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Abstract— Real-time recognition of multichannel, continuous-
time physiological signals has been crucial for the development
of implantable biomedical devices. This work investigates the
feasibility of using the Diffusion Network, a stochastic recur-
rent neural network, to recognise continuous-time biomedical
signals. In addition, a hardware-friendly approach for achieving
real-time recognition is proposed and tested with both artificial
and real biomedical data. Based on this approach, the Diffusion
Network is demonstrated to exhibit great tolerance against noise
and drifts in continuous-time signals being classified.

I. INTRODUCTION

Many physiological signals (e.g. neural activities) are
continuous-time in nature. Real-time recognition of multi-
channel, continuous-time physiological signals is thus one
of the main challenges in the development of implantable
biomedical devices, which aims to improve treatments to
illness by delivering bio-feedbacks or by controlling pros-
thetic devices in real-time[1]. The difficulty of recognising
continuous-time biomedical signals lies not only in the
dimension of data, but also in the noisy and drifting nature
of biomedical signals.

The Diffusion Network proposed by Movellan [2], [3] is
a stochastic recurrent network whose stochastic dynamics
can be trained to model the probability distributions of
continuous-time sequences by the Monte-Carlo Expectation-
Maximisation (EM) algorithm. As the stochasticity in many
probability models has proved useful for generalising the
natural variability in data [4][5], the Diffusion Network is
potentially useful for modelling drifting and noisy physio-
logical data. In addition, the analogy between the Diffusion
Network and the Continuous Restricted Boltzmann Machine
[4] suggests that the Diffusion Network is amenable to VLSI
implementation[6]. It is thus of great interests to develop
an intelligent embedded system capable of recognising mul-
tichannel, continuous-time biomedical signals in real time,
based on the Diffusion Network.

However, the capability of the Diffusion Network in
modelling biomedical data is seldom explored. Classification
based on the likelihood under the model is not favourable
for real-time recognition nor for hardware implementation.
Therefore, this work examines the feasibility of using the
Diffusion Network to model biomedical signals, and identi-
fies a hardware-amenable method of recognising signals in
real time with trained Diffusion Networks. The tolerance of
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the Diffusion Network against noise and drifts in data to
be classified is also probed. Finally, the capability of the
Diffusion Network is demonstrated with the real heartbeat
data.

II. THE DIFFUSION NETWORK

The Diffusion Network [2][3] consists of continuous-
time, continuous-valued, stochastic units(neurons) with full,
recurrent connections, as illustrated in Fig.1a. The state of
each stochastic unit is a random variable changing with time,
i.e. the dynamics of the state is a stochastic process governed
by stochastic differential equations. Let xi(t) represent the
state of the unit i at time t, and wij the coupling strength
from the unit i to the unit j. The stochastic dynamics of the
Diffusion Network is governed by

dxi(t) = µi(t) · dt + σ · dBi(t) (1)

where µi(t) is a deterministic drift term, σ a constant, and
dBi(t) the Brownian motion, a stochastic process whose
increment (dBi(t + dt) − dBi(t)) is a Gaussian random
variable with zero mean and variance dt [7]. The inclusion
of the Brownian motion attributes to the stochasticity in
the Diffusion Network, enriching greatly the representational
capability of the Diffusion Network [3], as compared to
deterministic recurrent neural networks [3]. The drift µi(t)
in Eq.(2) is defined as

µi(t) =
1
Ci


∑

j

wijsj(t) − xi(t)/Ri


 (2)

where Ci > 0 and Ri > 0 are adaptable parameters called
input capacitance and transmembrane resistance of the sto-
chastic unit, and si(t) represents the nonlinear transform of
xi(t) defined as si(t) = ϕ(xi) = tanh(ai · xi), in which ai

is a constant controlling the slope of the nonlinear function.

The Diffusion Network is a generative model able to
model the probability distributions of sequences by the
Monte-Carlo EM algorithm[3] With stochastic units divided
into visible and hidden units, as shown in Fig.1a, the
modelling refers to optimising parameter values, so that
the trained Diffusion Network is able to “regenerate” the
sequences as the stochastic dynamics of its visible neurons,
and the regenerated sequences possess the same probability
distribution as the data modelled. Therefore, the number of
visible neurons is equal to the dimension of sequences to be
modelled, while the number of hidden neurons is chosen
to be the minimum number of hidden variables required
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Fig. 1. (a)The diagram of a Diffusion Network with one visible (white-
coloured) and three hidden(grey-coloured) units. (b)The stochastic unit of
the Diffusion Network in terms of electrical equivalent circuits.

for modelling high-order correlations among different di-
mensions of the sequences. The latter is normally identified
through a trial process. As the Monte-Carlo EM algorithm
maximises the likelihood of regenerating the modelled se-
quences, the trained Diffusion Network can classify whether
an unknown sequence xT

o belongs to the training dataset
by calculating the likelihood of regenerating the sequence
according to Eq.(4).

Consider a single run of a Diffusion Network with n
visible and m hidden units in the time interval [0, T ]. Given
xi(0) = 0 for all units, the dynamics of all units are sampled
according to Eq.(1) and Eq.(2)1. Let λ denote the set of all
parameters wij , Ci, Ri, xo : [0, T ] → R

n an n-dimensional
sequence representing the dynamics of visible units sampled
during [0, T ], and xh : [0, T ] → R

m an m-dimensional
sequence representing the sampled dynamics of hidden units.
The log-likelihood for the Diffusion Network with parameter
λ to generate the joint dynamics (xo, xh) is given as [3]

log pλ(xo, xh) =
1
σ2

n∑
i=1

∫ T

0

µi(t)dxi(t)− 1
2σ2

∫ T

0

µi(t)2dt

(3)
To calculate the probability of generating a specific path
xT

o , the marginal probability pλ(xT
o ) can be estimated by

clamping the dynamics of visible units to be xT
o [3], sampling

the corresponding dynamics of hidden units for l times, and

1Discrete-time approximation to the stochastic differential equations was
adopted in the numerical simulation in a computer

marginalising over hidden samples as

log p̂λ(xT
o ) =

∑
l

log pλ(xo, x
l
h) (4)

where xl
h represent the l-th Monte-Carlo sampled hidden

dynamics. The estimated marginal likelihood in Eq.(4) is
useful not only for sequence classification, but also for the
indication of whether the EM algorithm has optimised the
parameters, which is important for knowing when to stop a
training process.

III. HARDWARE AMENABILITY OF THE DIFFUSION

NETWORK

Hardware implementation of the Diffusion Network is
important for running continuous-valued, continuous-time
stochastic dynamics of multiple units in parallel and in real-
time. Exploiting the diffusion process inherent in analogue
circuits, Fig.1b shows the translation of the stochastic differ-
ential equation in Eq.(1) into an equivalent-circuit model for
the stochastic unit. The diagram indicates that the Diffusion
Network can be implemented simply by integrating analogue
multipliers, capacitors, resistors, noise generators, and sig-
moid circuits. Furthermore, [4] has proved that the Diffusion
Network is simply different from the Continuous Restricted
Boltzmann Machine(CRBM) by the inclusion of parameters
Ri and Ci. As the CRBM has been demonstrated in Very-
Large-Sale-Integration (VLSI) implementation[6], the anal-
ogy between the Diffusion Network and the CRBM indicates
that the Diffusion Network can be realised in VLSI simply
by adding one resistor and one capacitor into the CRBM
system in VLSI, whose stochastic units contain all the com-
ponents expect for Ri and Ci in Fig.1. Therefore, the VLSI
implementation of the Diffusion Network is undoubtedly
feasible and potentially useful as a intelligent system for
many implantable devices.

From another point of view, an analogy also exists between
the Diffusion Network and the Cellular Neural Network
[8], [9], a deterministic recurrent network with localised
connections. The Diffusion Network differs from the Cellular
Neural Network mainly by the inclusion of the Browian
motion. The successful development of cellular neural net-
work in both applications and VLSI implementation [10],
[11], [12] suggests not only the hardware amenability of the
Diffusion Network but also the rich computational power of
the Diffusion Network in VLSI.

IV. REAL-TIME RECOGNITION BASED ON THE

DETERMINISTIC DYNAMICS OF HIDDEN UNITS

Although calculating the log-likelihood of an unknown
sequence is one mathematically-plausible way of classifica-
tion, the VLSI implementation of Eq.(4) requires complicated
circuits and discourages real-time classification. As the dy-
namics of hidden units must depend on and correlate to those
of visible units owing to full connection among units, we
investigate the possibility of classifying data according to the
deterministic dynamics of hidden units when the dynamics
of visible neurons are clamped to sequences to be classified.
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Fig. 2. (The handwritten character (a)β and (b)ρ. The 20 sequences of
visible dynamics regenerated by the Diffusion Network trained on (c)β and
(d)ρ. The dashed lines are training data in (a) and (b).

The feasibility of this classification method is examined
by training the Diffusion Network to recognise hand-written
characters β and ρ, as shown in Fig.2a and b, respec-
tively. Both characters are sampled as discrete-time, two-
dimensional sequences with 200 sampled points across time,
t ∈ [0, 200]. The characters are also carefully written to have
the same initial and end points, as well as to differ only by
the extra inward bending for β. This makes the classification
task more difficult and therefore suitable for probing the
ability of the Diffusion Network to distinguish between the
two sequences by the proposed method

A Diffusion Network with two visible and five hidden units
was trained to model one of the hand-written characters. With
σ = 0.2, Ri = 1, and ai = 1, parameters wij and Ci were
trained for 100 epochs, at which the likelihood calculated
according to Eq.(4) no longer has significant increment with
further parameter updates. Let xV i(t) and xHi(t) denote the
dynamics of visible unit i and hidden unit j, respectively,
sampled according to Eq.(1). Given xV i(0) = xHi(0) =
0, the 20 sequences sampled from the visible units of the
Diffusion Network trained on β and ρ are shown in Fig.2c
and Fig.2d, respectively. The overlap between the training
and regenerated sequences indicate clearly that the Diffusion
Network had modelled both characters satisfactorily.

Let xβ represent the sequence of handwritten β. With the
dynamics of visible units clamped to the handwritten β, i.e.
setting xV i = xβ for t ∈ [0, 200], the deterministic dynamics
of hidden units derived according to Eq.(5) are shown in
Fig.3a. Contrarily, the deterministic dynamics of hidden units
sampled when visible units are clamped to the handwritten
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Fig. 3. The deterministic dynamics of hidden units of the Diffusion
Network trained on handwritten ρ when the dynamics of the visible units
are clamped to be (a)β and (b)ρ

ρ are shown in Fig.3b.

dxi(t) = µi(t) · dt (5)

Eq.(5) differs from Eq.(1) by the exclusion of the Brownian
motion, transforming the Diffusion Network into a deter-
ministic recurrent network. Interestingly, Fig.3 shows that
the deterministic dynamics of hidden units in response to β
and ρ have significantly distintive features, especially for the
final value sampled at t = 200. This allows us to distinguish
between xρ and xβ simply by comparing the final values of
hidden dynamics to the threshold values illustrated in Fig.3.
Repeating the experiment gives similar results consistently,
and the easily-distinguishable hidden dynamics are resulted
from the from fact that xβ has a valley in the x-dimension
during t ∈ [110, 150], while xρ has a peak during the same
period of time. The significantly-different dynamics are then
amplified by the strong coupling between xV 1 and xH4, for
example, leading xH4 to have very different terminal values
for xρ and xβ(Fig.3).

This promising result suggests that the proposed classifi-
cation is not only simple but reliable, as compared to the
calculation of likelihood. In addition, the proposed method
is more hardware-friendly, requiring simply a comparator
for threshold detection. In a hardware-implemented Diffusion
Network, the hidden dynamics can be obtained in real-time
as visible dynamics are clamped to the sequences to be
classified. This proposed method therefore facilitates real-
time recognition greatly, which is crucial for applications
like neural prostheses, requiring real-time recognition of
multichannel neural signals for the control of prosthetic
devices[1].



−2 −1 0 1 2

−2

−1

0

1

2

−2 −1 0 1 2

−2

−1

0

1

2

3

y
(a) (b)

Fig. 4. The two-dimensional spiral curves to be classified (b)The 20 regen-
erated visible sequences(solid lines) sampled from the Diffusion Network
trained on one of the spiral curve(dashed line).
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Fig. 5. The dynamics of hidden units of the DN trained on the first spiral
curve when visible units are clamped to (a)the first (b)the second spiral
curves

V. TOLERANCE AGAINST NOISE AND OFFSET

Biomedical signals are normally noisy and drifting. It is
thus important to probe the tolerance of the proposed classi-
fication method against noise and offsets. The classification
of spiral curves in Fig.4a is one of the most difficult artificial
tasks in pattern classification[13], as the classification relies
on capturing the correlation between the two dimensions of
the spiral series, and then drawing a third nonlinear spiral
curve to separate the two curves. To examine the Diffusion
Network’s tolerance against noise and offsets, the Diffusion
Network was trained to model one of the spiral series,
and then used to classify “distorted” spiral series obtained
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Fig. 6. The distorted spiral curves obtained by adding offsets and noise to
the two types of spiral curves in Fig.4a.

TABLE I

THE ACCURACY IN CLASSIFYING TWO TYPES OF SPIRAL CURVES

DISTORTED BY VARIOUS LEVELS OF OFFSETS AND NOISE

δx = δy σx = σy

0.2 0.4 0.6 0.8 1.0

0.4 100% 100% 100% 100% 100%

0.5 100% 100% 100% 100% 100%

0.6 100% 100% 100% 100% 100%

0.7 100% 100% 100% 100% 99%

0.8 100% 100% 97% 97% 94%

0.9 78% 71% 77% 74% 79%

1.0 51% 53% 62% 63% 67%

according to Eq.(6).
Let xS1 and xS2 : [0, 480] → R

2 represent the spiral
series ending at (0,3) and (0,-3) in Fig.4, respectively. A
Diffusion Network with two visible and five hidden neurons
was trained to model xS1 with σ = 0.2, Ri = 1, and ai = 1.
After 80 training epochs, the Diffusion Network regenerated
its visible dynamics as shown in Fig.4b, indicating that the
spiral series has been modelled satisfactorily. With visible
units of the trained Diffusion Network clamped to xS1 and
to xS2, the deterministic dynamics of hidden units are shown
in Fig.5. As shown in Fig.5, the two different spiral curves
can be easily distinguished by comparing the final values of
the hidden dynamics xH3 or xH5 to the thresholds indicated
by the dashed lines.

Let xSix(t) and xSiy(t) represent the coordinate of
either xS1 or xS2 at time t. To probe the tolerance
against noise and offsets, the trained Diffusion Network
was employed to classify a set of “distorted” spiral curves
xT = (xTx, xTy) : [0, 480] → R

2 generated according to

xTx(t) = xSix(t) + δx + σx · N(0, 1) (6)

xTy(t) = xSiy(t) + δy + σy · N(0, 1) (7)

where δx and δy denote the offsets added to the x and
y dimensions, respectively, N(0, 1) denotes a zero-mean
Gaussian noise with unit variance, and σx and σy scale the
noise variance. Fig.6 illustrates two types of distorted spiral
curves with δx = δy = 1 and σx = σy = 1. The distorted
spiral curves xT were classified according to the final value
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training on (e)normal and (f)abnormal ECGs.

of xH3 when the dynamics of visible units are clamped
to xT . If xH3[480] > 0, xT is classified as xS1, while if
xH3[480] ≤ 0, xT is classified as xS2.

Table I summarises the accuracy in classifying the two
types of spiral curves distorted with various levels of offsets
and noise. The results indicate that the Diffusion Network
with the proposed classification method exhibits remarkable
tolerance against noise and offsets. With offsets smaller than
0.6, the Diffusion Network is able to classify the spiral curves
with 100% accuracy, regardless of the levels of noise added
into the spiral curves. With noise variance smaller than 0.6,
the Diffusion Network is also able to tolerate an offset up to
0.7 while maintaining an accuracy of 100%. The tolerance
can be further improved if noise and offsets are added to only
one dimension. Moreover, Table.I reveals that the Diffusion
Network tolerate noise better than offsets, owing to that
offsets impact deterministic dynamics much more than zero-
mean noise.

The promising performance above supports the sugges-
tion in [3] that the Diffusion Network is able to use its
stochasticity to generalise variability in data of the same
type. As deterministic hidden dynamics are obtained by
“turning off” the noise, the proposed classification method
would effectively lead the Diffusion Network to ignore the
variability in data and thus to classify data reliably.

VI. RECOGNITION OF REAL HEARTBEAT DATA

Electrocardiograms (ECGs) extracted from the MIT-BIH
database were further used to examine the Diffusion Net-
work’s ability to classify real biomedical signals. Fig.7a-
d shows the extracted normal and abnormal ECGs (The
latter are called ventricular ectopic beats). All ECGs are
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Fig. 8. The deterministic dynamics of the three hidden units of the
trained Diffusion Network sampled when visible units are clamped to normal
ECGs((a)-(d)), and abnormal ECGs((e)-(h))

sampled as discrete-time, one-dimensional sequences with
t ∈ [0, 513], and are aligned by centering their most positive
peaks at t = 257. As the abnormal ECGs shown in Fig.7 are
mainly diagnosed according to the QRS section of the ECGs
in clinics[14], we simply trained the Diffusion Network to
learn the QRS sections of normal and abnormal ECGs in
Fig.7b and Fig.7d, respectively.

A Diffusion Network with one visible and three hidden
units was trained to model ten normal ECGs sampled from
the dataset in Fig.7b. The training aimed to regenerates the
one-dimensional ECG traces as the dynamics of the visible
unit, while the minimum number of hidden units required
for modelling the ECGs was determined by experimental
trials. With σ = 0.2, Ri = 1, ai = 1 and after 100
training epochs, the Diffusion Network regenerated visible
dynamics as shown in Fig.7e. The similarity between Fig.7e
and Fig.7b indicates that the QRS section of normal ECGs
has been modelled satisfactorily. Similar result is obtained
in the experiment of modelling the QRS section of abnormal
ECGs, as shown in Fig.7f.

The Diffusion Network trained on normal ECGs were then
used to generate deterministic dynamics of hidden units, in
response to the clamping of visible units to 990 normal
and 18 abnormal ECGs, sampled from a 30-minutes long
ECG recording provided by the MIT-BIH database. This task
examines the Diffusion Network’s ability to detect abnormal
ECGs nearly in real time during the ECG recording of a pa-
tient. Fig.8 shows the deterministic dynamics sampled when
visible units were clamped to the QRS section of normal
ECGs and abnormal ECGs. Even if the QRS section of both
types have similar initial and end values, Fig.8 reveals that
the hidden units, especially for xH3, in the trained Diffusion
Network has significantly distinctive dynamics. Therefore,



abnormal ECGs can be easily detected by comparing xH3[81]
to the threshold indicated as the dashed line in Fig.8. If
xH3[81] > 0, the trace is classified as normal ECGs, and
if xH3[81] < 0 the trace is classified as abnormal ECGs.
Based on the classification method, only two abnormal ECGs
are misclassified, as shown by Fig.8h. The accuracy is thus
proved to be 99.8% (calculated as 1006/1008). The slight
inaccuracy mainly come from the fact that the S segment of
several abnormal ECGs do not have significantly lower value
than that of normal ECG, as shown in Fig.7d.

VII. CONCLUSION

This paper investigates the feasibility of applying the
Diffusion Network, a stochastic recurrent network, to the
recognition of continuous-time, continuous-valued biomed-
ical signals. A new classification method is also proposed
to facilitate real-time recognition especially for hardware
implementation. Simulation results demonstrate that the Dif-
fusion Network can classify both artificial and heartbeat data
reliably with considerable tolerance against noise and offsets,
demonstrating the advantage of using stochasticity to gener-
alise variability in data. As the dynamics of the Diffusion
Network are governed by stochastic differential equations
which are shown hardware-amenable, it is important to look
into the VLSI implementation of the Diffusion Network,
making the Diffusion Network useful for real biomedical
applications.
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