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Abstract—The Diffusion Network (DN) is a probabilistic
model capable of recognising continuous-time, continuous-
valued biomedical data. As the stochastic process of the DN
is described by stochastic differential equations, realising the
DN with analogue circuits is important to facilitate real-t ime
simulation of a large network. This paper presents the trans-
lation of the DN into analogue Very Large Scale Integration
(VLSI). With extensive simulation, the dynamic ranges of
parameters and their representation in VLSI are identified.
The VLSI circuits realising the stochastic unit of the DN are
further designed and interconnected to form a stochastic system
using noise to induce stochastic dynamics in VLSI. The circuit
simulation demonstrate that the VLSI translation of the DN is
satisfactory and the DN system is capable of using noise-induced
stochastic dynamics to regenerate various types of continuous-
time sequences.

I. I NTRODUCTION

The Diffusion Network (DN) proposed by Movellan is
a stochastic recurrent network whose stochastic dynamics
can be trained to model the probability distributions of
continuous-time sequences by the Monte-Carlo Expectation-
Maximisation (EM) algorithm [1], [2]. As stochasticity is
useful for generalising the natural variability in data [3][4],
the DN is further shown suitable for recognising noisy,
continuous-time biomedical data [5]. However, the stochastic
dynamics of the DN is defined by a set of continuous-time,
stochastic differential equations. The speed of simulating
stochastic differential equations in a digital computer is
inherently limited by the serial processing and numerical
iterations of the computer. Translating the DN into analogue
circuits is thus important for simulating a large DN in
real time. The hardware implementation of the DN could
further function as an intelligent embedded system capa-
ble of recognising multichannel, time-varying biomedical
signals in real time. Such a system would be useful for
implantable biomedical microsystems, which aim to deliver
bio-feedbacks or to control prosthetic devices in real time
[6].

This paper presents the translation of the DN into a
stochastic VLSI system using noise-induced stochasticity.
Following a brief review on the DN model, the dynamic
ranges of parameters essential for modelling data satis-
factorily are first identified with Matlab simulation. The
representation of parameters in VLSI are then defined, and
the component circuits for realising the DN are designed.
Finally, the simulated dynamics of the VLSI system are
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compared with those obtained in Matlab simulation to exam
the fidelity of the VLSI translation.

II. T HE DIFFUSION NETWORK

The DN consists of continuous-time, continuous-valued,
stochastic units with fully recurrent connections, as illus-
trated in Fig.1a [1][2]. Letxi(t) represent the state of the
unit i at time t, andwij the coupling strength from the unit
i to the unit j. The statexi is a random variable whose
stochastic dynamics is governed by the following equation
1.

dxi(t) = µi(t) · dt + σ · dBi(t) (1)

whereµi(t) is a deterministicdrift term given in (2),σ a
constant, anddBi(t) the Brownian motion. The Brownian
motion introduces the stochasticity, enriching greatly the
representational capability of the DN [2].

µi(t) =
1

Ci





∑

j

wijsj(t) − xi(t)/Ri



 (2)

Ci > 0 andRi > 0 in (2) are adaptable parameters calledin-
put capacitance andtransmembrane resistance, respectively,
and si(t) = tanh(ai · xi) with parameterai controlling the
slope of the hyperbolic tangent function.

The stochastic units of the DN are divided intovisible and
hidden units (Fig.1a). By adapting parameterswij , Ci, andRi

according to the Monte-Carlo EM algorithm (Appendix), the
DN learns to regenerate the dynamics of training data as the
stochastic dynamics of its visible units [2]. The stochasticity
is useful for representing the variability of the training
dynamics. Therefore, the number of visible units simply
equals the dimension of training data, while the minimum
number of hidden units for satisfactory modelling is nor-
mally identified through experimental trials. After training,
all stochastic units of the DN are given their initial values
(normally zero) att = 0 and then sampled according to (1).
The agreement between the sampled (regenerated) dynamics
at visible neurons and the dynamics of training data then
indicate how well the data are modelled.

III. M APPING THEDIFFUSION NETWORK INTO VLSI

A. Circuit architecture

The stochastic unit of the DN can be translated into
the equivalent-circuit model in Fig.1b The resistor and the
capacitor correspond toRi andCi in (2), respectively, and the

1Discrete-time approximation to the stochastic differential equations was
adopted in the numerical simulation
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Fig. 1. (a)The diagram of a DN with one visible (white-coloured) and
three hidden(grey-coloured) units. (b)The circuit architecture of a stochastic
unit in the DN.

voltage at nodexi represent the state of the stochastic unit.
The multipliers calculatewij · sj and output a total current
Iin proportional to

∑

j wijsj(t). Iin and the noise current
Inoise are then summed up and buffered toRi and Ci by
the class II current conveyor [7], producing the stochastic
dynamics atxi according to (1). Finally, passingxi through
the sigmoid circuit givessi for the inputs of all stochastic
units.

B. Adapting wij and Ri only

The simulation in [2] shows that adaptingwij and Ci

is sufficient for modelling various types of data. However,
a variable resistor is easier to implement in VLSI than a
variable capacitor. Fig.1b indicates thatCi andRi cooperate
to determine the “time constant” of the stochastic dynamics
of each unit. The feasibility of modelling different data by
adaptingwij andRi only is thus investigated.

With Ci = 1 and∆t = 0.05 for discrete-time iteration of
(1) in Matlab, the DN was trained to model different types
of data with their dynamic ranges normalised into[−2, 2]. A
DN with one visible and one hidden units was first trained
to model the bifurcating curves used in [2] (the black dashed
lines in Fig.2). After 100 training epochs, the DN was capa-
ble of regenerating the bifurcating curves at its visible unit v1

successfully, as shown by Fig.2. With two more hidden units,
the DN was further trained to model ten QRS segments of the
real heartbeat data extracted from the MIT-BIH database (the
black lines in Fig.3). The reconstruction in Fig.3 indicated
that the DN modelled not only the dynamics but also the
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Fig. 2. The four bifurcating training data (black dashed lines) and 50
sequences (grey curves) regenerated by the DN after 100 training epochs.
ai = 3 and σ = 0.1 for all units. The numerical values of the horizontal
axis correspond to the indexes of discrete-time samples, and the same
representation is employed in Fig.3-Fig.5
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Fig. 3. 10 normal heartbeats (black curves) and 50 sequences(gray curves)
regenerated by the DN after 100 training epochs.ai = 2 andσ = 0.1 for
all units.
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Fig. 4. (a)The spiral curve and (b) the handwrittenρ (black dashed lines)
for training the DN. The gray curves in each subplot are 50 sequences
regenerated by the DN after 120 training epochs.ai = 0.8 andσ = 0.01
for modelling (a), whileai = 0.5 andσ = 0.04 for modelling (b).
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Fig. 5. The sinusoidal waves (black dashed lines) with frequency (a)f0

and (b)10f0. The gray curves in each subplot are 50 sequences regenerated
by the DN after 100 training epochs.ai = 1 andσ = 0.05 for all units.



variability of the real heartbeat data. Moreover, the spiral
curve and the hand-writtenρ shown by the black dashed lines
in Fig.4 were used to examine the DN’s capability to model
two-dimensional data. As shown by Fig.4, a DN with two
visible and five hidden units was able to regenerate the spiral
curve and the handwrittenρ as the stochastic dynamics of the
visible unitsv1 andv2. These results demonstrate that the DN
can model both artificial and biomedical data satisfactorily
by adaptingwij andRi only.

C. Dynamic ranges of parameters

As indicated by Fig.1b, a stochastic unit with a specificRi

andCi needs to increasewij or sj to increase the maximum
changing rate of the dynamics atxi. To identify the dynamic
ranges required by all parameters, a DN with one visible and
three hidden units is trained to model sinusoidal waves at dif-
ferent frequencies. Let the frequency of the sinusoidal wave
in Fig.5a bef0. The sinusoidal wave with10f0 in Fig.5b
is selected as the fastest dynamics to be modelled by the
DN in VLSI. For data with even more faster dynamics, the
data can always be slowed down by over-sampling and then
expanding the samples along the time axis. After extensive
simulations, the dynamic ranges required for modelling the
sinusoidal waves with a frequency ranging fromfo to 10fo,
as well as the artificial and biomedical data in Sec.III-B, are
identified and summarised in Table.I. Fig.5 shows that the
DN can model the sinusoidal waves satisfactorily within the
parameter ranges.

D. Mappings between numerical simulation and VLSI im-
plementation

The 0.35µm CMOS technology provided by the Taiwan
Semiconductor Manufacturing Company(TSMC) is used to
realise the DN in VLSI. According to the architecture in
Fig.1b, the parameters of the DN are further represented as
currents or voltages in VLSI, as summarised by the third
column in Table.I. Although the rating supply voltage of the
technology is 3V,xi is represented as a voltage between
[0.9,2.1]V, in order to limit the maximumIin required, as
well as to ease the design of the variable resistor and the
sigmoid circuit. As extensive simulation indicates thatwij

requires not only a dynamic range of[−30, 30] but also a
resolution to the first floating number,wij is represented
as a current ranging from−5µA to 5µA to avoid noise
interferences.∆t = 0.05 is further set to be5µs in VLSI,
corresponding to a reasonable sampling rate (200kHz) at
which most instruments can sample multiple channels(units)
simultaneously.

Moreover, the mappings ofCi andRi depend on the unit
values ofxi, Iin, and ∆t. According to (2),Ri = 1 and
xi = 1 result inxi/Ri = 1, corresponding to a unit current of
Iunit = 660nA/30 = 22nA at nodexi in Fig.1b. As the unit
voltage forxi is Vunit = 0.6V/3 = 0.2 (Table.I), the unit
value ofRi simply equalsRunit = Vunit/Iunit ≈ 9.1MΩ.
Multiplying the unit resistance with the numerical ranges
of Ri gives its dynamic range required in VLSI. Similarly,
the unit value ofCi is calculated asIunit · ∆tunit/Vunit =

TABLE I
THE DYNAMIC RANGES OF PARAMETERS AND THEIR MAPPINGS

BETWEEN MATLAB SIMULATION AND VLSI IMPLEMENTATION

Parameter Matlab VLSI

xi −3 ∼ 3 0.9V ∼ 2.1V

wij −30 ∼ 30 −5µA ∼ 5µA

Iin −30 ∼ 30 −660nA ∼ 660nA

∆t 0.05 5µs

Ri 0.5 ∼ 4 4.55MΩ ∼ 36.4MΩ

Ci 1 11pF

si −1 ∼ 1 −2µA ∼ 2µA

ai 0.5 ∼ 10 0.4µA ∼ 11µA

σ 0.1 ∼ 0.5 29.5nA ∼ 147.5nA
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Fig. 6. (a)The four-quadrant multiplier and its (b)simulated DC character-
istics.

11pF , with tunit = 5µs/0.05 = 100µs. Multiplying the
unit capacitance with numerical ranges ofCi then gives its
dynamic ranges in VLSI.

For σ, the noise term in (1) introduces a change of
dxi = σ · z ·

√
dt in discrete-time simulation (z represents an

unit Gaussian). The noise current required to cause the same
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Fig. 7. (a)The tunable active resistor (b)The simulated relationship between1/Ri andItune.
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Fig. 8. (a)The current-to-voltage converter. (b)The sigmoid circuit.
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Fig. 9. (a)The simulated output of the sigmoid circuit and the V-I converter (b)The simulatedai versusItune.



amount ofdxi is given as

in =
Ci · dxi

dt
=

Ci · σ · z√
dt

(3)

Substituting the maximum ofz = 3, dt = 0.05 and Ci =
1 then gives the numerical relationship betweenin and σ.
Multiplying in with Iunit then gives the mapping ofσ.

IV. VLSI D ESIGN OF THESTOCHASTIC UNIT

The current-mode, four-quadrant multiplier proposed in [8]
is employed to calculatewij ·sj . Fig.6a shows the multiplier
basing on the current squarers formed by M1-M10.I2, I3,
andI4 are proportional to the square of(Ix+Iy), Ix, andIy,
respectively [8]. The current mirrors M11-M20 then calculate
I1 + I2 − I3 − I4, resulting in Iout = Ix · Iy/4Ib1. The
relationship holds as long as|Ix + Iy | < 4Ib1. Fig.6b shows
the simulation result, indicating that the dynamic ranges
defined in Table.I are met with negligible nonlinearity.

As shown in Fig.7a, the active resistor proposed in [9]
is adopted to implementRi. Let R represent the resistance
between ground andV1 or V2. The resistance is tunable
through Itune. Transistors Mn1-Mn8 and Mp1-Mp8 form
four cascode current mirrors, resulting in an effective resis-
tance of2R between the nodesVx andVy. Fig.7b shows the
simulated relationship betweenItune and1/Ri, demonstrat-
ing the required dynamic range is achieved.

For the sigmoid function, the voltagexi is first converted
by the voltage-to-current(VI) converter in Fig.8a, and then
delivered to the inputs of the current-mode sigmoid circuit
in Fig.8b [10]. The VI conversion is simply achieved by
operating M1 in triode region, and the operating mode is set
by Vc which defines the drain voltage of M1. The converted
current is then replicated by current mirrors and subtracted
from a reference current to produce differential input currents
(Ix+andIx−) for the sigmoid circuit. LetItune = kIB and
Ix+−Ix− = xWIB with W = (Ix++Ix−)−1 in the sigmoid
circuit. Transistors Ms1-Ms4 operate in the subthreshold
region, forming a translinear loop that produces a differential
current I2 − I1 = xW2kIB . Transistors Ms12-M21 and
M25-M26 further form translinear loops by operating in the
subthreshold region, resulting in

Is+ − Is− =IB · f(x)

=IB · xWk

(xWk)2 + 2

√

(xWk)2 + 4 (4)

where f(x) approximatestanh(ai · xi) in (2) and k cor-
responds toai, adapting the slope off(x). Fig.9a shows
the simulated input-output relationship of the sigmoid circuit
connected with the V-I converter. The relationship between
Itune andai is further derived and shown in Fig.9b. Finally,
the noise generator is implemented by the analogue random
vector generator basing on cellular automata [11].

V. THE DIFFUSION NETWORK IN VLSI

The designed VLSI stochastic units are interconnected to
form a DN system and simulated with HSPICE. To facilitate
the comparison between VLSI and Matlab simulation, the
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Fig. 10. (a)The bifurcating data and (b)The handwrittenρ reconstructed
by the DN system (black) and the Matlab simulation (grey).

same noise sequence is employed in both simulations during
the generation of specific stochastic dynamics. With one vis-
ible and one hidden neurons, the DN system can regenerate
the bifurcating dynamics as shown by the black curves in
Fig.10a, agreeing with the Matlab simulation (grey curves)
satisfactorily. With two visible and five hidden neurons,
the DN system can be further programmed to generate the
hand-writtenρ, as shown by Fig.10c. The promising results
demonstrate the satisfactory mapping of the DN model into
VLSI circuits. A chip containing a DN of seven neurons is
thus fabricated with the TSMC 0.35µm CMOS technology.
The measurement results will be presented in the conference.

VI. CONCLUSION

With extensive simulation, the dynamic ranges of the
parameters of the DN have been identified and mapped into
VLSI. This underpins the realisation of the DN with analogue
VLSI circuits. A DN system in VLSI has thus been designed
and fabricated. The circuit simulation demonstrates that the
DN model has been mapped into a stochastic VLSI system
satisfactorily. Based on the DN theory, the VLSI system
with noise-induced stochasticity will be able to adapt its
stochastic dynamics towards modelling various continuous-
time, continuous-valued data. This capability makes it a



Fig. 11. The VLSI system of the Diffusion Network. The chip area is
3.5 × 3.5mm2 .

potential solution for recognising high-dimensional, time-
varying biomedical signals in implantable microsystems.

APPENDIX : THE MONTE-CARLO EM ALGORITHM

To train a DN with n visible andm hidden units, the
dynamics of visible units are forced to follow the desired
sequences (training data), while the corresponding dynamics
of hidden units are sampled, in accordance with (1) and (2),
for l times. Letxl

i(t) : [0, T ] → R denote thel-th sampled
dynamics of the uniti. A weighting factor proportional to
the likelihood of thel-th Monte-Carlo sample is calculated
according to

π(l) = exp{ 1

σ2

n
∑

i=1

∫ T

0

µi(t)dxi(t)

− 1

2σ2

n
∑

i=1

∫ T

0

µi(t)
2dt} (5)

To obtain the maximum-likelihood estimate of the connection
matrix ŵ = {wij}, the â and b̂ matrixes are first computed
for each Monte-Carlo sample according to

aij(l) =

∫ T

0

ϕ(xl
i(t))ϕ(xl

j(t))dt, (6)

bij(l) =Cj

∫ T

0

ϕ(xl
i(t))dxl

j(t)

+
1

Rj

∫ T

0

ϕ(xl
i(t))x

l
j(t)dt, (7)

whereϕ(·) represents the sigmoid function. The connection
matrix is then estimated aŝw = ā

−1
b̄ with ā and b̄ given

in (8) and (9), respectively.

ā =

∑m

l=1
π(l) ˆa(l)

∑m

l=1
π(l)

, (8)

b̄ =

∑m

l=1
π(l) ˆb(l)

∑m

l=1
π(l)

, (9)

On the other hand, the maximum likelihood estimates forCi

andRi are calculated for each Monte-Carlo sample according
to (10) and (11), respectively.

Ĉi =
Ci

∫ T

0
µl

i(t)
2dt

∫ T

0
µl

i(t)dxl
i(t)

(10)

R̂i =

∫ T

0
xl

i(t)
2dt

∫ T

0

∑n

j=1
ϕ(xl

j(t))wijxl
i(t)dt − Ci

∫ T

0
xl

i(t)dxl
i(t)

(11)
The opinions of thel estimates forRi and Ci are also
weighted byπ(l) to obtain their optimum estimates.
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