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ABSTRACT 

 

 An intelligent embedded system capable of preprocessing noisy, sensory data has 

been demanded in many biomedical applications. The paper presents the Very-Large-

Scale-Integration (VLSI) implementation of a scalable and programmable Continuous 

Restricted Boltzmann Machine (CRBM), a probabilistic model proved useful for 

recognising biomedical data. The scalability allows the network size to be expanded by 

interconnecting multiple chips, and the programmability allows all parameters to be 

remained at their optimum values. Each chip contains 10 stochastic neurons, 25 synapses, 

and a 10-channel noise generator for the neurons. Basing on the CRBM algorithm, the 

VLSI system is able to use noise-induced, continuous-valued stochasticity to model both 

artificial and real biomedical data. With the noise generator turned off, the system can 

also function as a multi-layer perceptron. By interconnecting multiple chips to form 

particular CRBM networks, the ability to classify both artificial and biomedical data in 

real time is further demonstrated. The proposed CRBM system thus provides a potential 

solution for the intelligent system in demand. 

Index terms: VLSI Implementation, Noise, Probabilistic Model, Boltzamnn Machine, 

Scalable and Programmable Systems, Stochastic systems. 
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I. INTRODUCTION 

In the development of implantable devices and bio-electronic interfaces 

[18][24][26][27][28], exposing electronic systems to noisy environments has become 

inevitable. Although sensory data could be transmitted wirelessly out of implanted 

devices and then processed by sophisticated algorithms, transmitting all the raw data is 

power-consuming and unfavourable for long-term monitoring. Applications like neural 

prostheses further look for the possibility of recognising biomedical signals on line, so as 

to deliver bio-feedbacks or to control prosthetic limbs in real time. Therefore, an 

intelligent embedded system which is robust against noise and capable of extracting 

useful information from noisy, high-dimensional biomedical signals is becoming 

essential. Moreover, the robustness against the intrinsic electronic noise is important as 

the transistor size shrinks toward the deep-submicron scale [15]. 

Probabilistic models are able to use stochasticity to generalise the natural variability 

of data. Many probabilistic models have been shown promising for reasoning biomedical 

data or for solving weakly-constrained problems such as pattern recognition. Therefore, 

realising probabilistic models in VLSI is attractive for applications like intelligent sensor 

fusion in implantable devices [9][26]. However, only a few probabilistic models are 

amenable to VLSI implementation [7][10][14], and most of which relies greatly on 
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precise computation of Bayesian rules or vector products. Maintaining the precision 

becomes difficult as transistor noise and hardware non-ideality grow. 

Contrarily, the probabilistic model called the Continuous Restricted Boltzmann 

Machine (CRBM) has been shown capable of classifying biomedical data reliably, as 

well as realised in VLSI with noise-induced stochasticity [6][7]. The noise is not only 

used to model data variability basing on the CRBM, but also proved useful to enhance the 

robustness against interferences [18]. The CRBM system in VLSI is thus potential for 

intelligent sensor fusion in implantable devices. However, the prototype system with only 

six neurons is limited to model two-dimensional data, while real biomedical signals are 

normally high-dimensional and complex.  

To alleviate this limitation, this paper presents a scalable and programmable CRBM 

system in VLSI. The full system is designed and fabricated with the TSMC 0.35µm 

CMOS technology. The scalability allows the network size to be expanded by 

interconnecting multiple chips. The programmability allows all parameters on-chip to be 

refreshed to optimum values, or to be trained by the chip-in-a-loop configuration [4]. A 

multi-channel noise generator is further included on-chip to induce continuous-valued 

stochasticity required by the CRBM. Following a brief introduction to the CRBM model, 

the architecture, the circuit design, and the measurements of the modular CRBM 

(mCRBM) system are presented. The ability of the mCRBM system to regenerate 

different continuous-valued distributions, as well as to classify artificial data is then 

tested. Finally, the mCRBM system’s capability of modelling and classifying real 

biomedical data is examined in the context of sorting neuronal spikes. 
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II. THE CRBM MODEL 

The CRBM consists of one visible and one hidden layers of stochastic neurons with 

inter-layer connections only, as shown in Fig.1. As a generative model, the CRBM learns 

to “regenerate” the training data as the states of its visible neurons. The number of visible 

neurons thus equal to the dimension of the training data, while the minimum number of 

hidden neurons required to model data satisfactorily is indentified by experimental trials 

[7]. Let wij represent the bi-directional connection between neurons vi and hj, and let si 

denote either vi or hj in the following content. The stochastic state of a neuron si is 

defined as 



















+⋅⋅= ∑

j

ijijii Nswas )0,(σϕ  
(1) 

where Ni(σ,0) represents a Gaussian noise with zero mean and variance σ
2
, and φ(⋅) a 

sigmoid function (e.g. tanh(⋅) ) with asymptotes at ±1. Parameter ai controls the slope of 

the sigmoid function and thus the variance of si. Therefore, the stochastic behaviour of a 

neuron is either near-deterministic (small ai), or continuous-stochastic (moderate ai), or 

binary-stochastic (large ai). Let λ represent the parameter {wij} or {ai}. Parameters in a 

CRBM system are trained by the simplified minimising-contrastive-divergence (MCD) 

algorithm [6] 

( )
44

ˆˆ
jiji sssssign ⋅−⋅⋅= ληλ∆                              (2) 

where ŝi and ŝj denotes the one-step, Gibbs-sampled states, ηλ the updating rate, and <⋅>4 

the expectation over four training data. For training {ai}, sj and ŝj in Eq.(2) are replaced 

by si and ŝ i, respectively. 

The data distribution learnt by the CRBM can be obtained by initialising visible 

neurons with random values, and then Gibbs sampling hidden and visible neurons 

Page 4 of 45

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

 5 

alternatively for multiple steps. The N-th step sample of the visible neurons is called the 

N-step reconstruction, approximating the distribution modelled by the CRBM when N is 

large (normally N>10 is sufficient [7]). The similarity between the N-step reconstruction 

and the training data then indicates how well the data is modelled. After training, testing 

data can be categorised according to the responses of hidden neurons [7]. 

III. SYSTEM ARCHITECTURE 

Fig.2 shows the architecture of the scalable and programmable CRBM system 

[17], containing neuron modules (vi and hj), synapse modules (wij), a noise generator, and 

digital control circuits. The programming unit is realised by a microcontroller off-chip. 

Each synapse module (Fig.2b) contains two multipliers, calculating wijhj and wijvi as the 

current inputs for neurons vi and hj, respectively. Each visible (hidden) neuron then sums 

up the currents on the same row (column) at terminal I, and outputs a voltage 

representing si at terminal O (Fig.2c). In addition, a noise input is included to makes si 

probabilistic. Without noise, the neurons become deterministic perceptrons in the multi-

layer perceptron [25]. 

The modular design enables the CRBM system to have 5M visible and 5N hidden 

neurons by interconnecting an MxN chip array. The synapse modules in the same row 

(column) transmit output currents to the left- (bottom-) most neurons in the row (column). 

Each neuron then transmits its voltage output back to the synapse modules in the same 

row (column). As shown by Fig.2(c), the control signal N (determines whether a neuron 

is enabled. With N=1, the current inputs at terminal I are passed through the sigmoid 

circuit to generate the neuron’s output, while with N=0, the current inputs are simply 

directed to terminal X and the neuron output is buffered from terminal S into terminal O. 

Page 5 of 45

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

 6 

Moreover, a current normaliser is included to avoid the saturation of the sigmoid circuit 

as a large number of synapses are connected. 

The parameters {wij} and {ai} are stored locally as voltages across capacitors in 

the synapse and the neuron modules, respectively. The updating circuit proposed in [3] is 

then employed to tune the capacitor voltages periodically according to the digital input P. 

In training mode, P is calculated according to Eq.(2). As soon as optimum levels are 

obtained, the programming unit stores {wij} and {ai} into its digital memory by using an 

analogue-to-digital converter (ADC) (Fig.2(d)). In refreshing mode, parameter values on 

the capacitors are sampled periodically by the ADC, compared with their optimum levels 

stored in the memory, and then updated according to the P determined by comparison. It 

is notable that one ADC can be shared by all parameters. 

IV. CIRCUIT DESIGN AND MEASUREMENTS 

 

Fig.3 shows the layout of the mCRBM system, fabricated with the TSMC 0.35µm 

CMOS technology. The circuit area excluding the pads is 4200µm×4200µm, and the 

power consumption is 20.4mW. The synapse module employs the “modified Chible 

multiplier” proposed in [5] to calculate wijsj, and the analogue random vector generator 

proposed in [2] is implemented to generate 10 channels of uncorrelated noise on-chip. 

The following subsections describe the circuits and the measurement results of the neuron 

module and the programmable parameter array. 

A. Continuous Stochastic Neurons in VLSI 

Fig.4 shows the circuit diagram realising the CRBM neuron described by Eq.(1). The 

four-quadrant multipliers of synapses modules output a total current proportional to 

isum = Σjwijsj [5]. The differential pair, Mna and Mnb, then transforms noise voltage 
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Vni into a noise current in = gm(Vni-Vnr).  The transconductance gm is controlled by Vsig 

through M7, scaling the noise current as σ in Eq.(1). Afterwards, iin representing (Σ

jwijsj+σ⋅Ni(0,1)) is converted into Vx by the operational amplifier with an active 

resistor. The sigmoid circuit basing on transistors (Msiga and Msigb) in subthreshold 

operation produces an output of 

)
)(

(21

t

asiin
bcco

V

VRi
Iiii

⋅
⋅=−= ϕ  

(3) 

where R(Vasi) denotes the resistance of the active resistor controlled by Vasi, and Vt  

represents the thermal voltage (kT/q). Finally, the resistor RT converts io into a voltage 

Vo, representing si in Eq.(1), and the switch samples a continuous-valued output state, 

Vsi. The dynamic ranges of the parameters and their mappings between numerical 

simulation and VLSI implementation are summarised in Table.1. The unit values in 

the last column are obtained by dividing the VLSI to the numerical values.  

 Fig.5(a) showed the measured characteristics of a sigmoid circuit. With iin swept 

from -10µA to 10µA, the output Vo was measured. Different curves corresponded to 

different Vasi, controlling the sigmoid slope as ai in Eq.(1). According to [6], the 

mapping between Vasi and ai was derived and shown in Fig.5(b). Fig.6(a) showed the 

scatter plot of the noise voltages measured from two channels of the noise generator. 

The nearly-uniform distribution of data points indicated that the correlation between 

the two channels was negligible. Similar results were obtained for any two  channels. 

Fig.6(b) further showed the statistical distribution of the noise amplitudes in one 

channel, which approximated an uniform distribution within [1, 2]V. Although 

circuits for converting uniform into Gaussian distributions were available [22], the 
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CRBM simply used noise to model data variance. The distribution of noise was not 

necessary to be Gaussian, as demonstrated in [15]. The uniform-distributed noise was 

thus sent to the CRBM neurons directly. According to [6], the mapping between Vsig 

and σ  was derived and shown in Fig.6(c). 

The transient response of the neuron H0 was tested by setting wi0 = 3 V and 

sweeping all vi between 1V and 2V (corresponding to vi = ±1). With Vasi =1.75V and 

Vsig =0.55V, the neuron generated the continuous-valued, stochastic dynamics shown 

in Fig.7. As the clock went low, an analogue voltage was sampled and held as the 

Gibbs-sampled state of the neuron. 

B. Programmable Parameter Array 

Each mCRBM system contains 35 parameters (25 wij and 10 ai), which are 

arranged into a 5x7 array and multiplexed by the architecture shown in Fig.8(a). The 

corresponding digital-control signals are shown in Fig.8(b). With C0-C4 decoded 

from CK[0:2], five parameter values in the same column (w0j-w4j) are selected 

sequentially by the MUXj, and then transmitted to the off-chip ADC. In refreshing 

mode, w0j is first compared with its target value during C0=1. The signal 

]0[:/ DECINC representing the update direction is then obtained and stored in a 

register. Following the same procedure, the update directions for w1j- w4j are obtained 

as C1-C4 becomes high sequentially. CKup=1 then triggers the updating circuits 

(Fig.8(c)) to tune all parameter once. The refreshing step is controlled by the pulse-

width of the signal VPLS [3]. In training mode, update directions are calculated 

according to Eq.(2), and then used to adapt the parameter array in a similar manner. 
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Fig.9(a) showed the measured characteristic of the updating circuit in refreshing 

mode. With VP=2.46V, VN=0.57V, and a pulse width of 320ns for VPLS, an 

updating step of 12mV was easily achieved for both incremental ( 0/ =DECINC ) 

and decremental ( 1/ =DECINC ) updates. The updating step could be further 

decreased by reducing the pulse width, but the background and the switching noise 

made the updating step hardly visible. The programmability of parameters in the 

same column was further tested and shown in Fig.9(b). After w00 ~ w30 were read out 

sequentially, CKup triggered update circuits to refresh the parameters once. The 

refreshing frequency was around 770 Hz. 

V. REGENERATING CONTINUOUS-VALUED DATA DISTRIBUTIONS 

 

The mCRBM system’s ability to regenerate different data distributions was tested 

by (1) training the CRBM in Matlab to derive parameter values for modelling a 

dataset, (2) programming the parameters in VLSI to the derived values, and (3) 

generating multi-step reconstructions from the mCRBM system. During multi-step 

reconstruction, initial data was transmitted to visible neurons with their N=0. Hidden 

and visible neurons were then sampled alternatively with N=1 for all neurons. The 

experimental results are presented in the following subsections. 

A. Regenerating Two-Dimensional Data with a Symmetric Distribution 

A CRBM with two visible and four hidden neurons was trained to model the two-

dimensional data in Fig.10(a), consisting of two clusters of 200 Gaussian-distributed 

data points. According to Table.I and Fig.5(b), the learnt parameters values were 

translated into voltages as 
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 ×

=

5215.15858.14605.12823.15157.1

5497.14816.14199.18579.16107.1

4626.17435.15614.14723.1

}{ ijw  (Volts) 

[ ]75.175.1}{ =via  (Volts) 

[ ]25.185.175.125.2}{ =hia  (Volts) (4) 

With {wij} and {ai} refreshed to the voltage levels in Eq.(4), the mCRBM system 

generated the 15-step reconstruction in Fig.10(b). The similarity between Fig.10(a) 

and (b) demonstrated that the CRBM system was able to regenerate the training data 

satisfactorily. In addition, the noise in VLSI was used to regenerate the data variance, 

causing each reconstructed cluster to exhibit a square shape due to the uniform-

distributed noise. 

B. Regenerating Two-Dimensional Data with a Non-symmetric Distribution 

A CRBM with two visible and four hidden neurons was further trained to model 

the non-symmetric distribution in Fig.11(a), comprising of 400 data points sampled 

from one elliptic Gaussian and one circular Gaussian. After 4000 training epochs, the 

parameters were derived and slightly adjusted to be 

 

 














 ×

=

5782.19000.13000.27000.15157.1

5677.10000.28000.08000.16107.1

6215.15847.16019.14042.1

}{ ijw  (Volts) 

[ ]30.150.1}{ =via  (Volts) 

[ ]30.195.130.278.1}{ =hia  (Volts) (5) 

The adjustments were mainly for compensating the nonlinearity of multipliers, as had 

been done in [6]. With {wij} and {ai} refreshed to the voltage levels in Eq.(5), the 
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mCRBM system regenerated the 15-step reconstruction in Fig.11(b), agreeing with 

the training data satisfactorily. 

C. Regenerating Three-Dimensional Data with a Symmetric Distribution 

To demonstrate the difference from the CRBM system with only two visible 

neurons in [6], the mCRBM system was programmed to regenerate the three-

dimensional (3D) data in Fig.12(a), consisting of two clusters of 200 Gaussian-

distributed points. A CRBM with three visible and four hidden neurons was trained to 

model the data for 4000 epochs. The learnt parameters after slight adjustment were 

 

 

















 ×

=

5201.15003.10012.24997.15001.1

4953.15101.19892.05021.14982.1

4898.14897.11231.24920.15102.1

5107.15021.14915.15010.1

}{ ijw  (Volts) 

[ ]70.175.17.1}{ =via  (Volts) 

[ ]10.12.210.110.1}{ =hia  (Volts) (6) 

With {wij} and {ai} refreshed to the voltage levels in Eq.(6), the mCRBM system 

regenerated the 15-step reconstruction in Fig.12(b). The similarity between Fig.12(a) and 

(b) demonstrated again the mCRBM system’s ability to regenerate the training data 

satisfactorily, by the use of noise-induced stochasticity in VLSI. 

VI. CLASSIFYING ARTIFICIAL, THREE-DIMENSIONAL DATA 

 

 To exploit the scalability of the mCRBM system, two mCRBM chips were 

interconnected to form a CRBM model with a single-layer perceptron (SLP). Fig.13(a) 

showed the network architecture, and Fig.13(b) the connection between the two chips. 

One chip was programmed to model the 3D data in Fig.12, while the other provides a 

visible neuron to function as the SLP. The SLP was connected to the hidden neurons of 
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the CRBM, classifying data according to the outputs of the hidden neurons. The unused 

synapses had wij = 1.5V, and the unused neurons (the blank circles in Fig.13(b)) had N=0. 

V0 and H0 with N=0 functioned as the biasing neurons whose outputs were set to be 2V 

(i.e. si = 1) constantly via their terminal S. 

 The SLP was trained in Matlab to classify the responses of hidden neurons as the 

data in Fig.12(a) were clamped to the visible neurons. By back-propagation learning, the 

weight vector was obtained as wS = [1.5, 2.25, 1.5, 1.5] (V). With Vasi = 2V for the SLP, 

{wij} of the SLP refreshed to wS, and {wij} and {asi} of the CRBM refreshed to Eq.(6), 

the responses of the full system to the testing data in Fig.14(a) was measured. The testing 

data contained 5 points for the cluster A and 495 points for the cluster B. All of the 500 

testing data were mixed together and presented to the visible neurons one-by-one at a 

sampling rate of 500Hz. As the noise for all neurons were turned off, the measured output 

of the SLP was shown in Fig.14(b). The five spikes peaking at 2V corresponded to the 

five data of the cluster A, while all other data resulted in an output around 1V. This result 

demonstrated that the mCRBM system was able to classify the 3D data reliably and in 

real time. The reliability came from the use of noise to model the data variance. Once the 

noise was removed during classification, the hidden neurons (and thus the SLP) 

responded to data from the same cluster with negligible differences. In addition, by the 

merit of analogue circuits, the classification was achieved in real time. 

VII. Modelling and CLASSIFYING REAL BIOMEDICAL DATA 

 

On-line spike sorting has been demanded by many brain-machine interfaces [8][21], 

in order to reduce data size for wireless transmission or to control prosthetic devices in 
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real time. The ability of the mCRBM system to model and to classify neuronal spikes was 

thus tested.  

The data were collected by a 16-channel microelectrode array implanted in the layer 

V of the primary motor cortex (M1) of an awake rat [12]. The rat was free to move in a 

box during recording. A multi-channel processor (MAP, Plexon) was then used to record 

neuronal activity at 40kHz/channel with bandpass filters (450-5kHz). The recorded 

signals were normalised into [-1, 1] to fit the dynamic range of the CRBM neuron. Fig.15 

showed the three types of spikes (labeled as A, B, and C) recorded by a single channel, 

corresponding to the activity of different neurons in affinity to the recording electrode. A 

total of 500 spikes with equal number for each type was divided into a training dataset of 

100 spikes and a testing dataset of 400 spikes. To reduce hardware complexity, the 64-

dimensional spikes were down-sampled to 9-dimensional spikes, as shown by the black 

lines with squares in Fig.15. A CRBM with nine visible and two hidden neurons was then 

trained on the dataset in Matlab. After 60000 training epochs , the learnt parameters were 

given as  

 

 





































 ×

=

5.16.16.1

5.14.14.1

5.125.12.1

5.11.11.1

6.11.105.1

8.17.155.1

375.165.1225.2

17.16.1

5.15.15.1

5.11

}{ ijw  (Volts) 

[ ]0.10.10.10.10.10.10.10.10.1}{ =via  (Volts) (7) 
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[ ]95.195.195.1}{ =hia  (Volts) 

Two mCRBM chips were interconnected to form a mCRBM system with nine visible 

and two hidden neurons. The network architecture and the chip connection were shown in 

Fig.16(a) and (b), respectively. The unused synapses had wij = 1.5V, and the unused 

neurons (the blank circles in Fig.13(b)) had N=0. With {wij} and {ai} programmed to the 

voltage levels in Eq.(7), the mCRBM system was able to reconstruct the three types of 

spikes, as shown by the gray lines with circles in Fig.15. The ability to model real 

biomedical data with noise-induced stochasticity in VLSI was clearly demonstrated. 

Furthermore, as the testing dataset was presented to the mCRBM system with noise 

turned off, the responses of hidden neurons were measured and plotted in Fig.17(a). 

Different types of spikes resulted in responses in different clusters, and the clusters were 

easily separable among each other. The separation could be further enhanced by 

increasing the sigmoid slope of the hidden neurons. For example, as Vasi was increased to 

2.25V for all hidden neurons, the responses to the testing dataset were shown in Fig.17(b). 

Compared with Fig.17(a), the variance of each cluster was significantly reduced. With 

two voltage comparators having their thresholds in the grey region, the responses could 

be sorted with 100% accuracy easily. Compared to the principle component analysis 

(PCA) employed in most spike-sorting systems [16][20][28], the mCRBM system had at 

least comparable performance, while the analogue implementation facilitates real-time 

spike sorting. 

VIII. CONCLUSION 

 

A scalable and programmable CRBM system in VLSI have been designed, fabricated 

and tested. By the merit of programmability, the mCRBM system is proved capable of 
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regenerating various artificial data, as well as real biomedical data. By the merit of 

scalability, the mCRBM system is further shown capable of forming a multi-layer 

network for data classification, or a large CRBM network for modelling high-

dimensional data. The promising experiment results demonstrate that, basing on the 

CRBM algorithm, large-scale computation with noise-induced stochasticity in VLSI is 

feasible. In addition, the advantage of probabilistic modelling in VLSI has been 

demonstrated as the reliability of classifying artificial data and sorting neuronal spikes. 

The implementation with analogue VLSI further facilitates real-time classification and 

avoids the need for data converters. These features make the mCRBM system attractive 

for preprocessing noisy and high-dimensional data in many biomedical applications. The 

slight imperfection is that parameters mapped into VLSI still require adjustments to 

compensate for hardware nonlinearity. This problem could be solved by training the 

mCRBM system with a chip-in-a-loop configuration, as will be tested in the near future. 

Moreover, the possibility of using the intrinsic noise of transistors to realise the CRBM 

system will be explored. The exploration would suggest the feasibility of using instead of 

suppressing noise for computation in the deep-sub-micron era. 
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[Table Captions] 

TABLE I: The mapping of parameters between Matlab simulation and VLSI 

implementation. 
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[Figure Captions] 

Fig.1:  The architecture of a CRBM model with four visible and four hidden neurons. v0 

and h0 represent biasing units with constant outputs v0=h0=1. 

 

Fig.2:  The architecture of a scalable and programmable CRBM system and its functional 

modules. 

 

Fig.3:  The chip photo of the scalable and programmable CRBM system 

 

Fig.4:  The circuit diagram of a continuous-valued stochastic neuron of the CRBM 

 

Fig.5: (a) The measured DC characteristic of a sigmoid circuit with different Vasi. (b) The 

mapping between ai and Vasi.  

 

Fig.6: (a) The scatter plot of the noise voltages measured from channel A and J of the 

noise generator. (b) Statistical histograms of the noise amplitudes recorded from 

channel A. (c) The mapping between σ and Vsig.  

Fig.7:  The measured output (Vsi) of a continuous-valued, stochastic neuron (upper trace) 

and the clock (lower trace) that samples Vsi.  

 

Fig.8: (a) The architecture for multiplexing and programming the parameters of the 

mCRBM system. (b) The digital-control signals. (c) The updating circuit. 
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Fig.9:  (a) The measured updating stepsize of 12mV with VP=2.46V, VN=0.57V, and a 

pulse width of 320ns. (b) The measured programming process of the parameters 

in the first column (w00, w10, w20, w30, and w40). 

 

Fig.10: (a) The training data with a symmetric distribution. (b) 400 data points 

reconstructed by the mCRBM system with parameters refreshed to Eq.(4)..  

 

Fig.11:  (a) The training data with a non-symmetric distribution. (b) 400 data points 

reconstructed by the mCRBM system with parameters refreshed to Eq.(5). 

 

Fig.12: (a) The three-dimensional training data. (b) 400 data points reconstructed by the 

mCRBM system with parameters refreshed to Eq.(6). 

 

Fig.13: (a) The architechture and (b) the chip connection of a CRBM with a SLP for 

classifying the data in Fig.14a. 

 

Fig.14: (a) Three-dimensional testing dataset for classification. (b) The measured output 

of the SLP in response to the 500 testing data. 

 

Fig.15: (Upper): The recorded and normalised neuronal spikes with 64 dimensions. 

(Lower): The down-sampled spike waveform (black lines with squares) and the 

spike waveform reconstructed by the mCRBM system with parameters refreshed 

to Eq.(7). (gray lines with circles) 
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Fig.16: (a) The architechture and (b) the chip connection of a CRBM for modelling and 

classifying the spikes in Fig.15 

 

Fig.17: The measure responses of the hidden neuron H1 and H2 to the testing dataset as 

(a) {ahi} = 1.95V (b) {ahi} = 2.25V. 
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[Tables] 

 

TABLE I 

 MATLAB VLSI UNIT VALUE 

si [-1.0, 1.0] [1.0, 2.0] (V) 0.5 (V) 
wij [-3.0, 3.0] [0.0, 3.0] (V) 0.5 (V) 
iin [-15, 15] [-15, 15] (µA) 1µA 
ai [0.5, 9.0] [0.5, 2.4] (V) Fig.5(b) 

σ [0.1, 0.35] [0.53, 0.64] (V) Fig.6(c) 
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[Figures] 
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