system and simulated with HSPICE. To facilitatestochastic dynamics towards modelling various continuous
the comparison between VLSI and Matlab simulation, théme, continuous-valued data. This capability makes it a
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On the other hand, the maximum likelihood estimatespr
andR; are calculated for each Monte-Carlo sample according
to (10) and (11), respectively.

Fig. 11. The VLSI system of the Diffusion Network. The chipearis
3.5 x 3.5mm?2.

potential solution for recognising high-dimensional, ¢éim [
varying biomedical signals in implantable microsystems.

APPENDIX: THE MONTE-CARLO EM ALGORITHM [2]

To train a DN withn visible andm hidden units, the
dynamics of visible units are forced to follow the desireds)
sequences (training data), while the corresponding dyceami
of hidden units are sampled, in accordance with (1) and (2),
for [ times. Letzl(¢) : [0,7] — R denote the-th sampled [4]
dynamics of the unit. A weighting factor proportional to
the likelihood of thel-th Monte-Carlo sample is calculated 5
according to

W(l):exp{%z /0 i ()i (1) 1

[7]
R

To obtain the maximum-likelihood estimate of the connettio
matrix w = {w;; }, the a andb matrixes are first computed [g]
for each Monte-Carlo sample according to

T [10]
aij (1) = / o (0) (e (), 6)
’ [11]

T
by(D) =G [ el )z
s [ eomna @

wheregp(-) represents the sigmoid function. The connection
matrix is then estimated a& = a—'b with a andb given
in (8) and (9), respectively.

= _Z?; W(l)a(l)
TSm0 ©
s R b
PN A @)

Cfi C f() l‘"z 2dt (10)
fo pi(t
I xl-( )th
fo j= 1‘)0 (t))wijxé( -G f() i dx ( )
(11)

The opinions of thel estimates forR; and C; are also
weighted byr (1) to obtain their optimum estimates.
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